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Abstract

Owing to their reasoning capabilities, large language models (LLMs) have been
evaluated on planning tasks described in natural language. However, LLMs have
largely been tested on planning domains without constraints. In order to deploy
them in real-world settings where adherence to constraints, in particular safety
constraints, is critical, we need to evaluate their performance on constrained plan-
ning tasks. We introduce LEXICON—a natural language-based (LEXT) constrained
(CoN) planning benchmark, consisting of a suite of environments, that can be
used to evaluate the planning capabilities of LLMs in a principled fashion. The
core idea behind LEXICON is to take existing planning environments and impose
temporal constraints on the states. These constrained problems are then translated
into natural language and given to an LLM to solve. A key feature of LEXICON is
its extensibility. That is, the set of supported environments can be extended with
new (unconstrained) environment generators, for which temporal constraints are
constructed automatically. This renders LEXICON future-proof: the hardness of
the generated planning problems can be increased as the planning capabilities of
LLMs improve. Our experiments reveal that the performance of state-of-the-art
LLMs, including reasoning models like GPT-5, 03, and R1, deteriorates as the
degree of constrainedness of the planning tasks increases.

1 Introduction

Planning with constraints is commonly required in problem-solving settings, ranging from resource
allocation and scheduling [32] to ensuring safety in reinforcement learning [[1}[15}156,|14]. Several
planning specification languages have been proposed [13}, 138} 130, 20], including formalisms with
constraints [16]. However, specifying the complex, possibly compositional, constraints of an environ-
ment in a formal language is rather intricate, as it requires, inter alia, significant domain expertise.
Other common ways of integrating constraints in planning problems is via penalties in a reward
function [28| 141 [10] or through the physics engine of the environment [7, |46]. These solutions are
also challenging for non-experts, while, after tightly integrating constraints into an environment, they
are often difficult to alter if needed. We address these limitations by enabling the human user to
communicate constraints directly to the planning agent, via natural language (NL).

The advent of large language models (LLMs), trained on vast textual corpora, has made NL-based
planning increasingly feasible. However, whether LLMs possess the reasoning capabilities required
for effective planning remains an open question. Some works argue that LLMs can perform reasoning,
and even act as zero-shot planner |52} 126, 23], while others critically highlight their limitations [50}
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Figure 1: Constrained problems on environments supported in LEXICON. From left to right:
BabyAl [6], Blocksworld [19], Logistics [30], Sokoban [12]] and AlfWorld [43]. A constrained
planning task is specified by an initial state, a goal, and a set of constraints to be respected.

11,144]. In particular, LLM-based planning methods are often inefficient, lack formal guarantees, and
incur high computational costs due to the generation of numerous “thinking tokens” [25} 51]].

As LLMs are increasingly deployed in domains such as robotics [24} 29], travel planning [54], tool
use [42]], scientific discovery [55]], and healthcare [45]—all of which demand planning and reasoning
under constraints—it becomes crucial to rigorously assess their constrained planning capabilities. To
this end, we make the following contributions.

1. Extensible Benchmark. We introduce LEXICON, an extensible NL-based benchmark for planning
with temporal constraints specified on state-trajectories, which is publicly availableﬂ It comprises
two core components: a symbolic reasoning engine and a translator, which together enable the
following functionalities.

— Constrained Problem Generation. This module takes as input an unconstrained planning
problem (described in a formal language) and introduces constraints to it, while making sure that
it remains solvable. The reasoning engine generates task-aware constraints so as to complicate
the original problem—resulting in longer solutions compared to its unconstrained version—while
guaranteeing that constraints do not subsume one another, which would make them redundant.
This leads to a challenging LLM planning benchmark. Crucially, the reasoning engine operates
orders of magnitude faster than LLM-based planning, enabling scalable problem generation and
evaluation. To interface with LLMs, the translator module converts formal planning problems
with constraints into NL, leveraging the compositional structure of these problems to produce NL
representations in a systematic manner.

— Automated Plan Verification. The planning capabilities of LLMs are evaluated on the gener-
ated NL-representation of constrained planning problems. Subsequently, the reasoning engine
automatically verifies whether the LLM-generated plans are correct and/or optimal.

2. Experimental Evaluation. We evaluated several state-of-the-art LLMs, including reasoning
models like OpenAl 03 [35]], DeepSeek R1 [9]], Gemini 2.5 Pro [18]], Claude 3.7 Sonnet [2], and
GPT-5 [34], on benchmarks generated by LEXICON. Using constrained problems of increasing
compositional complexity, we found that LLM performance consistently declines with the number
of constraints, suggesting that current models do not yet match the performance of formal planning
algorithms.

LEXICON supports five environments (Figure [I)) and is designed to be extensible. We expect it
to remain valuable even as more capable LLMs emerge. As LLMs improve, LEXICON can adapt
by generating problems with increased constraint complexity or encorporating new environments,
resulting in a flexible, future-proof benchmark that does not rely on static planning problems. Unless
LLMs truly acquire algorithmic planning abilities—generalizing across problem instances like
symbolic planners—we expect LEXICON to continue serving as an effective tool for assessing their
planning capabilities.

"https://github.com/Periklismant/lexicon_neurips


https://github.com/Periklismant/lexicon_neurips

NL Automated Suite Environment

Benchmark Constraints Interface  Curation  Extensibility Diversity
BabyAl [6] X v v v X
AlfWorld [43]] X v v X X
PlanBench [49] X v v v v
ACPBench [27] X v v v v
BALROG [37] X v v v v
Safety Gym [41]] v X v X X
TravelPlanner [54]] v v X X X
Natural Plan [57]] v v X X v
LEXICON v 4 v v v

Table 1: Comparison of simulation benchmarks. “Automated curation” indicates the ability to
automatically generate new planning problem instances and verify solutions for those instances.
“Suite Extensibility” requires that new planning domains can be added to the benchmark without
rewriting its code. “Environment Diversity” indicates that the benchmark supports more than one
type of planning domain (e.g., it is not restricted solely to 2D gridworld problems).

2 Related Work

Table T]compares LEXICON with state-of-the-art planning benchmarks. Benchmarking the planning
capabilities of LLMs requires an NL interface, which limits the applicability of traditional constrained
environments such as Safety Gym [41] that lack NL support. While simulators such as BabyAlI [6],
gComm [21], and AlfWorld [43] support NL interaction, they do not model constraints and are
limited to narrow domains (e.g., 2D grids or household settings). Constrained planning benchmarks
like NaturalPlan [57]] and TravelPlanner [54] also support NL, but their tasks are either manually
curated or carefully constructed offline, resulting in limited extensibility. Additionally, verifying LLM-
generated plans in these settings typically requires exhaustively enumerating all valid solutions, which
is prohibitively expensive. In contrast, LEXICON supports the generation of a potentially unbounded
number of constrained tasks and can automatically verify agent outputs using its reasoning engine.
This enables rigorous, scalable evaluation without needing exhaustive (manual) plan enumeration.

While one might consider augmenting planning benchmarks such as PlanBench [49] or BALROG [37]]
with constraint-handling functionalities, these systems lack the infrastructure to synthesize, solve,
and validate constrained tasks in an integrated manner. In contrast, LEXICON was built from the
ground up to support automated constraint generation, enforcement, and verification. As LLMs
continue to improve in their reasoning capabilities [22], LEXICON provides a principled platform for
evaluating them on increasingly complex planning tasks with compositional constraints. Moreover,
its reasoning engine is domain-agnostic, facilitating seamless extension to new environments (i.e.,
suite extensibility). In what follows, we illustrate the planning formalism in LEXICON, and describe
its architecture.

3 The LEXICON Simulator

3.1 Planning Specification Language

LEXICON supports planning problems expressed in PDDL3.0, an extension of the PDDL formal
planning language that includes constraints [16].

Example 3.1: Constrained Planning in BabyAI

BabyAl contains problems where an agent needs to navigate the rooms of 2D gridworld, while interacting
with objects, to complete some task [[6]. Figure 2] (left) shows the initial state of a problem from BabyAL
BabyAl problems are grounded in PDDL; a domain file specifies the object types, the (time-varying) state
atoms, and the actions of the domain, while a problem file denotes the objects of the puzzle, the initial state,
the goal, and the constraints. In this case, the domain file defines atom locked(d), expressing that door d




1. gotodoor purple_door_1 room_1 room_2

2. toggle purple_door_1

3. gotoobject purple_box_1 room_1

4. pick purple_box_1 room_1 1. gotodoor

5. gotoroom room_1 room_2 purple_door_1 green_door_1 room_1
6. gotodoor blue_door_1 room_2 room_4 room_3

7. toggle blue_door_1 2. toggle green_door_1
S.gotoroom room_2 room_4 blue_door_1 S.gotoroom room_1
9.gotodoor yellow_door_1 room_4 room_3 room_3 green_door_1
10. toggle yellow_door_1 4. gotoobject

I1. gotoroom room_4 room_3 yellow_door_1 red_ball_1 room_3
12. gotoempty

13. drop purple_box_1 room_3

14. gotoobject red_ball_1 room_3

1. (:goal (and (exists (?v - ball) (and (objectcolor ?v red) (at ?v)))))

2. (:constraints (always (locked green_door_1))

3. (sometime (agentinroom room_1))

4 (sometime -after (agentinroom room_1) (objectinroom purple_box_1 room_3)))

Figure 2: Left: The initial state of the constrained planning problem in Example The red triangle
represents the agent. Bottom: The goal and the constraints of the problem in PDDL3.0. Middle:
Optimal plan for this problem. Right: Optimal plan for the corresponding unconstrained problem.

is locked, and action pick, outlining the conditions for and the effects of picking up and holding an object.
Figure 2] (bottom) outlines the goal and the constraints of the problem. The goal is to reach a red ball, while
the constraints dictate that (i) the agent must never unlock the green door, (ii) at some point, the agent must
visit room 1 (top-left room), and (iii) some time after visiting room 1, purple box 1 needs to be in room 3
(top-right room).

In LEXICON, we are interested in optimal planning, i.e., finding a plan that (1) reaches the goal while
satisfying all constraints and (2) has minimum length. Optimal planning on the problem described in
Example [3.1]is easy if the constraints are ignored—an optimal plan for the unconstrained problem
consists of 4 actions (see Figure@] (right)). However, the constrained version is significantly more
challenging. For example, to satisfy the constraint that the green door must always remain locked,
the agent must take a longer path through the purple and blue doors to reach the room containing the
red ball—resulting in 14 actions (cf., Figure [2] (middle)).

3.2 The LEXICON Architecture

Figure [3{(left) illustrates the architecture of LEXICON. The modules between the “Sampler” and
the “Translator” implement the constrained problem generator functionality of LEXICON, while the
“Verifier” module realises the automated plan verification functionality. We first outline constrained
problem generation in PDDL, then its translation into natural language, and lastly our plan verifier.

Constrained Planning Problem Generator. We developed a constrained PDDL problem generator,
extending the literature with a task-aware method for producing constraints for arbitrary PDDL
problems. Its task is to generate constrained planning problems along with their optimal cost. The
generator first samples an unconstrained problem using a domain file and a (unconstrained) state-goal
pair generator, and then computes an optimal plan for the problem using the state-of-the-art planner
SymK [47]. This plan, along with the unconstrained problem, is passed to LEXICON’s constraint
generator, which synthesizes task-aware constraints that (1) preserve feasibility, i.e., the problem still
has a solution, and (2) increase the optimal cost relative to the unconstrained version.

Example 3.2: Constraint Generation in BabyAl

Consider the unconstrained plan in Figure Using LEXICON, we can automatically construct an Always(¢)
constraint by analyzing the state transitions induced by this plan. The system samples domain atoms
and evaluates their suitability for inclusion in ¢ based on problem complication, consistency, and non-
redundancy. For example, atom at(red_ball_2) is excluded since it does not hold in the initial state and
thus cannot “always” hold. Similarly, objectInRoom(red_ball_1,room_3) is not selected as it holds in
all states of the unconstrained plan, thus offering no added difficulty. In contrast, locked(green_door_1)
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Figure 3: Left: The architecture of LEXICON. Solid arrows denote input/output data transfers.
Dashed arrows denote optional input. Right: The translator of LEXICON. Dotted arrows express
content extraction.

is included in ¢, as enforcing it prevents use of the green door—forcing a detour through the purple and
blue doors—which increases the plan’s optimal cost (see Figure (left)).

In LEXICON, users can optionally provide atemporal domain axioms to guide the constraint generator
toward meaningful, non-conflicting constraints. For example, given the axiom Vd: —(Locked(d) A
unlocked(d)) and an existing constraint Always(locked(green_door_1)), the generator avoids
sampling Sometime(unlocked(green_door_1)) since it would be unsatisfiable.

Next, we compute the optimal cost of the constrained problem generated by LEXICON, which is
necessary to evaluate LLM outputs against ground-truth optimal plans. However, no existing planner
supports constrained planning problems with actions that have conditional effects, which are often
essential to specify certain domains, such as BabyAl. To overcome this, we compile the constraints
away [531139, 15]], producing an equivalent problem without constraints, which can be solved by SymK.
LEXICON uses the TCORE compiler [4] for this translation. To avoid the cost of grounding, we apply
a lifted variant of TCORE. Solving the compiled problem with SymK yields a formally verified optimal
cost for the original constrained planning problem.

Our constrained problem generator is compositional, allowing users to control the number and
complexity of constraints, enabling the generation of increasingly challenging benchmarks for future
LLMs. It is also extensible: to support a new domain, users need only provide a PDDL domain file
and an automated initial state—goal generator, avoiding manual problem construction. Domains can
also be specified in Python via the Unified Planning framework [31]], easing use for non-experts.

PDDL to Natural Language Translator. To evaluate LLMs on constrained problems, we first
translate them into natural language (NL). As shown in Figure 3| (right), our translator extracts the
instance-specific elements—initial state, goal, and constraints—and composes a problem prompt
in NL. Since these instance-specific elements are built compositionally from domain atoms, their
NL descriptions are generated by combining predefined NL templates for each atom. Domain-level
descriptions (e.g., environment and action semantics) are carefully handcrafted per domain.

Example 3.3: NL Translation for BabyAI Problem

Consider the constrained planning problem in Example[3.1} Figure ] (top) shows a fragment of the NL
description generated for this problem by our translator. Lines 2-5 describe the initial state by listing
NL descriptions of atoms that hold initially. The goal—“reach a red ball’—is represented by the logical
formula Jv: typeof(v,ball) A objectColor(v,red) A at(v), which we translate recursively into NL
(lines 7-8). This involves mapping the quantifier to “There is a ball v such that”, followed by “The following




. The original state of the world is:

‘you are in room_1°

‘purple_box_1 is in room_1°’

‘blue_box_1 is in room_2°

<Description of the remaining atoms that hold initially>

The task is to bring about the following situation:
<

PN LR~

‘There is a ball v such that ‘The following conditions are all true: ‘v is red’, ‘you
are in front of v’’’
93
10. A valid plan for the abovementioned problem must abide by the following constraints:
I1. ‘The following expression must hold in every state: ‘green_door_1 is locked’’
12. ‘The following expression must hold in at least one state: ‘you are in room_1’’
13. ‘If expression ‘you are in room_1’ holds in some state s, then expression ¢

purple_box_1 is in room_3°’ must hold at s or at some state after s’

1. Provided a planning problem, consisting of an initial state of the world, a final goal
and a set of constraints, your task is to provide a valid sequence of actions that
solves the planning problem, i.e., bringing about the goal of the problem while
satisfying all constraints.

2. You need to provide an optimal plan, i.e., a valid plan whose length is equal or less
than the length of any other valid plan.

Figure 4: Top: Fragment of our natural language description of the constrained problem of Example
[3.1} Bottom: System role prompt.

conditions are all true”, and then enumerating atom-level descriptions. Constraints are translated similarly
using this recursive procedure (see lines 10-13).

Our translator is also extensible: to support a new planning domain, one only needs to provide (i)
an NL description of the environment and actions, and (ii) NL descriptions for each atom. This
eliminates the need for instance-specific NL annotations, allowing the translator to operate directly
on any generated constrained problem within the domain.

Automated LLM Plan Verifier. With LEXICON’s modules for generating constrained planning
problems in NL in place, we now evaluate LLMs on these problems. Each LLM is given the NL
description of a problem along with a fixed system role prompt (Figure @] (bottom)), instructing it to
act as an optimal planner. This prompt is used consistently across all domains.

To assess LLM outputs, LEXICON includes a verifier module (Figure 3] (left)) with three steps: (1)
LLM-generated plans are mapped to PDDL actions using the prescribed output format; deviations are
corrected by matching the LLM action to the closest domain action, according to the edit distance [33]].
(2) The plan is validated using an automated plan validator on the compiled version of the constrained
problem produced by LiftedTCORE, leveraging the guarantee that a plan valid for the compiled
problem also satisfies the original constrained problem [4]. (3) If valid, the plan is checked for
optimality by comparing its length to the optimal cost, which was computed at the problem generation
phase.

A rigorous formulation of the constrained planning problem (i.e., with temporal constraints) along
with how constrained plans are generated and verified through our reasoning engine is provided in

Appendix [A]

Figure 5| displays LLM-generated plans for the constrained problem in Example[3.1] The plan on
the left was generated by 03; this plan is invalid because it violates the preconditions of the pick
action, i.e., the agent attempts to pick up a purple box at a time when it is not facing that box (cf. line
1 of Figure 5] (left) and the starting state in Figure ] (left)). The plan in the middle was suggested by
Claude 3.7 Sonnet with extended thinking. This plan is invalid because the agent attempts to drop an
object at a time when it is facing a door instead of an empty position, as required by the preconditions
of the drop action (cf. lines 6 and 7 in Figure 5] (middle)). This type of error may be due to LLM
state hallucination or loss of state tracking. The plan on the right was produced by R1. This plan
ignores the constraint stipulating that the purple box must be placed in the top-right room, and is thus
invalid. Next, we present a thorough evaluation of LLMs on benchmarks generated by LEXICON.




1. pick purple_box_1 room_1 1. gotoobject purple_box_1 1. gotodoor purple_door_1
2. gotodoor purple_door_1 room_1 room_1 room_2
room_1 room_2 2. pick purple_box_1 room_1 2. toggle purple_door_1
3. toggle purple_door_1 3. gotodoor purple_door_1 3. gotoroom room_1 room_2
4. gotoroom room_1 room_2 room_1 room_2 purple_door_1
purple_door_1 4. toggle purple_door_1 4. gotodoor blue_door_1
S.gotodoor blue_door_1 S.gotoroom room_1 room_2 room_2 room_4
room_2 room_4 purple_door_1 5.toggle blue_door_1
6. toggle blue_door_1 6. gotodoor blue_door_1 6. gotoroom room_2 room_4
7. gotoroom room_2 room_4 room_2 room_4 blue_door_1
blue_door_1 7. drop purple_box_1 room_2 7. gotoobject red_ball_2
8. gotodoor yellow_door_1 8. toggle blue_door_1 room_4
room_4 room_3 9. gotoroom room_2 room_4
9. toggle yellow_door_1 blue_door_1
10. gotoroom room_4 room_3 10. gotoobject red_ball_2
yellow_door_1 room_4

11. drop purple_box_1 room_3
12. gotoobject red_ball_1
room_3

Figure 5: Invalid plans suggested by LLMs for the constrained problem in Example

4 LLM Evaluation on LEXICON

4.1 Evaluation Setup

FigureI|displays the domains supported in LEXICON, which are:

* BabyAlI [6]: an environment with minigrid problems, like our running example.

* Blocksworld: a puzzle where an agent rearranges blocks into a target configuration. Con-
straints may forbid placing certain blocks on the table or require specific sequences of block
manipulations.

* Logistics: a world consisting of several locations, possibly including packages, trucks and
airplanes, where the task is to move all packages to their designated destinations. Constraints
may, e.g., forbid the usage of a specific truck or an airport.

* Sokoban: a gridworld where an agent has to move a collection of boxes onto target locations.
Constraints may indicate, e.g., that a grid square must be occupied or cleared.

* AlfWorld: an environment for executing household task, like putting a book in a drawer,
washing and slicing an apple, or turning on a lamp. Constraints may, e.g., prohibit the use of
certain utensils, or impose a (partial) ordering among sub-tasks.

LLMs were tasked with optimal planning on constrained problems generated by LEXICON. Our
experiments ran on a standard PC (Ubuntu 22, Ryzen 7 5700U, 16GB RAM), using each LLM’s
official API and the maximum allowed token limits for completions and reasoning. The LLM
execution parameters for all our experiments are provided in Appendix [C|

4.2 Evaluation Results

We evaluated 5 LLMs with thinking token generation capabilities, i.e., DeepSeek R1 [9]], OpenAl
03 [35], Gemini-2.5 Pro [18]], Claude 3.7 Sonnet (Extended Thinking) [2]], and GPT-5 [34]]. We
also tested 4 LL.Ms that that do not support thinking capabilities, i.e., GPT 4.1 [36], DeepSeek
V3 [8]], Claude 3.7 Sonnet (no extended thinking), and Gemini 2.0 Pro [17], on benchmarks generated
by LEXICON. Each environment consisted of 150 problems, with the number of constraints in
{1,3,5,7,10}.

Can LLMs perform constrained planning? Figure [0 displays our results. All data points were
produced over 30 executions. For the sake of comparison, we also included performance measure-
ments on unconstrained problems. LL.Ms without explicit thinking typically failed to produce
an optimal—or even valid—plan for problems involving more than one constraint. For this
class of models, we only report the best-performing configuration, which was GPT-4.1 with Chain-of-
Thought (CoT) prompting [52]. For the performance of the remaining models, see Appendix [B| In
contrast, reasoning models frequently succeeded in producing optimal plans for problems with a few
constraints. However, the capabilities of reasoning LL.Ms deteriorated sharply as the number of
constraints increased. In the majority of problems including 10 constraints, most LLMs failed to
even produce a suboptimal plan. In the case of 03, e.g., in Blockworld, the optimal planning accuracy
over constraint range {1, 3,5, 7, 10} was [76%, 30%, 26%, 10%, 0].
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Figure 7: Correlation between Reasoning Tokens and Optimal Cost. The Pearson correlation
coefficients are as follows. Blocksworld: [0.48, 0.6, 0.67, 0.66, 0.63]; BabyAl: [0.52, 0.68, 0.7, 0.74,
0.8]; Logistics: [0.16, 0.37, 0.73, 0.71, 0.77]; Sokoban: [0.53, 0.12, 0.57, 0.62, 0.72]; AlfWorld:
[0.46, 0.74, 0.86, 0.55, 0.87].

Interestingly, as shown in Figure[7] we observe that the number of thinking tokens increases with
the optimal plan length (i.e., optimal cost), suggesting that the reasoning models engage in deeper
reasoning when the task demands it. However, as highlighted in Figure 3] their soundness declines
for longer plans, due to: invalid actions from precondition violations (e.g., attempting to pick up
a box without facing it), hallucinated states (e.g., perceiving an empty space where a door exists),
misinterpreted constraints, and loss of state tracking.



Goal: agent at yellow ball

Constraints:

1. at some state, must hold some object

2.at some state, agent at blue door 3

3.at some state, agent in room 3 and purple ball 1 in
room 3

4. at some state, either at yellow box 1 or grey box 1
in room 4

5.at some state, agent in room 1

6.at some state, agent at grey box 1 and green door 1
is unlocked

|
Unconstrained Plan: The yellow ball 1 is in room 2. So maybe I can |
Ijust go to that ball. |

Bilevel Planning.

Subgoal Generation:To satisfy constraint 4, I must carry purple ball from room 4 to room 3.

Subgoal Planning: How to get to room 47 Through blue door 3, which is locked. So first, unlock blue door 3. But to unlock
blue door 3, I need to be in front of it. So I can do gotodoor blue door 3. Then toggle it.

Backtracking: Now in room 4. Need to get purple ball 1 to room 3. unlock green door 1, gotodoor green door 1, toggle
green door 1, gotoroom room 3. Drop purple ball 1 here. But wait, we need to pick up purple ball 1 first. So in room

4: gotoobject purple ball 1 in room 4; pick purple ball 1 from room 4. Then carry it to room 3. So after entering room 4,
pick the ball, then go to green door 1, unlock it, go to room 3, then drop it.

Self Reflection: need to hold an object at some point (constraint 1). So picking up purple_ball_1 satisfies that. But
then, after dropping it, we are not holding anything. So need to pick something else? Or maybe just once is enough.

Bilevel Planning:

1. To satisfy constraint 5, I must go to room_1

potodoor blue door 2 between room 3 and room 1; toggle blue door 2 (unlock); gotoroom room 1 (now in room 1). That
satisfies constraint 5. ...

2. Now, need to go back to room 2 to handle other constraints.

potodoor blue door 1 b/w room 1 and room 2; toggle blue door 1; gotoroom room 2 (now in room 2)

Lookahead Search: gotoobject yellow box 1 in room_2 (satisfies constraint 4's first condition)

Alternatively, maybe moving grey box 1 to room 4 would also satisfy constraint 4. Let's see: If we pick up grey box 1 in
room 2, carry it to room 4, and drop it there. Then grey box 1 would be in room 4, satisfying constraint 4. But that
would require additional steps.

Self Reflection: Now, is this the optimal plan? Let"s count the steps. The current plan is 10 steps. Maybe there's a

shorter way.

Alternative approach: after unlocking blue_door 3 and green door 1, maybe there's & way to combine steps. Let"s see.

Alternatively, after step 18 (dropping purple ball 1 in room 3), we can go to room 4 via green door 1, but that's not

needed. Wait, maybe after dropping, we can go to room 4 again, but that's unnecessary.

Alternatively, after step 18, go to room 4, pick grey box 1 and move it. But that's more steps.
Figure 8: Planning Traces from R1. The white box displays the goal and constraints. On the left is
the initial observation from the BabyAl environment. Colored boxes indicate model behaviours: cyan
for bilevel planning, for self-reflection, for lookahead search, and violet backtracking.

We also show the 1-step unconstrained plan generated by R1 for the same goal in

Do LLMs show structured planning behaviour? We qualitatively analysed the reasoning traces
of R1 by annotating its “thinking” steps and mapping them to classical planning strategies. (The
reasoning traces of the LLMs that performed better on our benchmark were not available to us.)
Figure[§] shows a representative example. We observed the following behaviours:

* Bilevel Planning. R1 decomposes the goal into high-level subgoals and performs subgoal
planning.

* Backtracking. R1 can backtrack and generate a more optimized subgoal plan (e.g, instead
of having to go back to pick an object, carry it with you).

* Lookahead Search. R1 generates multiple rollout paths and selects the optimal action.

* Self-Reflection. R1 frequently re-evaluates the state and the selected actions, checking
constraint satisfaction and exploring alternatives, towards optimising the plan.

Despite these interesting behaviours, R1 does not show the structured search behaviour necessary
for optimal planning, like maintaining different search paths simultaneously. Instead, it tries to
generate a valid plan that satisfies all constraints, and subsequently attempts to shorten that plan,
towards finding an optimal one; this is not guaranteed to work for arbitrary planning problems.

Can LEXICON enable real-time evaluation of LLM Planners? A key advantage of LEXICON
is its ability to generate arbitrary constrained planning problems on demand. This allows for on-
the-fly evaluation of LLMs on problems of varying complexity, rather than relying on static, offline
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Figure 9: Execution Time vs. number of constraints (average optimal cost). The vertical axes
show execution time in seconds. Standard deviations are small, and thus omitted.

benchmarks. In our setup, LEXICON generates a new problem while the LLM is still solving the
previous one, enabling a seamless and adaptive evaluation pipeline. To test this, we compared the
average time LEXICON takes to generate and verify a problem (in natural language and PDDL) with
the average time an LLM takes to solve iﬂ As shown in FigureEl, LEXICON is roughly one order
of magnitude faster than LLM-based planning, making real-time evaluation feasible.

S Summary & Future Work

We proposed LEXICON, an extensible NL-based benchmark generator for planning under temporal
constraints. Our generator is able to produce task-aware constraints for an arbitrary planning problem
and verify solutions suggested by LLMs at scale. Our experiments showed that there is a limit of
problem constrainedness that LLMs cannot cope with, even for models with reasoning capabilities.
We aim to extend LEXICON with partially-observable environments and uncertain observations, as
well as a wider class of constraints, including constraints on actions and on continuous states, paving
the way for evaluating language-based agents on real reinforcement learning settings.

6 Limitations

Our simulator does not support parallel episode execution, unlike standard RL environments such
as MuJoCo [46] or Atari [3], which can be parallelized using tools like AsyncVectorEnv (Gym-
nasium) [48]] or SubprocVecEnv (Stable-Baselines3) [40]. In our case, multiprocessing is fully
utilized for backend tasks such as generating feasible episodes. Furthermore, episode generation
is significantly slower ([1, 100] s) due to the complexity of constraint satisfaction and simulation,
limiting scalability compared to environments that support fast, parallel rollouts.

“Note that LLM solve time also depends on API latency, though LEXICON remains significantly faster.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: LEXICON’s reasoning engine (including the plan generator and verifier) are
described in Section[3] We also show how LEXICON can be easily extended to other envi-
ronments in Section[3.2] Through our experiments on a range of environments (Section {.T))
and LLMs, we show that LLM including that of reasoning models struggle with constrained
planning (Section @]) Furthermore, as part of this submission, we provide a dataset for
evaluation generated from LEXICON, along with the environment source files.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section [6]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not any theoretical claims in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the data and the code we used in our submission, and reproducibil-
ity instructions in the Appendix [C| We also provide the LLM parameters in Appendix[C.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access data and code URLSs in our submission. Reproducibil-
ity instructions are provided in the Appendix [C]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the parameters, e.g., number of constraints, we used for problem
generation. The specifics of the planning domains used, the technical details of the simula-
tion, and the LLM hyperparameters used for planning are described in the Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Appendix

This document contains supplementary material for our paper, along with code execution and
reproducibility instructions for our experiments. Its structure is the following. Appendix [A]describes
LEXICON’s reasoning engine. Appendix [B]exemplifies indicative errors in LLM planning, while also
highlighting some experimental results that were omitted from the paper due to space limitations.
Appendix [C| provides the hyperparameters set for each LLM in our experiments, along with the steps
for running our code and reproducing our experiments.

A Reasoning Engine

First, we specify the class of planning problems that may be generated and have candidate solutions
verified by LEXICON’s reasoning engine. Subsequently, we describe its two main modules: the
constraint planning problem generator and the automated LLM plan verifier.

A.1 Class of Planning Problems in LEXICON

LEXICON may generate and verify candidate solutions for planning domains expressed in a PDDL
fragment that includes the following syntactic components.

* Basic STRIPS, i.e., actions with conjunctive preconditions, and atom addition and deletion
effects [[13]].

* ADL, i.e., equalities, actions with negated, disjunctive and quantified preconditions, as well
as conditional and universally quantified effects [38]].

» The qualitative state-trajectory constraints found in PDDL3.0 [[16].

We formulate this fragment of PDDL, loosely following [4] for the notation, and using the term
“constraint” to refer to a qualitative state-trajectory constraint of PDDL3.0 for brevity.

A constrained planning problem is a tuple I1 =(F, A, I, G, C), where F is a set of atoms, A is a
set of actions, I C F is an initial state, G is a formula over F' denoting the goal of the problem, and
C is a set of constraints. Each action ¢ € A comprises a precondition Pre(a), which is a formula
over F, and a set of conditional effects Eff (a). Each conditional effect in Eff (a) is an expression
¢ > e, where ¢ is a formula and e is a set of literals, both constructed based on the atoms in F'. We
use e (resp. e™) to denote the positive (negative) literals in e. A state s C F contains the atoms
that are true in s. An action a is applicable in state s if s = Pre(a), and its application yields state
§'=(5 \Ues ceg(aysie € ) YU Uep ceng(aysic € » which we often denote with s'=s[a].

LEXICON supports the following types of constraints: Always, Sometime, AtMostOnce,
SometimeBefore and SometimeAfter. Considering grounded formulas ¢ and v over F' in nega-
tion normal form, and a sequence of states o over F, these constraint types are defined as follows:

* 0 = Always(¢) (or A(¢)) iff Vs € 0: s |= ¢.
* 0 = Sometime(¢) (S(¢)) iff Is € 0: s = ¢.
* o = AtMostOnce(¢) (AO(¢)) iff ¢ is true in at most one continuous subsequence of o.

* 0 |= SometimeBefore(¢, 1) (SB(¢, 1)) requires that, if 3s € o : s = ¢, then there is a
state s’ before s in o, such that s’ |= 1.

* o = SometimeAfter(¢, ) (SA(¢, 1)) requires that, if 3s € o : s | ¢, then s = ¢ or
there is a state s’ after s in o such that s’ |= ).

Given a constrained planning problem I1¢=(F, A, I, G, C), a plan 7 for 1T is a sequence of
actions (ag, ..., a,—;) from set A. 7 is a valid plan for IT“ iff there exists a sequence of states
o=(8g,-...,8,) such that sy=I, Vi € {0,...,n—1} we have s; &= Pre(a;) and s,1 ;=s;[a;],
spn = G, and Vg € C we have 0 = ¢q. We define the cost of a plan as the number of actions it
includes. An optimal plan 7* for a problem II € is a valid plan whose cost is minimal among all
valid plans for /7, i.e., there is no valid plan for I7© that has a lower cost than 7*.
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A.2 Constrained Planning Problem Generator

We focus on the “Constraint Generator” of LEXICON, as the remaining modules of our reasoning
engine that are used for problem generation are off-the-shelf planners and compilers (see Figure[3).
Our constraint generator receives as input an unconstrained PDDL problem [7=(F', A, I, G) and
an optimal plan 7* for II, and outputs a constrained PDDL problem I1“=(F, A, I, G, C). The
challenge here is to construct constraint set C' in an informed manner, considering problem II and
plan 7*. In particular, we may add a constraint ¢ in C only if ¢ is a meaningful constraint given
II and 7*, i.e., the inclusion of ¢ makes 7* an invalid plan for II, potentially complicating the
planning problem, while maintaining problem solvability and being non-redundant with respect to
the constraints that were previously added in C.

In order to produce such a meaningful constraint ¢, we proceed as follows.

1. We identify a set of conditions under which a literal is not suitable for inclusion in ¢, in the
sense that its inclusion potentially results in ¢ not being meaningful for the problem.

2. We sample literals that do not satisfy the conditions identified in the previous step, and
consider whether they should be included in g. For each sampled literal [, we verify that it
is consistent with, and not subsumed by, the literals that were previously added in ¢, taking
into account a (possibly empty) set of domain axioms. If this is the case, then we add [ in q.
We continue this process until ¢ has reached a specified degree of compositionality, which
may be controlled by the user.

3. We verify that the generated constraint ¢ is consistent with, and not subsumed by, the
constraints that were previously added in C, in which case we add ¢ in C.

We continue this process until the size of C has reached the number of constraints requested by the
user.

Algorithm 1 Always Constraint Generator

Require: State changes o induced by executing plan 7*, unconstrained problem II=(F, A, I, G),
constraint set so far C, domain axioms D, possible user parameter values cfg

Ensure: New constraint set C' U {¢}

1: op, l_no < sample_parameters(cfg), literals <

2: for [_no iterations do

3: l < sample_literal(F)

4 if | Gor G— —lornot (I =1)orVs € o: sk then goto[3]

5 for !" in literals do

6: if /=1’ or (op=A and D |= —(I A ') then goto[3]

7 literals.append(1)

8

o if op=~ then ¢ « /\leliterals [ else ¢ — \/leliterals !
9: g+ A(o)
10: for ¢’ € C do
11 if ¢=A(¢')and (D = (¢ — ¢) or D |= (¢/ = ¢) or D |= —(¢ A ¢')) then goto]]
12: elseif ¢'=S(¢') and (D = (¢ — ¢') or D |= —(¢ A ¢')) then gotol[l]
13:  elseif ¢=A0(¢’) and (D = (¢ — ¢) or D |= —(¢ A ¢')) then gotol[l]
14: else if ¢'=SB(¢’,¢') and (D = (¢ — ¢') or D |= (¢ — ¢')
15: or D |=~(¢A¢')or D |=—(¢ A1) then goto|l]
16: else if ¢'=SA(¢’,¢")and (D £ (¢ = ¢')or D E—(¢p A ¢')or D = —(¢ A1) then
17: gotolT]
18: return C'U {q¢}

The above procedure for generating a constraint is adapted for each possible type of constraint.
Constraint consistency and subsumption, e.g., is defined differently for each constraint type. As an
example, Algorithm l|outlines the procedure for constructing an Always constraint A(¢). We start
by sampling a Boolean operation op and a number of literals [_no for ¢, taking into account the
parameters that are optionally provided by the user (see line[I]of Algorihtm [I)). Subsequently, we
generate I_no literals that are suitable for inclusion in ¢ (lines |[2H7). We sample a literal [ based on
the atoms of the problem F' (line , and then evaluate a set of conditions such that, if [/ satisfies one
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of them, then including [ in ¢ is not meaningful with respect to constraint A(¢). For instance, it is
not meaningful to include [ in A(¢) if (i) [ implies the goal G, as, in non-trivial problems where
I = G, — G implies that [ does not hold in the initial state 7, and thus cannot “always” hold; (ii)
G implies —I, because then [ cannot hold in the final state of a plan that brings about G (iii) if / does
not hold in 7; or (iv) if [ is satisfied in every state in the sequence ¢ induced by executing plan 7*, as,
in that case, A(1) is satisfied by optimal plan 7* of the unconstrained problem, and thus adding [ in
A(¢) may not lead to a more complicated problem. If any of the above conditions holds, then we
drop [ and sample another literal for our constraint (line[d). Additionally, we resort to resampling if {
has already been added to ¢ in a previous step, or the selected operation op is a conjunction and [ is
inconsistent with some other literal I’ in ¢, taking into account a (possibly empty) set of atemporal
domain axioms (see lines[5HE). If none of the above conditions is satisfied, then we add [ to the set of
literals that will be used to construct ¢ (line[7).

After identifying [_no literals that are suitable for constraint A(¢), we construct ¢ and A(¢) using
the sampled operation op (see lines [8H9] of Algorithm|T). Next, we need to verify whether A(¢) is
inconsistent or redundant with respect to the constraints that are already present in C'. To do this,
for each constraint ¢’ in C, we check if A(¢) is compatible with ¢’ (lines [IOHI7). If A(¢) is not
compatible with some constraint in C, then we drop A(¢) and generate another constraint. Otherwise,
if A(¢) is compatible with every constraint in C, then we add itin C' (line . For example, ¢g=A(¢)
is compatible with a Sometime constraint ¢’=S(¢’) if, according to the atemporal domain axioms,
(i) ¢ does not imply ¢, as ¢ — ¢’ would imply that constraint S(¢’) is redundant given A(¢); and
(ii) ¢ and ¢’ are consistent, because if they were inconsistent, it would be impossible to satisfy A(¢)
given that S(¢’) holds, i.e., in the case where ¢’ is true in at least one state of a valid plan.

A.3 Automated LLM Plan Verifier

Algorithm 2 LLM Plan Verifier

Require: LLM plan 7y, compiled problem I7°™, optimal cost c¢*
Ensure: Plan validation outcome: Invalid, Suboptimal or Optimal
s 1

: for any, € Ty, do

if pddi_format(anz) then a < extract_action(ayy,)
else a « closest_action_edit_distance(ang,, IT)

s < simulate_action(a, s, IT)
if s=None then return Invalid
if s = G then return Invalid

if length(mwny) > c* then return Suboptimal
return Optimal

R A A i

Algorithm 2] outlines LEXICON’s automated LLM plan verifier. Its input is an LLM-generated plan
7NL, @ PDDL problem 7™ that has been compiled with LiftedTCORE and the optimal cost ¢* of
11°™ that was discovered by LEXICON during constrained problem generation. (Recall that a plan
that is valid for the compiled version of a problem satisfies all the constraints in the original problem.)
Given this input, Algorithm E]reports whether 77, is an invalid plan, a valid but suboptimal plan, or
a valid, optimal plan for problem I7“™. This is achieved in two steps: (i) simulating plan 7, over
I1°™ to verify its validity, and, if 7, is valid, (ii) comparing the length of 7, to the optimal cost
c* of IT°™ in order to check whether 7, is optimal.

To initiate the simulation of plan 7y, over problem 17 ™, we set variable s, tracking the state of the
problem, to the initial state I of I7°™ (line[I]of Algorithm [2), and iterate over the actions in 7y, in
order to sequentially simulate the effects of each one over 17" (line[2). The prompt we use for LLM
plan generation requests a specific format for LLM actions, so that they can be mapped directly to
domain actiin in PDDL (line E]) In practice, however, LLM actions may deviate from this format; we
handle such cases by mapping the LLM-generated action a7, to the PDDL domain action yielding
the shortest edit distance from apyy, (line E[) Both cases map ayz, to a PDDL domain action a, which
we apply on the current state s of our plan simulation (line[3)). If the application of a does not lead
to a new state, then we deduce that either the preconditions of a are not met in state s, or that the
application of a over state s led to the violation of a constraint of the original problem. Thus, in this
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case, we deduce that plan 7y, is invalid. If the simulation of all LLM-generated actions over I “™
succeeds, then we check whether the goal of the problem is satisfied in the final state s reached in the
simulation. If the goal is not satisfied in s, then plan 7y, is invalid (line[7). Otherwise, if the goal is
satisfied in s, then 7y, is valid, and we proceed with checking whether 7, is optimal or not. If the
length of 7y, is greater than c*, i.e., the optimal cost of I7°™, then plan 7, is suboptimal (line .
Otherwise, the length of 7y, is equal to ¢*, and thus 7y, is an optimal plan for the problem (line [9).

B Additional Results

B.1 Performance of Non-Reasoning LLMs

Model Blocksworld BabyAl Logistics Sokoban AlfWorld
Opt. Val. Opt. Val. Opt. Val. Opt. Val. Opt. Val

DeepSeek V3 0 7% 9% 17% 0 5% 0 0 15% 21%

Claude 3.7 Sonnet o 15q, 200 5% 5% 0 0 3% 12

(no thinking)

Gemini 2.0 Pro 0 7% 0 0 0 0 0 0 0 0

OpenAl GPT-4.1 3%  16% 17% 26% 0 3% 0 0 0 0

Table 2: Performance of non-reasoning LLMs on problems with one constraint. We measured the
percentage of problems solved with an optimal plan (Opt.) and the percentage of problems solved
with a valid, but possibly suboptimal, plan (Val.).

We complement the experimental results in Figure [6] of the paper with the performance of LLMs that
do not use explicit thinking, i.e., DeepSeek V3, Claude 3.7 Sonnet (no extended thinking) and Gemini
2.0 Pro, on constrained planning problems. Table 2] displays their performance on each domain, in
terms of plan optimality and plan validity, on problems that included one constraint. None of these
models was able to produce an optimal plan for a problem from our benchmark that included more
than one constraint.

B.2 LLM Action Format Compliance

Model Blocksworld BabyAl Logistics Sokoban AlfWorld

1 5 10 1 5 10 1 5 10 1 5 10
DeepSeck R1 0 50% 47% 6% 10% 23% 3% 1% 10% 3% 3% 3% 6% 0 0
OpenAl 03 0 0 0 0 3% 3% 0 0 3% 0 0 3% 0 0 3%
Gemini 2.5 Pro 0 0 0 0 0 0 0 3% 3% 0 0 0 0% 78% 81%
Claude 3.75omnet )70, 330, 479, 10% 12% 27% 33% 42% 60% 36% 45% 96% 15% 33% 39%
(with thinking)
GPT-5 3% 3% 3% 0 0 0 3% 0 0 0 0 0 0 3% 0

Table 3: Percentage of LLM-generated plans that could not be mapped directly into PDDL for
problems with 1, 5 and 10 constraints.

During LLM plan verification, we measured the number of times an LLM-generated plan did not
comply with the format we instructed the LLMs to follow via our prompt. Table[3|displays our results
on LLMs with reasoning capabilities, when instructed to suggest plans for problems with 1, 5 and
10 constraints. Our results show that the responses of 03 and Gemini 2.5 Pro included, in almost all
cases, a plan that conformed with the format of PDDL actions, and could thus be mapped directly
into a PDDL plan, without needing to resort to distance calculations between LLM-generated actions
and domain actions. In contrast, the responses of R1 and Claude 3.7 Sonnet often deviated from the
requested plan format, in which cases we needed to map some of the actions in the suggested plans
into PDDL action via distance minimisation, in order to be able to verify these plans.
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C Experimental Setup and Reproducibility

First, we outline the hyperparameter values used in LLM executions. Second, we provide a set of
instructions for running LEXICON. Third, we outline the steps for reproducing our experiments.

C.1 Execution Parameters

Model max tokens temperature
DeepSeek R1 40K 0.2
OpenAl 03 100K 1
Gemini 2.5 Pro 64K 0.2
Claude 3.7 Sonnet (with thinking) 64K 1
GPT-5 128K 0.2
GPT-4.1 32K 0.2
DeepSeek V3 8K 0.2
Gemini 2.0 Pro 8K 0.2
Claude 3.7 Sonnet (no thinking) 64K 0.2

Table 4: LLM hyperparameters.

Table [] displays the values for the upper limit on generated tokens (including both completion and
reasoning tokens) and the temperature hyperparameters used for each LLM. For all models, we set
the upper limit for generated tokens on the maximum value allowed by their developers. We chose to
use a temperature of 0.2, i.e., a low value that enables structured, deterministic thinking, while also
being higher than zero, allowing a certain degree of exploration. In the case of 03 and Claude 3.7
Sonnet, we used the temperature value 1, because this was the only temperature value allowed for
these models when thinking is enabled.

C.2 Code Execution Instructions

Our code is publicly available on Githukﬂ We provide instructions on executing our constrained
planning problem generator and our LLM plan verifier on the domains that are present in our
repository. You may add a custom domain by providing a PDDL domain file, an initial state-goal pair
generator and NL descriptions of the actions and the atoms of the domain, following the structure of
the domains in our repository.

Installation. You may install LEXICON by following these steps:

1. Install conda on an Ubuntu machine.
2. Clone our repository with Git.

3. Create a conda environment with the necessary package dependencies installed. To do this,
visit the root directory of our repository and run:

conda env create ——name lexiconenv ——file=environment.yml
4. Activate your new conda environment with: conda activate lexiconenv

5. Make sure that the following packages are installed: [anthropic==0.51.0,
dotmap==1.3.30, gym==0.26.2, gymnasium==1.0.0, hydra-core==1.3.2,
matplotlib==3.7.1, minigrid==3.0.0, numpy==2.2.6, omegaconf==2.3.0,
openai==1.81.0, protobuf==6.31.0, pyprover==0.6.2, tqdm==4.67.1,
unified_planning==1.2.0]

All the instructions that follow require that you have the 1lexiconenv environment activated.

Constrained Planning Problem Generation. To generate a constrained planning problem for a
specified domain, you may use script generate_benchmark. py.

This script receives as input:

*https://github.com/periklismant/lexicon_neurips
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* a domain name ("blocksworld", "babyai", "logistics", "sokoban", or "alfworld"),

* an integer denoting the random seed for generating the first problem in the benchmark,
* the number of problems to be generated, and

* the number of constraints in each problem.

The output of the script is:

* a constrained problem for the domain (in both PDDL and NL), located in folder:
domains/{domain_name}/data_{constraints_no}/{seed_no}

In order to run our problem generator, follow these steps:

1. Move into the root directory of our repository.

2. Construct a directory with the name intermediate_sas, which is a required folder for
SymK to store intermediate computations, with the following command:
mkdir intermediate_sas

3. Run command:

python3 generate_benchmark.py {domain_name} {initial_seed}
{problems_no} {constraints_no}

Example executions:

* python3 generate_benchmark.py blocksworld 100 1 2
— Starting from seed 100, construct a blocksworld problem with 2 constraints.

* python3 generate_benchmark.py logistics 50 3 4
— Starting from seed 50, construct 3 logistics problems with 4 constraints each.

LLM Plan Verification. To validate an LLM-generated plan for a constrained planning problem,
you may use script verify_plan.py.

This script receives as input:

non

* a domain name ("blocksworld", "babyai", "logistics", "sokoban", or "alfworld"),
* a folder number (corresponding to the number of constraints in the generated problem),
* a data number (corresponding to the seed used to generate the problem), and

* an llm name ("deepseek", "03", "gemini-2.5", "claude_37_sonnet", "gpt_5"), where
"deepseek" verifies a plan produced by R1.

The output of the script is:

* an indication on whether the plan stored in
domains/{domain_name}/data/data_{folder_no}/{data_no}/{11m}_plan
is invalid, suboptimal or optimal.

In order to run our LLM plan verifier, follow these steps:

1. Move into the root directory of our repository.
2. Run command:
python3 verify_plan.py {domain_name} {folder_no} {data_no} {11lm}

Example executions (on pre-generated, packed LLM plans):

* python3 verify_plan.py babyai 1 1 o3
— Verifies that the plan in the corresponding directory is optimal.

* python3 verify_plan.py babyai 3 1 03
— Verifies that the plan in the corresponding directory is invalid.

* python3 verify_plan.py blocksworld 5 1 o3
— Verifies that the plan in the corresponding directory is suboptimal.
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C.3 Experiment Reproducibility Instructions

Reproducing our experiments requires three main steps:

1. Generating benchmarks with problems having an increasing number of constraints for each
domain.

2. Evaluating LLMs on the generated benchmarks.

3. Verifying the LLM plans produced in the previous step.

Steps 1 and 3 are described in Appendix[C.2]

In order to run LLMs on constrained problems generated by LEXICON, follow these steps:

1. Get API keys by OpenAl, Deepseek, Google and Anthropic, and store them in conda
environment variables as follows:

conda env config vars set OPENAI_API_KEY=yourkey
conda env config vars set DEEPSEEK_API_KEY=yourkey
conda env config vars set GEMINI_API_KEY=yourkey
conda env config vars set ANTHROPIC_API_KEY=yourkey

You have to deactivate and reactivate your conda environment for the variable changes

to

take effect. In order to use some models, such as 03, you may need to elevate your

subscription to a certain tier level.

2. Open file cfg/config.yaml with a text editor and make the following changes:

* set the value of mode to evaluation.

* set the value of folder_no to the constraints_no used to generate the problems
you want the LLMs to solve.
* set the value of list evaluation_data to the ids of the problems you want to evaluate
LLMs on. These problem ids can be found in:
domains/{domain_name}/data/data_{folder_no}/
¢ add a new key-value pair “11m: evaluation”.

3. Evaluate DeepSeek R1, OpenAl 03, Gemini 2.5 Pro, Claude 3.7 Sonnet (with extended
thinking) and GPT-5 on the problems selected in the previous step on, e.g., the Blocksworld
domain:

(a) Create a file named run_blocksworld.py and add to it the following code:

1.

5

4.

5.

from omegaconf import OmegaConf

from domains.blocksworld.blocksworld import main

if __name__ == "__main__
cfg = OmegaConf.load("cfg/config.yaml")
main(cfg)

(b) Run the following command:

python3 run_blocksworld.py

You may evaluate these LLMs on a different domain by replacing "blocksworld" with the
name of another domain in the above steps.

4. In order to use different LLMs, open file 1lexicon.py with a text editor, make the following
changes and then go back to the previous step.

* Go to the definition of evaluate_llms and adjust the elements of list
model_names_and_strategies.
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