How to Exploit Structure while Solving Weighted Model Integration Problems
Samuel Kolb, Pedro Zuidberg Dos Martires, Luc De Raedt

Exploiting structure in discrete-continuous probabilistic inference can lead to **exponential-to-linear speed-ups** in inference time.

Weighted Model Integration:
- Calculate the weight of an SMT-formula given a weight function.
- Generalizes weighted model counting (Boolean formula) to the discrete-continuous domain

\[2xy \preceq (x<0) \land (x<1) \land (y<1) \lor ((x>y) \land (y>1/2)) \]

λ-SMT: search vs. compilation
- Find the set of all satisfying assignments

<table>
<thead>
<tr>
<th>PA</th>
<th>BR</th>
<th>Symbo</th>
<th>PRAISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ-SMT DPLL Compilation</td>
<td>✓</td>
<td>XADD</td>
<td>XSDD</td>
</tr>
</tbody>
</table>

Integration
- Numeric: Latte
- Symbolic: XADD, PSL (Tree), Exp. Tree

Factorized Solving
1. Compile SMT formula to XSDD (λ-SMT).
2. Statically analyze circuit.

![Diagram](image)

Algorithm 1 Factorized Integration

1: world-weight \(\omega \)
2: procedure vol(XSDD \(D \), vars \(x \))
3: if \(x = \emptyset \) then
4: return \(\left| D \right| \)
5: else if \(D \) is terminal then
6: return \(\int D \prod_{x \in x} \omega_x(x)dx \)
7: else if \(D = \bigvee_{D_1, D_2} \) then
8: \(r_1 \) = vol(D_1, x \cap \bar{x})
9: \(r_2 \) = vol(D_2, \bar{x} \cap x)
10: return \(\int r_1 \cdot r_2 \prod_{x \in x} \omega_x(x)dx \)

![Graphs](image)