Weighted Model Integration Using Knowledge Compilation

Pedro Zuidberg Dos Martires, Anton Dries, Luc De Raedt
pedro.zuidbergdosmartires@cs.kuleuven.be
Probabilistic Inference

Probabilistic inference algorithms are targeted towards:

- either **continuous distributions**: symbolic inference, Hamilton Monte Carlo, variational Bayesian Inference, ...
- or **discrete distributions**: SAT, weighted model counting, ...

We want to combine state-of-the-art from both
→ **best of both worlds**!

We tackle the problem starting from a discrete perspective.
Knowledge Compilation

State-of-the-art technique for probabilistic inference in discrete domain.

Probabilistic inference is #P-complete.

\[\text{working} \leftrightarrow \text{cooling} \lor \text{low}_t \]

offline: compile theory (expensive)

online: fast inference (cheap)

- evaluation in linear time
- conditioning in poly-time
- repeated querying

1 Adnan Darwiche. *Modeling and reasoning with Bayesian networks.*
SMT: Satisfiability Modulo Theory

working \leftrightarrow (cooling $\land (t^2 < 30)) \lor (t < 5)$

More complex expressions allowed:

$(t^2 < s + 10)$
working $\leftrightarrow (\text{cooling} \land (t^2 < 30)) \lor (t < 5)$

$p(\text{cooling}) = 0.99$

$t \sim N_t(20, 5)$

Question:

$p(\text{working}) = ?$

In general:

$$p(x|e) = \frac{p(e|x)p(x)}{\int_x p(x, e)}$$
<table>
<thead>
<tr>
<th>knowledge compilation</th>
<th>WMC²</th>
<th>prob. prog. 3 4 5</th>
<th>previous WMI 6 7</th>
<th>our work</th>
</tr>
</thead>
<tbody>
<tr>
<td>density functions</td>
<td>✓</td>
<td>X</td>
<td>✓/X</td>
<td>✓</td>
</tr>
<tr>
<td>exact</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>approximate</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>polynomials</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>non-linear</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

2 Mark Chavira and Adnan Darwiche. “On Probabilistic Inference by Weighted Model Counting”.
3 Timon Gehr, Sasa Misailovic, and Martin Vechev. “PSI: Exact Symbolic Inference for Probabilistic Programs”.
4 Davide Nitti, Tinne De Laet, and Luc De Raedt. “Probabilistic logic programming for hybrid relational domains”.
5 Brian Milch, Bhaskara Marthi, and Stuart Russell. “BLOG: Relational modeling with unknown objects”.
6 Samuel Kolb et al. “Efficient Symbolic Integration for Probabilistic Inference”.
7 Paolo Morettin, Andrea Passerini, and Roberto Sebastiani. “Efficient Weighted Model Integration via SMT-Based Predicate Abstraction”.

5/18
Contribution

1. Handle probability density functions while applying state-of-the-art knowledge compilation techniques.
2. Two new solvers:
 - Exact solver Symbo: PSI-Solver\(^8\) in back-end (probabilistic computer algebra system)
 - Approximate solver Sampo: Edward\(^9\) in back-end (probabilistic TensorFlow)

\(^8\) Gehr, Misailovic, and Vechev, “PSI: Exact Symbolic Inference for Probabilistic Programs”

\(^9\) Dustin Tran et al. “Edward: A library for probabilistic modeling, inference, and criticism”
Symbo: Exact Symbolic Inference

1. Abstract theory.

\[
\text{working} \iff (\text{cooling} \land (t^2 < 30)) \lor (t < 5) \\
\text{working} \iff (\text{cooling} \land \text{abs}\,t^2<30) \lor \text{abs}\,t<5
\]

Introduce fresh Boolean variables for conditions.
Symbo: Exact Symbolic Inference

1. Abstract theory.
2. Compile formula.

\[(\text{cooling} \land (t^2 < 30)) \lor (t < 5)\]

Avoid double counting.
1. Abstract theory.
2. Compile formula.
3. To arithmetic circuit.
Symbo: Exact Symbolic Inference

1. Abstract theory.
2. Compile formula.
3. To arithmetic circuit.
4. Label the leaves.

\[(\text{cooling} \land (t^2 < 30)) \lor (t < 5)\]
1. Abstract theory.
2. Compile formula.
3. To arithmetic circuit.
4. Label the literals.
5. Evaluate.

\[[t<5] + 0.99[t^2<30][t\geq5] \]

\((\text{cooling} \land (t^2 < 30)) \lor (t < 5)\)
Algebraic Model Counting

Generalized framework for probabilistic inference:
- define specific semiring \((A, \oplus, \otimes, e^\oplus, e^\otimes)\) for specific task

Link to belief propagation:
- sum-product: \(\oplus\) is normal addition
- max-product: \(\oplus\) is maximization

We defined a custom **probability density semiring** with custom elements:

\[
A := \{(a, V(a))\}
\]

\[
a = [t<5] + 0.99[t^2<30][t\geq5]
\]

\[
V(a) = \{t\}
\]
Symbo: Exact Symbolic Inference

1. Abstract theory.
2. Compile formula.
3. To arithmetic circuit.
4. Label the leaves.
5. Evaluate.
6. Multiply by the weight of the continuous variables.
7. Integrate.

\[p(\text{working}) = \int \left([t<5] + 0.99[t^2<30][t\geq5] \right) N_t(20, 5) \, dt \]

Integrals become easily intractable.
$t \approx [2.8, 35.1, 5.4, 22.2, 21.4]$
Sampo: Approximate MC Inference

\[
\begin{bmatrix}
2.8<5 \\ 35.1<5 \\ 5.4<5 \\ 22.2<5 \\ 21.4<5
\end{bmatrix}
+ \begin{bmatrix}
2.8\geq5 \\ 35.1\geq5 \\ 5.4\geq5 \\ 22.2\geq5 \\ 21.4\geq5
\end{bmatrix}
\times 0.99
\times \begin{bmatrix}
7.84<30 \\ 1232.01<30 \\ 29.16<30 \\ 492.84<30 \\ 457.96<30
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
+ \begin{bmatrix}
0 \\ 1 \\ 1 \\ 1 \\ 1
\end{bmatrix}
\times 0.99
\times \begin{bmatrix}
1 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
= \begin{bmatrix}
1 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\]

\[
\rho(\text{broken}) = \frac{1}{5} \sum_{i=1}^{5} \psi_{\text{MC broken},i}^{\text{MC}} = \frac{1.99}{5} = 0.398
\]

This is pure vector calculus and can be executed on the GPU!
\[\rightarrow\] cheap probabilistic inference
\[\rightarrow\] embarrassingly parallelizable
Symbo vs. PSI11

How does symbolico-logic inference compare to pure symbolic inference?

- Symbo is faster on 9/10 benchmark problems than PSI, excluding knowledge compilation
- Symbo is faster on 7/10 benchmark problems than PSI, including knowledge compilation

Logical reasoning generally improves symbolic inference!

11 Gehr, Misailovic, and Vechev, “PSI: Exact Symbolic Inference for Probabilistic Programs”
Sampling on the GPU \rightarrow constant time complexity
Avoid sampling categorical variables \rightarrow reduction in variance

12 Nitti, De Laet, and De Raedt, “Probabilistic logic programming for hybrid relational domains”
13 Milch, Marthi, and Russell, “BLOG: Relational modeling with unknown objects”
Contributions

- Unified framework for knowledge compilation and weighted model integration based on semirings and AMC.
- Introduced two solvers that beat state-of-the-art.
- Sampo is the first sampling based algorithm for WMI.

Future Work

- Integrate Symbo and Sampo into full-fledged probabilistic programming language
- investigate thoroughly relationship to related work14 15.

14 Kolb et al., “Efficient Symbolic Integration for Probabilistic Inference”
15 Morettin, Passerini, and Sebastiani, “Efficient Weighted Model Integration via SMT-Based Predicate Abstraction”