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Abstract

Designing effective reward functions is crucial to training reinforcement learning
(RL) algorithms. However, this design is non-trivial, even for domain experts, due
to the subjective nature of certain tasks that are hard to quantify explicitly. In recent
works, large language models (LLMs) have been used for reward generation from
natural language task descriptions, leveraging their extensive instruction tuning and
commonsense understanding of human behavior. In this work, we hypothesize that
LLMs, guided by human feedback, can be used to formulate reward functions that
reflect human implicit knowledge. We study this in three challenging settings –
autonomous driving, humanoid locomotion, and dexterous manipulation – wherein
notions of “good” behavior are tacit and hard to quantify. To this end, we introduce
REvolve, a truly evolutionary framework that uses LLMs for reward design in
RL. REvolve generates and refines reward functions by utilizing human feedback
to guide the evolution process, effectively translating implicit human knowledge
into explicit reward functions for training (deep) RL agents. Experimentally, we
demonstrate that agents trained on REvolve-designed rewards outperform other
state-of-the-art baselines.

1 Introduction

Recent successes in applying reinforcement learning (RL) have been concentrated around areas
with clearly defined reward functions (Silver et al., 2018; Vinyals et al., 2019; Fawzi et al., 2022;
Mankowitz et al., 2023; DeepMind, 2024). However, tasks with ambiguously defined rewards, such as
autonomous driving, still present challenges due to their complex and difficult-to-specify goals (Knox
et al., 2023). This echoes Polanyi’s paradox, which states that we know more than we can tell (Polanyi,
2009). The notions of “good” behavior (i.e., aligned with human standards) are inherently subjective
– involving a level of tacit knowledge that is hard to quantify and encode into reward functions.
This is also referred to as the reward design problem and often leads to sub-optimal behaviors that
exploit shortcuts in the reward function and that do not truly reflect human preferences (Kerr, 1975;
Hadfield-Menell et al., 2017; Booth et al., 2023). This issue is underscored by the growing concerns
about the misalignment between human values and the objectives pursued by agents (Turner et al.,
2021; Omohundro, 2018; Russell, 2019).

Recently, LLMs have shown impressive abilities in instruction following (Longpre et al., 2023; Peng
et al., 2023), search and black-box optimization (Yang et al., 2024; Zhang et al., 2023; Liu et al.,
2024), self-reflection (Madaan et al., 2023; Shinn et al., 2023), and code generation (Chen et al.,
2021; Roziere et al., 2023). Owing to their vast training and world knowledge (Wang et al., 2023;
Hao et al., 2023; Hazra et al., 2024), they can readily incorporate commonsense priors of human
behavior. Together, these abilities make LLMs an ideal candidate for generating rewards from natural
language (NL) task descriptions and refining them using language-based feedback loops. Indeed,
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recent works like Language to Rewards (Yu et al., 2023) and Text2Reward (Xie et al., 2024) have
utilized LLMs for this purpose. More significantly, Eureka (Ma et al., 2024a) utilizes LLMs to design
dense and interpretable reward functions, achieving improved performance in dexterous manipulation
tasks. It does so by generating multiple reward functions and greedily mutating the best candidate over
multiple iterations. As such, Eureka resembles more of a greedy iterative search than an evolutionary
search, as described in Ma et al. (2024a).

We identify this greedy approach as a significant limitation that risks premature convergence and leads
to a waste of resources (by preemptively discarding weaker reward functions). Moreover, Eureka
relies on having access to fitness functions to assess the quality of learned behaviors and decide the
best reward function. This leads to a chicken-and-egg dilemma – if designing a good fitness measure
was feasible, one could arguably design an effective reward function just as easily. This is particularly
challenging for complex tasks, such as autonomous driving or dexterous manipulation.

To this end, we introduce Reward Evolve (REvolve), a novel evolutionary framework using LLMs,
specifically GPT-4, to output reward functions (as executable Python codes) and evolve them based
on human feedback. This allows humans to serve as fitness functions by mapping their preferences
and feedback into fitness scores.

In particular, REvolve offers the following novelties:

(1) Using Evolutionary Algorithms (EAs) for Reward Design. Traditional gradient-based optimiza-
tion is unsuitable for reward design due to the lack of a differentiable cost function. Instead, REvolve
utilizes meta-heuristic optimization through EAs (De Jong, 2017) to search for the best candidates.
This is done by evolving a population of reward functions using genetic operators like mutation,
crossover, and selection – employing LLMs as intelligent operators instead of traditional handcrafted
methods. We empirically show that our evolutionary framework considerably outperforms iterative
frameworks like Eureka – all without incurring additional computational costs compared to Eureka.
Through REvolve, we also demonstrate that EAs, combined with the full range of operations like
mutation, crossover, selection, and migration, can be successfully implemented with LLMs.

(2) Utilizing Human Feedback to Guide the Search. Mapping human notions directly into explicit
reward functions is challenging; however, humans can still evaluate learned behaviors, effectively
acting as fitness functions. Through REvolve, human preferences are directly mapped into fitness
scores. Additionally, REvolve incorporates qualitative natural language feedback, offering GPT-4
high-level insights into which aspects to prioritize while refining the reward functions. Together, this
ensures that the reward functions – and thus the learned policies – more closely reflect human notions.

(3) Eliminating the Need for Additional Reward Model Training. Unlike reinforcement learning
with human feedback (RLHF) (Christiano et al., 2017), which relies on a black-box reward model –
trained on massive amounts of curated human preference data – to align LLMs with goals like safety
and reliability (OpenAI, 2022), REvolve requires no extra models. REvolve-designed reward functions
are interpretable (as executable Python code) compared to RLHF rewards, making it more suitable
for safety-critical applications, such as autonomous driving (Christian, 2023). We also include an
estimated data requirement comparison in Appendix D.

Figure 1, provides an overview of REvolve for autonomous driving within a simulated environment.

2 Problem Formalization

Let us first formally introduce the reward design problem (RDP) (Singh et al., 2009), given by the
tuple ⟨M,R, π, F ⟩, where M = (S,A, T ) is the world model consisting of state space S, action
space A, and transition function T . R is the set of all reward functions where each R ∈ R is a reward
function that maps a state-action pair to a real-valued scalar R : S × A → R. The tuple (M,R)
constitutes a Markov decision process (Sutton & Barto, 2018). Furthermore, π : S → ∆A is a policy
that maps a state to a distribution over actions, which is learned using a reward function R.

Moreover, the RDP includes a function F that evaluates the fitness (i.e., quality) of the trained policies.
Traditionally, F maps policy rollouts, i.e., rollouts of agent-environment interactions, to real-valued
scalars. Formally, we denote this by F : Ω(Θπ) → R, where Θπ is the random variable modeling the
probability distribution of rollouts induced by π and Ω(Θπ) is its sample space.

2



Published as a conference paper at ICLR 2025

Figure 1: An overview of REvolve. Given the task (here, autonomous driving) and abstracted
environment variables, a reward designer G (LLM) outputs a population of reward functions R ∈ R,
each used to train a policy π(R) in simulation. Then, we collect human preferences and natural
language (NL) feedback on pairs of policy rollouts θ ∼ Θπ(R) through a user feedback interface.
Policy (and thus, corresponding reward function) fitness σ is calculated, and the fittest individuals,
along with their NL feedback λ, are refined by G. In addition, the process leverages genetic
programming for evolution.

For REvolve, we generalize this to also include natural language feedback. Specifically, we redefine
F : Ω(Θπ) → R× L, where L is the set of all strings (including natural language feedback). Note
that the fitness function is derived from human evaluations of the trained policies, thereby rendering
it non-differentiable.

In order to instantiate the RDP tuple for REvolve, we assume that we are given a reward designer
G : L → R that maps from the set of all strings to the set of all reward functions R. The objective
now is to find a reward function R ∈ R that maximizes the expected fitness score of the policy π
trained on R, which we denote by π(R). Formally, we express the optimization problem as follows:

R∗ := argmax
R∈R

[
Eθ∼Θπ(R)

[F (θ)]
]

(1)

Here, θ is a trajectory sampled from Θπ(R). We also define the optimal policy π∗ as the policy trained
with reward function R∗ given as π∗ := π(R∗).

An implicit assumption for reward design is the knowledge of observation and action variables in
the environment. For real-world problems, like autonomous driving, the assumption is supported by
access to sensor data (such as speed from speedometers and distance covered from odometers) or by
employing advanced vision-based models (Kirillov et al., 2023; Cheng et al., 2024; Yuan et al., 2022).

3 Reward Evolution

As the fitness function F is based on implicit human understanding, it cannot be explicitly formulated
and is, therefore, not amenable to gradient-based optimization. Hence, we solve the RDP using a
meta-heuristic approach through genetic programming (GP) (Langdon & Poli, 2013). Concretely,
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Algorithm 1 REvolve
1: Require fitness function F , reward designer G
2: Hyperparameters evolution generations N , number of sub-populations I , individuals per generation K,

mutation probability pm, crossover probability pc
3: Input: Task description
4: # Initialization ▷ Section 3.1
5: D := {

(
R, π, σ, λ

)
i
}Ki=1 ▷ Initialize database

6: while not termination do
7: # Reproduction ▷ Section 3.2
8: Dtemp := {} ▷ Initialize empty temporary database
9: for K individuals do

10: mutation ∼ Bernoulli(pm) ▷ Sample operation
11: P ∼ WeightedSample(D, {σP

j }Ij=1) ▷ Sample sub-population using average fitness
12: if mutation then
13: Rnew := Mutate(G,D[P ]) ▷ Mutate individual in sub-population
14: else
15: Rnew := Crossover(G,D[P ]) ▷ Crossover with 1− pm probability
16: end if
17: π := Train(Rnew) ▷ Train policy on new reward
18: Dtemp ← Update(Rnew, P, π) ▷ Add to temporary database
19: end for
20: # Selection ▷ Section 3.3
21: for (R,P, π) ∈ Dtemp do
22: θ ∼ Θπ ▷ Sample rollouts from trained policy
23: (σ, λ) := F (θ) ▷ Compute fitness from human feedback
24: if σ ≥ σP then ▷ If individual fitness ≥ sub-population fitness
25: D[P ]← Update(R, π, σ, λ) ▷ Add reward to database sub-population
26: end if
27: end for
28: end while
29: # Termination ▷ Section 3.4
30: (R∗, π∗, σ∗, λ∗) := argmaxσ D ▷ Select tuple with the highest fitness score σ
31: Return π∗

REvolve uses GP to iteratively refine a population of reward functions (individuals) by applying
genetic operations such as mutation, crossover, and migration. In each iteration, new individuals are
obtained and added to the population based on their fitness. This fitness is assessed through human
evaluations of the policies trained with these reward functions – thus guiding the evolutionary search.

Evolutionary algorithms, in general, are considered to be weak methods that perform blind searches
and do not exploit domain-specific knowledge (De Jong, 2017). The initialization and perturbations
are random, leading to scalability issues (O’Neill et al., 2010). In contrast, LLMs can leverage
their commonsense priors to suggest changes that are intelligent and better aligned with the feed-
back (Gugerty & Olson, 1986). Therefore, we combine the evolutionary search of REvolve with
LLMs by using them as reward designers G in the RDP.

We follow the island model of evolution (Cantú-Paz et al., 1998), where we maintain multiple (I)
sub-populations (or islands) in a reward database D. Island populations evolve by locally reproducing
(mutation and crossover). Periodically, individuals migrate from one island to another. The island
model helps enhance genetic diversity across the population and prevent premature convergence in
complex search spaces (Cantú-Paz et al., 1998). Following existing works in reward design with
LLMs (Xie et al., 2024; Ma et al., 2024a), we represent the reward functions as Python programs
that seamlessly integrate with the GP framework. In what follows, we describe the four stages
(initialization, reproduction, selection, termination) of our evolutionary framework. We give the
formal description in Algorithm 1 – for brevity, we use π instead of π(R).

3.1 Initialization

We start by creating a population of K reward function individuals using GPT-4. This leverages
GPT-4’s world knowledge (Hao et al., 2023) and its zero-shot instruction following abilities (Peng
et al., 2023). For each individual, we train a policy π, compute a fitness score σ, and obtain natural
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def compute_reward(speed, collision, min_pos, distance):

    # Initialize dictionary to hold reward components
    reward_components = {}

    # Calculate the speed reward component
    speed_reward = np.exp(-speed_temp * speed_difference)
    reward_components['speed_reward'] = speed_reward

    # Calculate the collision reward component
    collision_reward = -1 if collision else 0
    reward_components['collision_reward'] = collision_reward

    # Ensure enough distance in front of the car to avoid collisions
    distance_reward = np.exp(-distance_temp * max(0, 20 - distance))
    reward_components['distance_reward'] = distance_reward

    smoothness_reward = np.exp(-temp * abs(angular_velocity_z))

    smoothness_reward = np.exp(-temp * np.mean(steering_diffs))

    

    reward = sum(reward_components.values())
    reward = np.clip(reward, -1, 1)

    return total_reward, reward_components

def compute_reward(speed, collision, min_pos, distance):
    reward_components = {}

    # Encourage the agent to maintain speed between 9.0, 10.5 m/s.
    speed_reward = -np.abs(speed - 9.75)  # 9.75 is the midpoint
    speed_reward = np.clip(speed_reward, -1, 0)
    speed_reward = np.exp(speed_reward / speed_temp)
    reward_components['speed_reward'] = speed_reward

    # heavily penalize the agent if a collision occurs.
    collision_reward = -100 if collision else 0
    reward_components['collision_reward'] = collision_reward

    # Encourage maintaining a safe distance from objects
    distance_reward = distance / 20  # 20m is max visibility
    distance_reward = np.exp(distance_reward / distance_temp) - 1.0
    reward_components['distance_reward'] = distance_reward

    ...

    # Normalize total reward to [-1, 1]
    reward = sum(reward_components.values())
    reward = np.clip(reward, -1, 1)

    return reward, reward_components

def compute_combined_reward(speed, collision, min_pos, distance):

    reward_components = {}

    # Speed reward component
    speed_reward = np.exp(-speed_temp * speed_difference)
    reward_components['speed_reward'] = speed_reward    

    # Collision reward component (high penalty for collision)
    collision_reward = -100 if collision else 0
    reward_components['collision_reward'] = collision_reward

    # encouraging safe distance maintenance
    distance_reward = np.exp(-distance_temp * max(0, 20 - distance))
    reward_components['distance_reward'] = distance_reward

    ...

    # Calculate total reward
    total_reward = sum(reward_components.values())
    total_reward = np.clip(total_reward, -1, 1)

    return total_reward, reward_components

def compute_reward(speed, collision, min_pos, distance):

    # Initialize dictionary to hold reward components
    reward_components = {}

    # Calculate the speed reward component
    speed_reward = np.exp(-speed_temp * speed_difference)
    reward_components['speed_reward'] = speed_reward

    # Calculate the collision reward component
    collision_reward = -1 if collision else 0
    reward_components['collision_reward'] = collision_reward

    # Ensure enough distance in front of the car to avoid collisions
    distance_reward = np.exp(-distance_temp * max(0, 20 - distance))
    reward_components['distance_reward'] = distance_reward

    reward = sum(reward_components.values())
    reward = np.clip(reward, -1, 1)

    return total_reward, reward_components

    ...

Figure 2: Illustration of how GPT-4 applies mutation and crossover to reward functions. Mutation
(left): shows the modification of the ”smoothness reward” component. A red ‘-’ sign indicates the
line removed from the parent reward function, while a green ‘+’ sign indicates the line added to the
new reward function. Crossover (right): demonstrates how parent reward functions are combined to
create a child reward function, incorporating the most effective reward components from each parent.

language feedback λ ∈ L. The fitness score calculation and feedback collection are detailed in
Section 3.3. Each individual and their respective policy, fitness score, and natural language feedback
(R, π, σ, λ) is then randomly assigned to a sub-population and stored in the reward database D.

3.2 Reproduction

Each successive generation of K individuals is created by applying genetic operators (crossover and
mutation), on the existing reward database individuals. We use GPT-4 as mutation and crossover
operators with appropriate prompts. Due to space constraints, we provide prompt examples for
mutation and crossover in Appendix E.

We begin by randomly selecting an operation – mutation with probability pm or crossover with
probability pc = 1− pm. Next, we sample a sub-population P via weighted selection based on the
average fitness scores σP of each of the I sub-populations. Subsequently, we sample parents (one
for mutation, two for crossover) from D[P ] using weighted sampling based on individual fitness
scores. These sampled individuals, along with their natural language feedback λ, are used to prompt
GPT-4 to create new individuals. These prompts direct GPT-4 to either modify a single reward
component of the parent (Mutate(G,D[P ])) or combine best performing reward components from
two parents (Crossover(G,D[P ])). Periodically, we enable the migration of individuals between
sub-populations to enhance genetic diversity. Reproduction operations are illustrated in Figure 2.

3.3 Selection

Newly reproduced individuals (from the reproduction stage) are retained based on fitness scores,
following a survival of the fittest approach. A fitness function F , tailored to the specific problem,
evaluates the quality of each individual. The process involves (1) training a policy π(R) until
convergence, (2) sampling rollouts θ ∼ Θπ(R), and (3) using the fitness function to obtain a tuple of
(real-valued) fitness score and (string) NL feedback (σ, λ) := F (θ). Individuals are retained if they
contribute to an increase in the average fitness of their respective sub-populations σ ≥ σP , where P
denotes the sub-population to which the individual is added1. This ensures that the average fitness of
the sub-population is monotonically increasing. In what follows, we detail the process of obtaining
the tuple (σ, λ) from the fitness function.

To compute the fitness score σ, we ask human evaluators to judge policy rollouts θ from different
policies in a pairwise fashion. As illustrated in the user feedback interface in Figure 1, these rollouts
are presented as video segments ≈ 30-40 seconds long. The evaluators choose their preferred
segment (ties are also possible). We then apply an Elo rating system (Elo, 1978), which transforms
pairwise assessments into fitness scores σ. This avoids the need to learn a separate reward model,

1To ensure genetic diversity, we add individuals based on surpassing the average and not maximum scores.
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cf. RLHF (Christiano et al., 2017). Asking human evaluators to provide preferences instead of
quantitative scores for each video has the advantage of mitigating individual bias (Christiano et al.,
2017). Details of the human feedback collection and Elo scoring are documented in Appendix B.1.

The NL feedback λ about each pair of video segments is, likewise, collected through the same
feedback interface. Evaluators comment (select checkboxes) on aspects of the driving they find
satisfactory or need improvements. This feedback is subsequently integrated into the prompt for
GPT-4 when reward function individuals are sampled for reproduction.

3.4 Termination

The evolutionary process repeats until it reaches a predetermined number of generations N , or when
an individual attains a fitness score equivalent to human-level driving performance, as detailed in
Section 5.3. The final output is the fittest policy π∗ corresponding to the highest σ in the database D.
Note that π∗ is the best policy in the reward database according to human-assigned fitness scores σ,
but it is not necessarily the optimal policy.

A minimal input-output example of the working of REvolve is shown in Appendix F.

4 Related Work

Reward Design with LLMs. Recent works have explored LLMs for complex search and black-box
optimization problems like hyperparameter optimization (Yang et al., 2024; Zhang et al., 2023; Liu
et al., 2024), reward design for RL (Kwon et al., 2023; Xie et al., 2024; Ma et al., 2024a), or robotic
control (Yu et al., 2023). Kwon et al. (2023) use LLMs to directly output binary rewards by inferring
user intentions in negotiation games, but this requires numerous queries to LLMs and limits the
rewards to sparse binary values. Conversely, Language to Rewards (L2R) (Yu et al., 2023) and
Text2Reward (T2R) (Xie et al., 2024) utilize LLMs to create dense and interpretable reward functions,
improving them with human feedback. L2R, however, restricts its adaptability by employing manually
crafted reward templates tailored to specific robot morphologies. In contrast, T2R outputs versatile
reward functions in Python code. It generates a single reward function per iteration, checks for
improvement from the previous one, and repeats this process, hence performing a greedy search.

Eureka (Ma et al., 2024a) further extends T2R by generating multiple reward functions and greedily
iterating with the best reward function and discarding the rest. This means that by definition (De Jong,
2017), Eureka does not qualify as an EA since it lacks crucial features. Namely, maintaining and
evolving a population of candidates and employing genetic operators like mutation, crossover, and
selection. Eureka only mutates the best candidate and discards the rest. In contrast, REvolve is truly
evolutionary, i.e., population-based and using the full range of genetic operators. By preserving
genetic diversity, REvolve avoids the pitfalls of premature convergence without incurring additional
costs (since both frameworks generate the same number of candidates per generation). Empirically,
we show that utilizing the full range of evolutionary operators yields reward functions that lead to
better performing agents. Consequently, REvolve significantly outperforms greedy search methods
like Eureka and T2R.

Evolutionary Algorithms with LLMs. Implementing EAs with LLMs has been explored in recent
works in the context of neural architecture search (Nasir et al., 2024), program search (Romera-Paredes
et al., 2024), prompt engineering (Guo et al., 2024; Fernando et al., 2023), as well as morphology
design (Lehman et al., 2024). In this work, we propose a novel evolutionary framework for reward
design with LLMs as intelligent genetic operators. Compared to the above-mentioned works, which
feature limited evolutionary settings, REvolve incorporates a wide range of operations like mutation,
crossover, selection, and migration.

5 Experiments

5.1 Experimental Setup

We performed experiments across three different environments: autonomous driving, humanoid
locomotion, and adroit hand manipulation. For autonomous driving, we used the high-fidelity
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Table 1: Summary of observation and action spaces, along with objectives and termination criteria
for the different RL training tasks.

Task Observation Space Action Space Objective & Termination

Autonomous Driving R307206 discrete, |A| = 66 Navigate for 1000 steps
Humanoid Locomotion R376 continuous, A ∈ R17 Run upright for 1000 steps
Adroit Hand Manipulation R39 continuous, A ∈ R30 Open the door in 400 steps

AirSim simulator (Shah et al., 2018). For humanoid locomotion (Tassa et al., 2012) and adroit hand
manipulation (Rajeswaran et al., 2017), we used the MuJoCo simulator (Todorov et al., 2012). As
a reward designer G, we used GPT-4 Turbo (1106-preview) model, which was provided (a subset
of) observation and action variables originating from the simulators2, as illustrated in Figure 1. The
reward designer is prompted to provide a reward taking the functional form r =

∑
i ri. We call the

ri’s reward components and the reward designer decides on their individual functional form, as well
as the number of reward components. This follows the protocol established by Ma et al. (2024a).

5.2 Training Setup

For the evolutionary search, we set the number of generations to N = 7 and individuals per generation
to K = 16. This mimics the training setup of (Ma et al., 2024a). The number of sub-populations was
set to I = 13, and the mutation probability was set to pm = 0.5.

For each generation, 16 policies were trained (one per reward function). In the AirSim environment,
we trained Clipped Double Deep Q-Learning (Fujimoto et al., 2018) agents for 5× 105 training steps
per generation per agent. For the MuJoCo environments, we trained Soft Actor-Critic (Haarnoja et al.,
2018) agents with 5× 106 steps per generation per agent. We summarize the different RL tasks in
Table 1 and provide detailed descriptions of the environments and RL setups in Appendix A.

Parallel training of a single generation on 16 NVIDIA A100 GPUs (40GB) consumed approximately
50 hours for the AirSim environment and 24 hours for the MuJoCo environments. Due to these
extensive computational demands, we report results using two random seeds.

In addition to REvolve (with human feedback), we also include a version in the experimental evaluation
that we dub REvolve Auto. Here, the human feedback is replaced with automatically generated
feedback comprising statistics on the reward components tracked during RL training. The fitness
score for each agent is now computed using a manually designed fitness function, which measures an
agent’s successful completion of the task. For instance, the fitness score for the humanoid locomotion
task encodes that the agent should not fall over and that it should attain a high average velocity.
We formally describe the fitness scores for the three different environments in Appendix B.2. This
automated feedback mechanism is adopted from (Ma et al., 2024a).

5.3 Baselines

Expert Designed. For autonomous driving, we used an expert reward function based on best practices
established in the literature (Spryn et al., 2018). The total reward is calculated through a weighted
aggregation of all the components, with the weights optimized via an exhaustive grid search conducted
within the environments to find the reward function that produces the best policy. For humanoid
locomotion and adroit hand manipulation, we used expert rewards provided by Gymnasium and
Gymnasium-Robotics3, respectively. Details on the expert-designed reward functions can be found in
Appendix C.

Eureka. We also compare REvolve to Eureka, cf. Section 4. Akin to REvolve, we employed the
human fitness function to refine the best individual with natural language feedback. Henceforth, we
denote it as Eureka. We also include the original version of Eureka with automated feedback, which
we denote by Eureka Auto. Training times are identical to the ones for REvolve.

2To prevent potential plagiarism through context memory (Carlini et al., 2021), we use unique environment
variable names and deliberately avoid mentioning the simulator in inputs to GPT-4.

3https://gymnasium.farama.org,https://robotics.farama.org
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Figure 3: We plot the fitness score – over 2 random seeds – of the best-performing policy per generation
for autonomous driving (left), humanoid locomotion (middle), and adroit hand manipulation (right),
cf. Table 1. Each plot also contains the fitness score obtained using an expert-designed reward
function. The fitness score for the human driving in the autonomous driving setting (left) was obtained
by observing the driving behavior of an expert human conducting driving sessions in a combined
setting of AirSim and the high-fidelity Logitech driving simulator. We treat this as the upper limit of
performance. We give the formal definitions of the fitness functions for each of the three environments
in Equations 2, 3, and 4, respectively (in Appendix B.2).

5.4 Experimental Questions & Results

As shown in Figure 3, REvolve exhibits continuous improvement over successive generations,
ultimately achieving a higher fitness score on the manually designed fitness scale. Furthermore, both
REvolve and REvolve Auto outperform their Eureka counterparts, indicating that evolutionary search
strategies yield better results than greedy search methods4. We also show that all methods outperform
the Expert Designed reward function. Furthermore, we observe the benefit of providing human
feedback, as both REvolve and Eureka with provided human feedback outperform their automatic
feedback counterparts.

How does REvolve fair against the baselines?
We compare REvolve to the baselines using the task-specific fitness score described in Appendix B.2
and report the results in Figure 3. We observe that REvolve (with human feedback) consistently
outperforms the other methods across all three environments and is only beaten by the expert human
driver in Autonomous Driving, cf. Figure 3 (left). For the interested reader, we give the best (i.e.,
fittest) REvolve-designed reward functions R∗ in Appendix G.

We also note that in the Humanoid Locomotion and Adroit Hand tasks REvolve Auto (i.e., with
automated feedback) performs on par with Eureka (with human feedback), despite the former’s
evolutionary setting. This could be attributed to the limited and sparse nature of automated feedback
(velocity for humanoid, steps to succeed for adroit hand) in contrast to the more detailed human
feedback in Eureka. In contrast, automated feedback in Autonomous Driving is dense and incorporates
multiple factors like collision, speed, and distance (Appendix B.2) – leading to bigger improvements
during the evolutionary search. This also highlights that the combination of evolutionary search and
human feedback is crucial for optimizing reward functions. It can be observed that the improvements
gradually diminish with each generation and stabilize, converging by generation 5.

How do humans judge REvolve policies?
We further compared REvolve and Eureka on human evaluations. To this end, we generated roll-outs
from the best performing policies (π∗) from REvolve and Eureka. We paired them against each
other and used the user feedback interface (Figure 1) for collecting preference data. This data was
subsequently passed through an Elo rating system to rank each behavior, cf. Appendix B.1. As shown
in Table 2, REvolve policies again outperform Eureka policies across all three tasks, and it is only
the human expert driver beating REvolve in Autonomous Driving. Note, we used a fresh batch of

4Note that these results are not displayed on the human fitness scale because the Elo ranking system evaluates
individuals relative to one another. Therefore, comparisons between individuals from different baselines are only
feasible if we directly pair them against one another.
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Table 2: The table shows the best policies π∗ from each framework ranked based on human preferences
for each environment. Specifically, we use rollouts from the best policies of each framework and
gather human preferences on the paired rollouts, as described in Section 3.3. Then, we use the Elo
rating system to map preferences to scores. All policies are initially assigned an Elo score of 1500.

Environment Rank Baseline Elo Score

Autonomous Driving 1 Human Driving 1586
2 REvolve 1575
3 REvolve Auto 1529
4 Eureka 1499
5 Eureka Auto 1411
6 Expert Designed 1397

Humanoid Locomotion 1 REvolve 1586
2 Eureka 1557
3 REvolve Auto 1514
4 Eureka Auto 1434
5 Expert Designed 1407

Adroit Hand Manipulation 1 REvolve 1594
2 REvolve Auto 1524
3 Eureka 1522
4 Eureka Auto 1443
5 Expert Designed 1415

evaluators (disjoint from training) for this stage. We have submitted example rollout videos as part
of the supplementary material.

5.5 Ablation Studies
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Figure 4: Comparison of REvolve’s per-
formance on Autonomous Driving using
mutation only, crossover only, and both
combined, over 7 generations.

Table 3: Table shows the generalization scores in unseen
AirSim environments. Fitness denotes manually designed
fitness scores (mean ± std). Env 1 & Env 2 have 1500 &
1000 episodic steps, respectively.

Env Baseline Fitness Episodic Steps

1
Expert Designed 0.71 ± 0.03 710 ± 199
Human Driving 0.95 ± 0.02 1500 ± 0
REvolve 0.86 ± 0.03 1146 ± 297
Eureka 0.73 ± 0.04 759 ± 167

2
Expert Designed 0.48 ± 0.02 71 ± 22
Human Driving 0.75 ± 0.04 1000 ± 0
REvolve 0.68 ± 0.04 135 ± 31
Eureka 0.57 ± 0.05 99 ± 28

How do different genetic operators impact overall performance?
We evaluated REvolve’s performance in Autonomous Driving by running evolution search with
three setups: using only mutation, only crossover, and the combination of both. As shown in
Figure 4, REvolve with mutation & crossover outperforms REvolve with only crossover, which in
turn outperforms REvolve with just mutation.

Do REvolve-designed reward functions generalize to new environments?
Aside from our standard Autonomous Driving environment (seen in Figure 5), we assessed the
generalizability of the best REvolve-designed reward functions R∗ in two new (AirSim) environments.
Specifically, we trained policies from scratch using R∗ in two new scenarios: (Env 1) featuring
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lanes and a completely altered landscape while maintaining similar traffic conditions as our standard
environment, and (Env 2) characterized by increased traffic with multiple cars actively maneuvering.
From Table 3, we observe that in both environments, REvolve outperforms Eureka and expert-designed
rewards. However, the generalizability was lower for Env 2. This issue may stem from the temporal
processing limitations of the RL policy’s visual module, which sometimes fails to detect oncoming
cars. Implementing more advanced models could enhance detection capabilities Hazra et al. (2023).
Figure 6 provides visual representations of these environments, while Figure 13 provides episodic
steps on the Y-axis over total steps on the X-axis during training for both generalization environments.
We did not conduct similar experiments on the MuJoCo simulator, as the Humanoid and Adroit Hand
environments are limited to only a single variant.

5.6 Limitations

As stated in Section 5.2, due to its (deep) RL nature, training multiple policies is rather computationally
expensive and time-consuming. That said, the computational cost of REvolve is the same as for Eureka
– with no resources wasted on discarding individuals – REvolve does incur a slightly higher storage
cost due to the maintenance of the reward database (see Appendix D). Another limitation of REvolve
is its reliance on the closed source GPT-4 model. This was a necessary choice as existing works
have shown that a considerable gap exists in reward design abilities between GPT-4 and open-source
LLMs (Xie et al., 2024; Ma et al., 2024a). With rapid advancements made by the open-source
community, we believe this gap will be bridged in the near future.

6 Conclusion & Future Work

We formulated the RDP as a search problem using evolutionary algorithms for searching through the
space of reward functions (Section 2). With REvolve, we proposed a novel evolutionary framework
that leverages human preferences as fitness scores to guide the search process and integrates LLMs
as intelligent operators to refine outputs through natural language feedback (Section 3). Our results
show that this evolutionary search-based framework considerably outperforms the state of the art
across three different simulation environments.

A key future question for REvolve is its real-world applicability. One promising approach involves
integrating REvolve with Sim2Real algorithms Allamaa et al. (2022); Hu et al. (2024) by first learning
a policy in simulation, using REvolve-designed rewards, and then transferring it to the real world.
Recently, Ma et al. (2024b) have demonstrated that such an approach is viable for Eureka by tackling
a quadruped balancing task on a physical robot. Moreover, our framework opens up opportunities for
future research in Human-AI interaction. In particular, exploring the impact of more open-ended
feedback from various perspectives, such as egocentric or third-person views.

Ethics statement

During human feedback experiments, we engaged 10 human evaluators per generation, each assessing
20 video pairs. Participants were recruited on a volunteer basis and the preference learning task was
clearly explained to them. No personal data was collected, and participants were compensated fairly
per institutional guidelines. Our study adhered to ethical standards, followed institutional guidelines,
and did not involve any potential risks related to privacy, security, or discrimination.

Reproducibility

In the Appendix, we provide extensive details on our experimental protocol. Specific details can be
found in the respective sub-appendices as detailed below. The reinforcement learning framework,
including the algorithm, inputs, outputs, and hyperparameters, is outlined in Appendix A. The fitness
functions are thoroughly discussed in Appendix B. The expert-designed rewards are explained in
Appendix C. Detailed prompt examples for GPT-4 can be found in Appendix E. Finally, we list
the best reward functions generated from REvolve in Appendix G. Our code is open-sourced at
https://github.com/RishiHazra/Revolve/tree/main.
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Appendix
The appendix is organized as follows: Section A Reinforcement Learning Preliminaries, where we
elaborate on the reinforcement learning framework for all environments; Section B Fitness Function,
where we outline the fitness score computation from human feedback, as well as outline Eureka’s
automatic feedback approach; Section C Expert Designed Reward Function, which provides details of
the expert-designed reward and grid search parameters; Section D Cost Analysis, where we compare
the computation and data requirement cost of REvolve with Eureka and RLHF on autonomous driving,
as well as elaborate on the differences between REvolve and other existing approaches for autonomous
driving; Section E Prompts, which presents system and operator (mutation, crossover) prompts for
GPT-4 for REvolve and REvolve Auto; Section F Human Feedback Examples, which illustrates how
human feedback allows GPT-4 to refine the reward function of individuals; Section G Additional
Results, which lists the best reward functions generated from REvolve, and some additional results on
RL convergence times and generalizability of the best reward functions.

We also include our code and demonstrations of policies trained on best REvolve-designed reward
functions in the supplementary material.

A Reinforcement Learning Preliminaries

A.1 Environments

A.1.1 Autonomous Driving

Autonomous Driving experiments were conducted in the Neighborhood and Coastline environments
of the AirSim simulator, a high-fidelity simulator developed for autonomous vehicle research (Shah
et al., 2018). This urban simulation includes static features such as parked cars and dynamic obstacles
like cars and moving animals, enabling a thorough evaluation of the RL agent in varied scenarios.

Figure 5: AirSim simulator environment used for our autonomous driving experiments. The egocentric
camera view displayed on the bottom left serves as the observations for the autonomous driving agent.

Observations. The observation space for the policy includes a combination of visual and sensor data.
The visual input consists of images concatenated along the channel axis, resulting in dimensions of
100× 256× 12. The sensor data includes readings from yaw, pitch, linear velocity in the x and y
directions, speed, and steering angle. This structure allows the network to perceive temporal dynamics
by integrating sequential frames into a single input tensor.
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Figure 6: AirSim generalization environments used for assessing the generalizability of REvolve-
designed reward functions. The left and right pictures visualize Env 1 and Env 2, respectively.

Table 4: DDQN Hyperparameters used during training for all AirSim environments for the Autonomous
Driving task.

Parameter Value

Learning Rate 0.00025
Optimizer Adam
Gamma 0.99
Epsilon Initial 1
Epsilon Min 0.01
Epsilon Decay 1× 10−3

Batch Size 32
Tau 0.0075
Replay Buffer Size 50000
Alpha (PER) 0.9
Frequency Steps Update 5
Beta 0.4
Action Space Steering (Simulator) [-0.8, 0.8]
Action Space Throttle (Simulator) [0,1]
Action Space (Real steering) [-32°, 32°]
Image Res. 100× 256× 12
Conv Layers 5 (16-256 Filters)
Dense Units after Flatten 256− > [128× 2]− > 66
Sensor Input Dimensions 6 (Yaw, Pitch, Vx, Vy , Speed, Steering)

The input shape is (100, 256, 12), and it outputs 66 discrete Q-values. To capture temporal dynamics,
frame stacking aggregates four consecutive frames [fr1, fr2, fr3, fr4] along the channel dimension
into a single state. For subsequent states, the oldest frame is replaced by a new one, resulting in an
updated stack [fr2, fr3, fr4, frnew].

Action Space. The action space for the autonomous car is a 2D vector – the first dimension represents
the discrete steering angles in the range [−32◦, 32◦] in 2◦ increments, the second dimension is a
throttling option {0, 1}. This results in 66 possible actions.

Objective. The agent’s task is to navigate an urban environment for 1000 consecutive time steps,
maintaining safe driving behavior by balancing speed and avoiding collisions.

Termination. The episode successfully terminates when the agent achieves the objective. Alternatively,
collisions or exceeding speed limits will also prematurely end the episode.

Training Algorithm. Due to the high dimensional observation space and convergence time, we
adopted the Clipped Double Deep Q-Learning approach (Fujimoto et al., 2018), a refined version of
Double Q-Learning (Van Hasselt et al., 2016). This method uses two separate neural networks to
reduce overestimation bias by calculating the minimum of the two estimated Q-values, thus providing
more reliable and stable training outcomes.
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In addition to Clipped Double Deep Q-Learning, our framework integrates the Dueling Architecture
(Wang et al., 2016), which improves the estimation of state values by decomposing the Q-function
into two streams: one that estimates the state value and another that calculates the advantages of each
action. Such structure allows the model to learn which states are valuable without the need to learn
each action effect for each state.

Furthermore, we utilize Prioritized Experience Replay (PER) (Schaul et al., 2015) to focus on
significant learning experiences. PER prioritizes transitions with higher Temporal Difference errors
for replay, which accelerates learning and increases the efficiency of the memory used during training.
Table 4 lists the RL model hyperparameters. Finally, inspired by foundational research, we have
adapted our architecture to incorporate vision-based methods and the Dueling Architecture from
Mnih et al. (2013) and Wang et al. (2016), enhancing temporal dynamics and action-value precision.

Figure 7: Humanoid Locomotion: A bipedal
locomotion task where a simulated humanoid
robot must maintain balance and walk as fast as
possible (along the x-axis).

Figure 8: Adroit Hand: A complex robotic ma-
nipulation task requiring the dexterous control
of a five-fingered robotic hand to rotate the latch
and pull the handle to open a door.

A.1.2 Humanoid Locomotion

The Humanoid Locomotion environment is a complex bipedal locomotion task within the MuJoCo
simulator (Todorov et al., 2012).

Observations. The observation space for the humanoid environment includes joint positions, joint
velocities, and other information such as the center of mass and contact forces. The data is crucial for
controlling balance and forward locomotion. The observation shape is a 376D vector, representing
the state of the humanoid at each timestep (Tassa et al., 2012).

Action Space. The action space is a 17D continuous vector representing the torques applied to the
humanoid’s joints, including those in the abdomen, hips, knees, shoulders, and elbows. This allows
finer control of walking or running movements.

Objective. The goal is to walk or run forward without falling.

Termination. The episode ends either when the humanoid falls or 1000 consecutive time steps have
passed without falling (success).

Training Algorithm. We employed the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018),
utilizing the implementation provided by the Stable Baselines3 (SB3) library (Raffin et al., 2021).
SAC is an off-policy actor-critic method that optimizes a stochastic policy in an entropy-regularized
reinforcement learning framework. By maximizing a trade-off between expected return and policy
entropy, SAC encourages exploration and prevents premature convergence to suboptimal policies,
making it well-suited for high-dimensional continuous action spaces characteristic of MuJoCo tasks.

We leveraged the default hyperparameters provided by SB3 for SAC, which have been empirically
validated across various environments. Key hyperparameters included a learning rate of 3× 10−4, a
batch size of 256, a discount factor (γ) of 0.99, and an entropy coefficient (α) automatically adjusted
during training. The policy network employed the MlpPolicy architecture from SB3, consisting
of multilayer perceptrons designed to process the high-dimensional state observations in MuJoCo
environments effectively.

19



Published as a conference paper at ICLR 2025

A.1.3 Adroit Hand

The Adroit Hand environment is another MuJoCo simulation task, which concerns dexterous robotic
manipulation (Rajeswaran et al., 2017).

Observations. The observation space in the adroit hand environment consists of a 97D vector. It
includes joint positions for the hand, latch position, door position (hinge rotation), palm position,
handle position, and the relative position between the palm and the handle. Additionally, the space
contains joint velocities and forces acting on the hand. The binary door open indicator is also included
to signify whether the door is fully opened or closed.

Action Space. The action space is a 30D continuous vector that controls the absolute angular positions
of the joints in the hand and arm. This enables dexterous manipulation tasks like unlatching and
swinging open a door.

Objective. The agent’s goal is to manipulate the door latch and open the door, overcoming friction
and bias torque forces.

Termination. The episode ends when the door is successfully opened or 400 consecutive time steps
have passed without opening (fail).

Training Algorithm. Same as humanoid locomotion.

B Fitness Functions

In this section, we provide details of (1) REvolve fitness function based on human evaluations, and (2)
the automatic feedback (Auto) approach proposed in Eureka.

B.1 REvolve Fitness

As stated in Section 3.3, REvolve employs a user interface to gather human feedback on behavior t
sampled from a trained policy. Human evaluators review pairs of videos, submitting their preferences.
A fitness function then maps this data to a real-valued fitness score and a natural language feedback
i.e. (σ, λ) := F (t). We start by introducing the Elo rating system that maps the preference data to a
fitness score. For two reward function individuals A and B with fitness scores σA and σB respectively,
the expected scores EA and EB are calculated using the logistic function:

EA =
1

1 + 10(σB−σA)/400
EB =

1

1 + 10(σA−σB)/400

We then update the individual fitness based on the expected scores.

σA = σA +K · (f(A,B)− EA)

f(X, Y) be defined as:

f(X, Y) =


1 if the X wins against Y,

0 if the X loses to Y,

0.5 if the match results in a tie.

Here, K = 32 determines the magnitude of fitness change. Intuitively, if higher-ranked individuals
lose to those with lower rankings, they incur a more significant penalty, while the reverse scenario
leads to a greater increase for the lower-ranked individual. Conversely, when two similarly ranked
individuals compete, the change in fitness scores resulting from a win or loss is smaller. All individuals
start with an initial rating of 1500.

For the natural language feedback λ, the checkboxes selected by evaluators – indicating aspects of the
behavior that are satisfactory or require improvement – are stitched together using a natural language
(NL) template. This final string serves as input for GPT-4.

The process greatly simplifies the feedback interface, as participants only need to choose their
preferred video from a pair rather than providing an absolute rating. Additionally, this method
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reduces individual biases that could emerge from various factors, such as the need to adjust ratings
at different stages of evolution – from the initial phase, where many policies underperform, to later
stages, when performances improve. To overcome this, we compare individuals not only within the
same generation but also across different generations, updating the fitness scores of all individuals
at the end of each generation5. In direct rating-based systems, participants must repeatedly rate all
generations, adjusting their scales each time. In contrast, our preference-based rating system allows
us to efficiently utilize all existing preference data across generations to assign new fitness scores,
thus requiring minimal data collection for the current generation.

B.2 Automatic Feedback

Autonomous Driving. The fitness function is primarily designed to evaluate the performance of
an autonomous vehicle by assessing its behavior in speed regulation, path following, and collision
occurrences. It assesses how well the vehicle adheres to speed regulations and how accurately
it follows its designated waypoints while penalizing collisions and any deviations from critical
operational thresholds. The function is structured as follows:

σ =


collision penalty, if collision occurs
speed penalty, if v < vmin limit or v > vmax limit

distance penalty, if d > dfail

score(v, d), otherwise,

(2)

where vadj min = vmin − vthreshold, vadj max = vmax + vth, with vth small threshold speed allowing for
small deviations from the target speed range.

Here, penalties are assigned for: collision penalty= −1 for collisions; speed penalty is calculated
based on the deviation from the adjusted range [vadjusted min, vadjusted max], decreasing as the speed
moves further away from this range, with the speed score set to 0 if the speed is less than vmin limit or
greater than vmax limit; and distance penalty decreases as the vehicle moves further from the intended
waypoint, with the distance score set to 0 if the deviation is above dfail. Otherwise, the agent receives
a score(v, d) = speed score(v)+distance score(d)

2 .

The speed score is calculated as:

speed score(v) =

{
1, if vadj min ≤ v ≤ vmax

max(0, 1− min(|v−vadj min|,|v−vadj max|)
vadj max−vadj min

), otherwise

The speed range is [8.0, 11.5] m/s. The distance score is calculated as:

distance score(d) =

{
1, if d ≤ dmax

max(0, 1− d−dmax
dmax

), otherwise

with dmax = 0.5m being the maximum tolerance for deviation from the waypoint. Both functions
are shown in Figure 9. In Table 5, we summarize the fitness function components used for evaluating
RL models.

Humanoid Locomotion. The fitness function for the Humanoid environment evaluates the agent
based on its ability to maintain forward locomotion without falling over an episode of Tmax = 1000
steps.

σ =

{
1

Tmax

∑Tmax
t=1 v

x
t , if T = Tmax

0, if T < Tmax
(3)

5This approach is akin to comparing chess grandmasters Gary Kasparov and Magnus Carlsen, each a dominant
player in his respective era. However, a direct comparison would require them to be matched in their primes;
otherwise, the basis of comparison would be skewed and unjustified.
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Table 5: Fitness Function Hyperparameters used for calculating the fitness score for AirSim
environment for Autonomous Driving task.

Hyperparameter Description Value
collision penalty Collision penalty -1
vmin Minimum speed target 9.0 m/s
vmax Maximum speed target 10.5 m/s
vmin limit Minimum penalty limit 2.5 m/s
vmax limit Maximum penalty limit 15 m/s
vadjusted min Adjusted minimum speed 8 m/s
vadjusted max Adjusted maximum speed 11.5 m/s
v
th

Threshold Speed 1 m/s
dmax Waypoint deviation tolerance 0.5 m
dfail Maximum tolerance for deviation from the waypoint 4 m

Figure 9: Visual representation of speed and distance fitness scores for autonomous driving in the
AirSim environment.

where, vxt is the forward velocity along the x-axis at time step t. T is the total number of steps the
agent remained upright. This function rewards agents that achieve higher forward velocities while
also surviving the entire episode.

Adroit Hand. The fitness function for the Adroit Hand environment rewards agents based on the
number of steps taken to successful task completion. As shown in Figure 10, completing the task in
fewer steps results in a higher fitness score ∈ [0.5, 1.0]. If the task is not completed, the fitness score
is 0.

Let steps be the number of steps taken to complete the task (50 ≤ steps ≤ 400), Tmin = 50 be
the minimum possible steps, Tmax = 400 be the maximum allowed steps, a = − 1

700
, b =

75

70
are

constants defining the linear relationship. The fitness score σ is defined as:

σ =

{
a× steps+ b, if the task is successfully completed
0, if the task is not completed

(4)

This score measures the efficiency of the Adroit Hand in completing the task, awarding a perfect score
of 1 for completing it in 50 steps or fewer, with a linear decrease to 0.5 for completing the task in the
maximum allowable 400 steps, and a score of 0 if the task is not completed.

Feedback. Following Eureka, we track the statistics of all reward components at intermediate policy
checkpoints throughout training. We refer the interested reader to the original paper (Ma et al., 2024a).
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Figure 10: Visual representation of fitness score for Adroit Hand when completing the task.

Table 6: Grid Search Weights: Values and Corresponding Fitness Scores. The quadruple of weights
yielding the highest fitness score is highlighted in bold.

c pos c sm c speed c sensor Fitness Score
0.85 0.46 0.5 0.53 0.496
0.25 0.25 0.25 0.25 0.603
0.81 0.83 0.33 0.13 0.606
0.35 0.67 0.7 0.67 0.576
0.57 0.26 0.57 0.27 0.396
0.22 0.16 0.24 0.85 0.556
0.67 0.3 0.78 0.77 0.549
0.45 0.11 0.27 0.24 0.256
0.72 0.93 0.74 0.65 0.415
0.63 0.4 0.39 0.78 0.284
0.44 0.76 0.98 0.48 0.653
0.28 0.64 0.2 0.92 0.602
0.12 0.52 0.91 0.41 0.592
0.94 0.86 0.85 0.2 0.571
0.51 1.0 0.64 0.34 0.630
0.98 0.56 0.12 0.95 0.600
0.88 0.38 0.46 0.59 0.591

C Expert Designed Rewards

C.1 Autonomous Driving

Following the methodologies advocated in Spryn et al. (2018), the total reward at each time step,
Rtotal, is constructed from a weighted sum of speed consistency, smooth navigation, and collision
avoidance behavior of the agent. In what follows, we describe how the weights were calculated.

Human Expert Designed (HED): Utilizes a combination of position, speed, sensor, and smoothness
rewards.

rHED
total = cpos × rpos + csm × rsm + cspeed × rspeed + csensor × rsensor

Position Reward: Encourages the vehicle to stay close to the target position, rewarding proximity
to the desired path or waypoint.

rpos = e−δ×((min pos)2−β)
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Table 7: Hyperparameters used in all reward components designed by Expert in AirSim in Autonomous
Driving task.

Hyperparameter Description Value
δ Position reward decay factor 0.2
β Position reward bias 0.25
vmin Minimum target speed 9 m/s
vmax Maximum target speed 10.5 m/s
dissafe Safe distance threshold 6 m
γ Smoothness penalty coefficient 0.5

Speed Reward: Promotes maintaining an optimal speed. It penalizes the vehicle if it moves too
slowly or too quickly, encouraging it to stay within a specified speed range.

rspeed =


− |speed−vmin|

vmin
if speed < vmin

− |speed−vmax|
speed if speed > vmax

1 otherwise

Sensor Reward: Encourages the vehicle to maintain a safe distance from obstacles using sensor
data. If the distance measured by the sensor is less than a safe threshold, it applies a penalty. The
sensor measures the distance from the vehicle to nearby front objects.

rsensor =

{
− (dissafe−distance)

dissafe
if distance < dissafe

0.5 otherwise

Smoothness Reward: Penalizes abrupt changes in steering to encourage smooth driving. It uses
the standard deviation of the last four steering actions to measure smoothness.

rsm = −γ × std(action list)

Human Expert Designed Tuned (HEDT): We used grid search to optimize the values of the
hyperparameters cpos, csm, cspeed, csensor.

rHEDT
total = coptpos × rpos + coptsm × rsm + coptspeed × rspeed + coptsensor × rsensor

These configurations allow for tailored training of autonomous driving agents, emphasizing different
aspects of driving performance based on specific needs and expected driving conditions. All
configurations use weights of cpos, csm, cspeed, csensor = 0.25, except for the optimized version which
uses customized weights.

C.2 Humanoid Locomotion

In the humanoid environment, the agent is tasked with moving forward while maintaining a healthy
state. The reward function is designed to encourage forward movement, staying upright, and
minimizing control effort. The total reward R is computed as:

R = Rforward +Rhealthy −Rcontrol

Where:

• Rforward = 2.5× wfwd × x velocity
This term provides a reward proportional to the agent’s forward velocity, incentivizing fast
forward movement, with wfwd = 1.25.
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• Rhealthy is a reward for maintaining a healthy state, where the agent’s height is within a
predefined range:

Rhealthy =

{
15 if the agent is healthy
0 if the agent is unhealthy

• Rcontrol = 0.5× wctrl × ∥action∥22
A penalty is applied based on the magnitude of the agent’s actions, discouraging excessive
or inefficient control efforts with wctrl = 0.1.

The total reward encourages the agent to move forward efficiently while staying upright and minimizing
unnecessary control actions. The episode terminates if the agent becomes unhealthy (e.g., by falling)
or after a maximum number of steps.

C.3 Adroit Hand

In the Adroit Hand Environment, the agent’s task is to manipulate a door handle and open a door. The
reward function is designed to incentivize both reaching the handle and successfully opening the door.
The total reward R is a combination of multiple components:

R = Rhandle +Rdoor +Rvelocity +Rbonus

Where:

• Rhandle = 0.1× ∥palm pos − handle pos∥
This term rewards the agent for minimizing the distance between its palm and the door
handle.

• Rdoor = −0.1× (goal distance − 1.57)2

This component provides a reward for moving the door hinge closer to the desired goal
position (typically when the door is open).

• Rvelocity = −1× 10−5 ×
∑

qvel2
A penalty is applied for excessive joint velocities (qvel), encouraging smooth and efficient
movements.

• Rbonus is a set of bonus rewards based on how much the door has been opened:

Rbonus =


+2 if goal distance > 0.2

+8 if goal distance > 1.0

+10 if goal distance > 1.35 (goal achieved)

The episode terminates when the door is successfully opened (i.e., goal distance > 1.35) or after 400
steps. A sparse reward version of the environment provides a reward of +10 for achieving the goal
and −0.1 otherwise.

D REvolve Cost Analysis & Comparisons

Computation cost: REvolve = Eureka. Both REvolve and Eureka output 16 reward functions and
train 16 policies in each generation.

Data requirement: RLHF >> REvolve: RLHF requires massive amounts of curated data to train a
reward model. Note that the input to a reward model is a video (rollout of a policy), and the output is
a preference score, requiring a heavy neural model. As a reference, the common video classification
model I3D trains on the Kinetics dataset, which has 650,000 video clips (Carreira & Zisserman,
2017). IRL >> REvolve: Similarly, Inverse Reinforcement Learning requires human demonstrations
and interventions. In contrast, REvolve uses 10 human evaluators per generation, each assessing
20 data samples (video pairs) – hence, for 7 generations 10× 20× 7 = 1400 curated samples only.
Compare this to the Lyft self-driving dataset (Houston et al., 2021) used for motion prediction which
has more than 1000 hours of data collected over 4 months by 20 cars.
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Figure 11: Comparison of REvolve with existing frameworks used to train autonomous driving agents.
(a.) Expert Designed reward function R to train the autonomous driving agent; (b.) learning from
demonstrations (LfD) and learning from interventions (LfI), where the agent is trained to imitate
the human; (c.) humans acting as reward functions within the training loop, by assessing policy
rollouts and providing scalar rewards, which requires significant manual effort; (d.) Reinforcement
learning from human feedback (RLHF), where human preference data is used to train an additional
(black-box) reward model. This reward model is used as a proxy for human rewards to train the
autonomous driving policy; (e) Proposed REvolve, which uses GPT-4 as a reward function generator
G and evolves them based on (minimal) human feedback on the rollouts sampled from the trained
models. This feedback is directly incorporated into the reward design process. REvolve outputs
interpretable reward functions, thereby avoiding learning an additional reward model. Here, π ∈ Π is
a trainable policy in the set of policies Π. The trainable blocks are denoted by the symbol of the flame.

Storage Cost: REvolve > Eureka. The slightly higher cost is due to maintaining a population of best
candidates rather than one candidate like Eureka. However, compared to the LLM memory cost (e.g.,
the biggest open-source LLM Llama 3.1 takes up 810 GB of memory), the storage cost is negligible –
for every generation, the storage increases by 2.5GB (which includes stored policy weights and other
metadata) – 17.5 GB after 7 generations. Also, REvolve does not require expert feedback.

Comparison with existing approaches in Reinforcement Learning and Human Feedback
Due to its complex and hard-to-specify goals (Knox et al., 2023), autonomous driving presents
a challenging problem for reinforcement learning. Autonomous vehicles must maneuver through
complex environments and interact with other road users, all the while strictly adhering to traffic
regulations. Common techniques to overcome these challenges include learning from demonstrations
(LfD) (Schaal, 1996) or learning from intervention (LfI) (Saunders et al., 2018). However, they do
not always ensure that the learned behaviors align with human values such as safety, robustness, and
efficiency (Hadfield-Menell et al., 2016). An alternative is integrating human feedback by using
humans as the reward function in the learning process directly (Thomaz & Breazeal, 2008; Knox
& Stone, 2009). However, this is rather resource-intensive as each rollout needs to be evaluated
by a human. REvolve directly integrates human feedback (on the trained policy) into the reward
design process. Instead of using humans as reward functions directly, human values, preferences, and
knowledge can also be incorporated via so-called human-in-the-loop (HITL) RL. Several techniques
exist, for instance, human assessment (Thomaz & Breazeal, 2008; Christiano et al., 2017; Knox &
Stone, 2009), human demonstration (Schaal, 1996), and human intervention (Saunders et al., 2018;
Wang et al., 2018). They are particularly beneficial in scenarios like autonomous driving, where the
reward function is challenging, and the nature of the desired outcome is complex. More recently,
reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Rafailov et al., 2023)
has been used successfully in training models like ChatGPT (OpenAI, 2022), providing guidance and

26



Published as a conference paper at ICLR 2025

alignment from user preferences. A further comparison of autonomous driving approaches with and
human feedback is presented in Figure 11, which illustrates how REvolve uses human feedback to
align learned policies with human driving standards without requirements for extra reward models,
such as in the case of RLHF.

E Prompts

Here, we present the different prompts used for GPT-4. It includes the following:

System Prompt Boxes 1, 7, 10 outline the system prompts (i.e. task description and expected input
from the environment, complete with formatting tips to help guide GPT-4) for generating suitable
reward functions for Autonomous Driving, Humanoid Locomotion, and Adroit Hand, respectively.

Abstracted Environment Variables Boxes 2, 8, 11 provides a list of (abstracted) observation and
action variables in the environment, formatted as a Python class, for all three environments. This
informs GPT-4 of variables it can use in reward design.

Operator Prompts like crossover (Box 3) and mutation (Box 4). Additionally, we provide prompts
for REvolve Auto baseline (Boxes 5, 6).

Box 1: System Prompt: Autonomous Driving

You are a reward engineer trying to write a reward function to create an autonomous car agent to learn to navigate the environment.
Your goal is to write a reward function for the environment that will help the agent learn the task described in text.

Task description:
The objective is to create an autonomous car agent to learn to navigate the environment. Specifically, the performance metric for the
learning agent is to successfully drive without crashing, while maintaining smooth driving behavior and a speed between 9.0-10.5
m/s. The episode terminates successfully if the agent drives for 1000 consecutive time steps without crashing. Otherwise, the episode
terminates in failure. The controlled actions are the steering and the speed. The car must avoid staying inactive and stay as close to
the center of the road as possible to ensure optimal performance.

Your reward function should use useful variables from the environment as inputs. An example reward function signature can be:
```python

def compute_reward(object_pos: type, goal_pos: type) -> Tuple[type, Dict[str, type]]:
...
return reward, {}

```
The output of the reward function should consist of two items:

1. The total reward,

2. A dictionary of each individual reward component.

The code output should be formatted as a Python code string: ”“‘python ... “‘”.

1. You may find it helpful to normalize to a fixed reward range like -1,1 or 0,1 by applying transformations like np.exp() to
the overall reward and/or its reward components.

2. If you choose to transform a reward component, then you must introduce a temperature parameter inside the transformation
function. This parameter must be a named variable in the reward function and it must not be an input variable.

3. Make sure the type of each input variable is correctly specified.

4. Most importantly, the reward’s code input variables must contain only attributes of the environment. Under no
circumstance can you introduce a new input variable and assume variables that are not available.

5. Your output must always be the def function code with the output being the total reward.

6. Make sure you don’t give contradictory reward components.
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Box 2: Abstracted Environment Variables (as a Python class): Autonomous Driving

from scipy.spatial.transform import Rotation as R
import numpy as np

class Env:
def __init__(self):

self.client = CarClient()
action = [CarControls().steering, CarControls().throttle]

def state(self):
position_info = self.client.getCarState().kinematics_estimated
curr_x = position_info.position.x_val
curr_y = position_info.position.y_val
yaw, pitch = self.get_orientation(position_info)
linear_velocity = position_info.linear_velocity
vx, vy = linear_velocity.x_val, linear_velocity.y_val
angular_velocity_x , angular_velocity_y , angular_velocity_z =

position_info.kinematics_estimated.angular_velocity.x_val,
position_info.kinematics_estimated.angular_velocity.y_val,
position_info.kinematics_estimated.angular_velocity.z_val

speed = position_info.speed
collision = self.client.simGetCollisionInfo().has_collided
action_list = [steering_value1 , steering_value2 ,

steering_value3 , steering_value4]
min_pos = get_min_pos(self, position_info)
total_step_counter = 0
episode_step_counter = 0
distance = 20 # default max range fo sensor is 20

def get_orientation(self, position_info):
quaternion = np.array([position_info.orientation.w_val,

position_info.orientation.x_val,
position_info.orientation.y_val,
position_info.orientation.z_val])

euler_angles = R.from_quat(quaternion).as_euler(’zyx’, degrees=True)
return euler_angles[0], euler_angles[1]

def get_min_pos(self, position_info):
min_dis = float(’inf’)
for i in data:

stx, sty = i[0], i[1]
dis = eucl_dis(stx, sty, curr_x, curr_y)
if dis < min_dis:

min_dis = dis
return min_dis

def calculate_front_distance(self):
distance_data = self.client.getDistanceSensorData(vehicle_name="Car")
distance = distance_data.distance
# max sensor distance is 20
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Box 3: REvolve Crossover Prompt: Autonomous Driving

You are given a set of reward functions used to train autonomous driving agents. The reward functions have fitness scores that
reflect the agent’s driving performance – higher scores indicate superior driving behavior. For each reward function, we collected
human feedback on what aspects of the agent’s driving are satisfactory and what aspects need improvement. Additionally, we tracked
the values of the individual components in the reward function after every <episodes> episodes and noted the maximum, mean,
minimum values observed. <EXAMPLES>
Your task:

• Combine high-performing reward components from different reward functions based on human feedback and the data
tracked, to enhance the agent’s driving capability further.

• Clearly explain how you intend to combine them and your rationale behind improving the driving performance.

• Write the combined reward function code.

Output of the reward function should consist of:

• 1: The total reward.

• 2: A dictionary of each individual reward component.

Code output should be formatted as a Python code string: ```python ... ```
Tips for reward function design:

1. Normalize to a fixed reward range like -1,1 or 0,1 by applying transformations like np.exp() to the overall reward or its
components.

2. If transforming a reward component, introduce a temperature parameter inside the transformation function. This
parameter must be a named variable in the reward function and it must not be an input variable. Each transformed reward
component should have its own temperature variable and you must carefully set its value based on its effect in the overall
reward.

3. Ensure the type of each input variable is correctly specified.

4. The reward’s code input variables must contain only attributes of the environment. Under no circumstance can you
introduce a new input variable.

5. Always output the def function code with the output being the total reward.

6. Avoid contradictory reward components.
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Box 4: REvolve Mutation Prompt: Autonomous Driving

You are given a reward function used to train autonomous driving agents. The reward functions has a fitness scores that reflects
the agent’s driving performance – higher scores indicate superior driving behavior. We also collected human feedback on what
aspects of the agent’s driving are satisfactory and what aspects need improvement. Additionally, we tracked the values of the indi-
vidual components in the reward function after every <episodes> episodes and noted the maximum, mean, minimum values observed.

<EXAMPLES>

Your task is to iterate on the reward function by mutating a single component to enhance the agent’s driving capability further. Some
helpful tips for analyzing the reward components: If the values for a certain reward component are nearly identical throughout, then
this means the training is not able to optimize this component as it is written. You may consider:

1. Rescaling it to a proper range or the value of its temperature parameter

2. Re-writing the reward component

3. Discarding the reward component

The mutation process involves the following steps:

1. First, select a reward component based on the given guidelines, human feedback, and the values of individual reward
components.

2. Next, clearly explain how you intend to mutate the selected component and your rationale behind improving the driving
performance. This could involve adjusting its scale, rewriting its formula, or other modifications.

3. Finally, write the mutated reward function code.

The output of the reward function should consist of two items:

1. The total reward,

2. A dictionary of each individual reward component.

The code output should be formatted as a Python code string: ```python ... ```
Some helpful tips for writing the reward function code:

1. You may find it helpful to normalize the reward to a fixed reward range like -1,1 or 0,1 by applying transformations like
tf.exp() to the overall reward or its components.

2. If you choose to transform a reward component, then you must introduce a temperature parameter inside the transformation
function. This parameter must be a named variable in the reward function and it must not be an input variable. Each
transformed reward component should have its own temperature variable and you must carefully set its value based on
its effect in the overall reward.

3. Make sure the type of each input variable is correctly specified.

4. Most importantly, the reward’s code input variables must contain only attributes of the environment. Under no
circumstance can you introduce a new input variable.
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Box 5: REvolve Auto Crossover Prompt: Autonomous Driving

You are given a set of reward functions used to train autonomous driving agents. The reward functions have fitness scores that reflect
the agent’s driving performance – higher scores indicate superior driving behavior. We also tracked the values of the individual
components in the reward function after every <episodes> episodes and noted the maximum, mean, minimum values observed.
<EXAMPLES>

Your task:

• Combine high-performing reward components from different reward functions to enhance the agent’s driving capability
further.

• Clearly explain how you intend to combine them and your rationale behind improving the driving performance.

• Write the combined reward function code.

Output of the reward function should consist of:

• 1: The total reward.

• 2: A dictionary of each individual reward component.

Code output should be formatted as a Python code string: ```python ... ```

Tips for reward function design:

1. Normalize to a fixed reward range like -1,1 or 0,1 by applying transformations like np.exp() to the overall reward and/or
its reward components.

2. If transforming a reward component, introduce a temperature parameter inside the transformation function.

3. Ensure the type of each input variable is correctly specified.

4. The reward’s code input variables must contain only attributes of the environment.

5. Always output the def function code with the output being the total reward.

6. Avoid contradictory reward components.
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Box 6: REvolve Auto Mutation Prompt: Autonomous Driving

You are given a reward function used to train autonomous driving agents. The reward function has fitness scores that reflect
the agent’s driving performance – higher scores indicate superior driving behavior. We also tracked the values of the individ-
ual components in the reward function after every <episodes> episodes and noted the maximum, mean, and minimum values observed.

<EXAMPLES>

Your task is to iterate on the reward function by mutating a single component to enhance the agent’s driving capability further. Some
helpful tips for analyzing the reward components: If the values for a certain reward component are nearly identical throughout, then
this means the training is not able to optimize this component as it is written. You may consider:

1. Rescaling it to a proper range or the value of its temperature parameter

2. Re-writing the reward component

3. Discarding the reward component

The mutation process involves the following steps:

1. First, select a reward component based on the given guidelines.

2. Next, clearly explain how you intend to mutate the selected component and your rationale behind improving the driving
performance. This could involve adjusting its scale, rewriting its formula, or other modifications.

3. Finally, write the mutated reward function code.

The output of the reward function should consist of two items:

1. The total reward,

2. A dictionary of each individual reward component.

The code output should be formatted as a Python code string: ```python ... ```
Some helpful tips for writing the reward function code:

1. You may find it helpful to normalize the reward to a fixed reward range like -1,1 or 0,1 by applying transformations like
tf.exp() to the overall reward or its components.

2. If you choose to transform a reward component, then you must introduce a temperature parameter inside the transformation
function. This parameter must be a named variable in the reward function and not an input variable. Each transformed
reward component should have its own temperature variable, and you must carefully set its value based on its effect on
the overall reward.

3. Make sure the type of each input variable is correctly specified.

4. Most importantly, the reward’s code input variables must contain only attributes of the environment. Under no
circumstance can you introduce a new input variable.
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Box 7: System Prompt: Humanoid Locomotion

You are a reward engineer trying to write a reward function for humanoid robot to run. Your goal is to write a reward function for the
environment that will help the agent learn the task described in text.

Task description:
The task is to train a humanoid agent to run. The robot becomes unhealthy if its torso’s z-position falls outside the 1.0 to 2.0 range.
The episode ends if the robot becomes unhealthy or after 1000 timesteps, with success measured by speed. Agent locomotion should
be more human like.

Your reward function should use useful variables from the environment as inputs. An example reward function signature can be:
```python

def compute_reward(object_pos: type, goal_pos: type) -> Tuple[type, Dict[str, type]]:
...
return reward, {}

```
The output of the reward function should consist of two items:

1. The total reward,

2. A dictionary of each individual reward component.

The code output should be formatted as a Python code string: ”“‘python ... “‘”.

1. You may find it helpful to normalize to a fixed reward range like -1,1 or 0,1 by applying transformations like np.exp() to
the overall reward and/or its reward components.

2. If you choose to transform a reward component, then you must introduce a temperature parameter inside the transformation
function. This parameter must be a named variable in the reward function and it must not be an input variable.

3. Make sure the type of each input variable is correctly specified.

4. Most importantly, the reward’s code input variables must contain only attributes of the environment. Under no
circumstance can you introduce a new input variable and assume variables that are not available.

5. Your output must always be the def function code with the output being the total reward.

6. Make sure you don’t give contradictory reward components.
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Box 8: Abstracted Environment Variables: Humanoid Locomotion (Part 1)

class Env(utils.EzPickle):

## Action Space
The action space is a ‘Box(-1, 1, (17,), float32)‘. An action represents the
torques applied at the hinge joints.

## Observation Space
Observations consist of positional values of different body parts of the Humanoid ,
followed by the velocities of those individual parts (their derivatives) with all
the
positions ordered before all the velocities.

By default, observations do not include the x- and y-coordinates of the torso.
These may
be included by passing ‘exclude_current_positions_from_observation=False‘ during
construction.
In that case, the observation space will be a ‘Box(-Inf, Inf, (378,), float64)‘
where the first two observations
represent the x- and y-coordinates of the torso.
Regardless of whether ‘exclude_current_positions_from_observation ‘ was set to true
or false, the x- and y-coordinates
will be returned in ‘info‘ with keys ‘"x_position"‘ and ‘"y_position"‘,
respectively.

However, by default, the observation is a ‘Box(-Inf, Inf, (376,), float64)‘. The
elements correspond to the following:

| Num | Observation
| Min | Max | Name (in corresponding XML

file) | Joint | Unit |
---------- | ---- | --- | -------------------------------- | ----- |
-------------------------- |
| 0 | z-coordinate of the torso (centre)

| -Inf | Inf | root
| free | position (m) |

| 1 | x-orientation of the torso (centre)
| -Inf | Inf | root

| free | angle (rad) |
| 2 | y-orientation of the torso (centre)

| -Inf | Inf | root
| free | angle (rad) |

| 3 | z-orientation of the torso (centre)
| -Inf | Inf | root

| free | angle (rad) |
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
| 43 | coordinate -2 (multi-axis) of the angular velocity of the angle between
torso and left arm (in left_upper_arm) | -Inf | Inf | left_shoulder2

| hinge | anglular velocity (rad/s) |
| 44 | angular velocity of the angle between left upper arm and left_lower_arm

| -Inf | Inf | left_elbow
| hinge | anglular velocity (rad/s) |

| excluded | x-coordinate of the torso (centre)
| -Inf | Inf | root

| free | position (m) |
| excluded | y-coordinate of the torso (centre)

| -Inf | Inf | root
| free | position (m) |

Additionally , after all the positional and velocity based values in the table,
the observation contains (in order):
- *cinert:* Mass and inertia of a single rigid body relative to the center of mass
(this is an intermediate result of transition). It has shape 14*10 (*nbody * 10*)
and hence adds to another 140 elements in the state space.
- *cvel:* Center of mass based velocity. It has shape 14 * 6 (*nbody * 6*) and
hence
adds another 84 elements in the state space
- *qfrc_actuator:* Constraint force generated as the actuator force. This has shape
‘(23,)‘ *(nv * 1)* and hence adds another 23 elements to the state space.
- *cfrc_ext:* This is the center of mass based external force on the body. It has
shape
14 * 6 (*nbody * 6*) and hence adds to another 84 elements in the state space.
where *nbody* stands for the number of bodies in the robot and *nv* stands for the
number of degrees of freedom (*= dim(qvel)*)
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Abstracted Environment Variables: Humanoid Lomoton (Part 2)

def _get_obs(self):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

position = self.data.qpos.flat.copy()
velocity = self.data.qvel.flat.copy()

com_inertia = self.data.cinert.flat.copy()
com_velocity = self.data.cvel.flat.copy()

actuator_forces = self.data.qfrc_actuator.flat.copy()
external_contact_forces = self.data.cfrc_ext.flat.copy()

observation = np.concatenate(
(position, velocity, com_inertia , com_velocity , actuator_forces ,

external_contact_forces ,)
)

return observation

Box 10: System Prompt: Adroit Hand

You are a reward engineer trying to write a reward function for the environment that will help the agent learn the task described in text.

Task description:
The task involves using an anthropomorphic robotic hand to rotate a door handle and open the door as fast as possible. The robot
must manipulate the handle effectively, overcoming the friction and resistance of the door mechanism. The episode ends after 400
steps or if it opened the door successfully.

Your reward function should use useful variables from the environment as inputs. An example reward function signature can be:
```python

def compute_reward(object_pos: type, goal_pos: type) -> Tuple[type, Dict[str, type]]:
...
return reward, {}

```
The output of the reward function should consist of two items:

1. The total reward,

2. A dictionary of each individual reward component.

The code output should be formatted as a Python code string: ”“‘python ... “‘”.

1. You may find it helpful to normalize to a fixed reward range like -1,1 or 0,1 by applying transformations like np.exp() to
the overall reward and/or its reward components.

2. If you choose to transform a reward component, then you must introduce a temperature parameter inside the transformation
function. This parameter must be a named variable in the reward function and it must not be an input variable.

3. Make sure the type of each input variable is correctly specified.

4. Most importantly, the reward’s code input variables must contain only attributes of the environment. Under no
circumstance can you introduce a new input variable and assume variables that are not available.

5. Your output must always be the def function code with the output being the total reward.

6. Make sure you don’t give contradictory reward components.
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Box 11: Abstracted Environment Variables: Adroit Hand

class Env(EzPickle):
## Action Space

The action space is a ‘Box(-1.0, 1.0, (28,), float32)‘. The control actions are
absolute angular positions of the Adroit hand joints. The input of the control
actions is set to a range between -1 and 1 by scaling the real actuator angle
ranges in radians.

## Observation Space

The observation space is of the type ‘Box(-inf, inf, (97,), float64)‘. It contains
information about the angular position of the finger joints, the pose of the palm
of the hand, as well as state of the latch and door and the joint velocities and
forces.

| Num | Observation | Min | Max | Joint Name (in corresponding XML file) |
Site Name (in corresponding XML file) | Joint Type| Unit
|-----|---------- -|--------|--------|------------|
| 0 | Angular position of the vertical arm joint
| -Inf | Inf | ARRx | -

| hinge | angle (rad) |
|
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
...

def _get_obs(self):
# qpos for hand
# xpos for obj
# xpos for target
qpos = self.data.qpos.ravel()
handle_pos = self.data.site_xpos[self.handle_site_id].ravel()
palm_pos = self.data.site_xpos[self.grasp_site_id].ravel()
door_pos = np.array([self.data.qpos[self.door_hinge_addrs]])
joint_velocities = self.data.qvel.ravel()
joint_forces = self.data.actuator_force.ravel()
if door_pos > 1.0:

door_open = 1.0
else:

door_open = -1.0
latch_pos = qpos[-1]

return np.concatenate(
[

qpos[1:-2],
[latch_pos],
door_pos ,
palm_pos ,
palm_pos - handle_pos ,
[door_open]

)
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F Human Feedback Examples

Box 12: Mutation with Human Feedback

Human feedback on the autonomous driving agent’s performance:
Positive: collision avoidance, lane keeping, managing consistent speed, intersection and turn handling.
Negative: Smooth Steering.

Based on the human feedback and analysis of the reward components, we can identify that the ”smooth driving bonus” needs
modification. The feedback indicates issues with smooth steering, which suggests that the existing smoothness component isn’t
effectively promoting the desired steering behavior. Given that the human feedback specifically pointed out deficiencies in this area, it
suggests the measure (variance of steering actions) might not be adequately sensitive or is scaled improperly.

Intended Mutation: The mutation will focus on revising the ”smooth driving bonus” to better capture and reward smooth steering.
The current method uses the standard deviation of steering actions to compute a penalty, which may not effectively discriminate
between slightly varying and highly erratic steering actions. A more responsive approach might involve squaring the deviation before
scaling, which penalizes larger variations more severely and provides a sharper gradient for the learning algorithm to optimize against.

Rationale By squaring the deviation, small steering adjustments are less penalized, allowing for natural minor corrections while
driving. Larger, more erratic movements result in significantly higher penalties, pushing the training to favor smoother transitions and
more stable steering behaviors.

def old_compute_reward(curr_x: float, curr_y: float, speed: float, collision: bool,
action_list: list, total_step_counter: int, episode_step_counter: int, min_pos:
float, distance: float) -> Tuple[float, Dict[str, float]]:
...

max_steering_variance = 0.1
smoothness_factor = np.std(action_list)
reward_components[’smooth_driving_bonus’] = np.exp(-temp_smoothness * (
smoothness_factor / max_steering_variance))
...

def compute_reward(curr_x: float, curr_y: float, speed: float, collision: bool,
action_list: list, total_step_counter: int, episode_step_counter: int, min_pos:
float, distance: float) -> Tuple[float, Dict[str, float]]:
...

# Updated mutation for smooth driving bonus
max_steering_variance = 0.1
smoothness_factor = np.std(action_list)
reward_components[’smooth_driving_bonus’] = np.exp(-temp_smoothness * (
smoothness_factor**2 / max_steering_variance**2))
...

G Additional Results

G.1 Best performing rewards

G.1.1 Autonomous Driving

In Box 13, we present the best-performing reward from REvolve with a fitness score of 0.84 for the
AirSim environment. Similarly, Box 14 displays the best-performing reward from REvolve Auto with
a fitness score of 0.81 for the same environment.
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Box 13: Best reward function from REvolve: Autonomous Driving

def compute_reward(curr_x: float,
curr_y: float,
speed: float,
collision: bool,
min_pos: float,
action_list: List[float]) -> Tuple[float, Dict[str, float]]:

# Parameters to tweak the importance of different reward components
collision_penalty = -100
inactivity_penalty = -10
speed_reward_weight = 2.0
position_reward_weight = 1.0
smoothness_reward_weight = 0.5

# Adjusted temperature parameters for score transformation
speed_temp = 0.5 # Increased temperature for speed_reward
position_temp = 0.1
smoothness_temp = 0.1

reward_components = {
"collision_penalty": 0,
"inactivity_penalty": 0,
"speed_reward": 0,
"position_reward": 0,
"smoothness_reward": 0

}

# Penalize for collision
if collision:

reward_components["collision_penalty"] = collision_penalty

# Penalize for inactivity (speed too close to zero)
if speed < 4.5: # Adjusted threshold for inactivity

reward_components["inactivity_penalty"] = inactivity_penalty

# Reward for maintaining an optimal speed range
if 9.0 <= speed <= 10.5:

speed_score = 1 - np.abs(speed - 9.75) / 1.75 # Centering and normalizing
around the average of optimal speed range
else:

speed_score = -1
# Use a sigmoid function to smoothly transform the speed score and constrain it
reward_components["speed_reward"] = speed_reward_weight * (1 / (1 + np.exp(-
speed_score / speed_temp)))

# Reward for being close to the center of the road
position_score = np.exp(-min_pos / position_temp)
reward_components["position_reward"] = position_reward_weight * position_score

# Reward for smooth driving (small variations in consecutive steering actions)
steering_smoothness = -np.std(action_list)
reward_components["smoothness_reward"] = smoothness_reward_weight * np.exp(
steering_smoothness / smoothness_temp)

# Calculate total reward, giving precedence to penalties
total_reward = 0
if reward_components["collision_penalty"] < 0:

total_reward = reward_components["collision_penalty"]
elif reward_components["inactivity_penalty"] < 0:

total_reward = reward_components["inactivity_penalty"]
else:

total_reward = sum(reward_components.values())

# Ensure the total reward is within a reasonable range
total_reward = np.clip(total_reward , -1, 1)

return total_reward , reward_components
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Box 14: Best reward function from REvolve Auto: Autonomous Driving

def compute_reward(curr_x: float, curr_y: float, speed: float, collision: bool,
action_list: list, total_step_counter: int, episode_step_counter: int, min_pos:
float, distance: float) -> Tuple[float, Dict[str, float]]:
# Define temperature parameters for reward transformations
temp_collision = 5.0
temp_inactivity = 10.0
temp_centering = 2.0
temp_speed = 2.0
temp_smoothness = 1.0
temp_proximity = 2.0

# Initialize the total reward and reward components dictionary
reward_components = {

’collision_penalty’: 0,
’inactivity_penalty’: 0,
’lane_centering_bonus’: 0,
’speed_regulation_bonus’: 0,
’smooth_driving_bonus’: 0,
’front_distance_bonus’: 0

}

# Penalty for collisions
reward_components[’collision_penalty’] = np.exp(-temp_collision) if collision else
0

# Penalty for inactivity
inactivity_threshold = 4.5
if speed < inactivity_threshold and not collision:

reward_components[’inactivity_penalty’] = np.exp(-temp_inactivity * (
inactivity_threshold - speed))

# Lane centering bonus
max_distance_from_center = 2.0 # adaptable based on road width
reward_components[’lane_centering_bonus’] = np.exp(-temp_centering * min_pos)

# Speed regulation bonus
ideal_speed = (9.0 + 10.5) / 2
speed_range = 10.5 - 9.0
reward_components[’speed_regulation_bonus’] = np.exp(-temp_speed * (abs(speed -
ideal_speed) / speed_range))

# Smooth driving bonus
max_steering_variance = 0.1 # configured to the acceptable steering variance for
full bonus
smoothness_factor = np.std(action_list)
reward_components[’smooth_driving_bonus’] = np.exp(-temp_smoothness * (
smoothness_factor / max_steering_variance))

# Front distance bonus
max_distance_view = 20
reward_components[’front_distance_bonus’] = np.clip(distance / max_distance_view ,
0, 1)

# Sum the individual rewards for the total reward
total_reward = sum(reward_components.values())

# Ensure penalties take precedence
if collision or speed < inactivity_threshold:

total_reward = -1 # Apply max negative reward for collision or inactivity

# Normalize the total reward to lie between -1 and 1
total_reward = np.clip(total_reward , -1, 1)

return total_reward , reward_components

G.1.2 Humanoid Locomotion

In Box 15, we present the best-performing reward from REvolve with an average velocity of 5.67. In
Box 16, the best-performing reward from REvolve Auto has an average velocity of 4.71.
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Box 15: Best reward function from REvolve: Humanoid Locmotion

def compute_reward(observation: np.array) -> (float, dict):
# Constants and Parameters
speed_temp = 0.1
orientation_temp = 0.05
health_temp = 1.0

# Extract relevant components from the observation
speed = observation[22] # x-velocity component for reward
z_position = observation[0] # z-coordinate of the torso
orientation = observation[1:5] # orientation of the torso (x, y, z, w)

# Reward Components
speed_reward = np.exp(speed * speed_temp) - 1 # Encourage forward movement ,
exponentially
orientation_penalty = -np.var(orientation) * orientation_temp # Penalize variance
in orientation to encourage stability
health_penalty = 0 if 1.0 < z_position < 2.0 else -np.exp(-abs(z_position - 1.5) *
health_temp) # Penalty for unhealthy z-position

# Total Reward Calculation
total_reward = speed_reward + orientation_penalty + health_penalty

reward_components = {
’speed_reward’: speed_reward ,
’orientation_penalty’: orientation_penalty ,
’health_penalty’: health_penalty

}

return total_reward , reward_components

Box 16: Best reward function from REvolve Auto: Humanoid Locomotion

def compute_reward(observation: np.ndarray) -> (float, dict):
# Constants and Parameters
speed_reward_temp = 0.1
health_penalty_temp = 0.01
orientation_reward_temp = 0.1
health_threshold = 0.8 # Assumed threshold for the health component before
penalties kick in more aggressively

# Extracting necessary components from observation for computation
z_position = observation[0] # Assuming first value represents torso z-position
speed = observation[22] # Assuming this represents the forwards velocity

# Speed Reward Component: Encourages forward movement
speed_reward = speed * np.exp(speed_reward_temp * speed)

# Health Penalty Component: Penalizes unhealthy states less aggressively
is_unhealthy = 1 if z_position < 1.0 or z_position > 2.0 else 0
health_penalty = -np.exp(health_penalty_temp * is_unhealthy * (2.0 - z_position) if
z_position < health_threshold else health_penalty_temp * is_unhealthy * 0.5)

# Orientation Reward Component: Encourages maintaining upright torso orientation
x_orientation , y_orientation = observation[1], observation[2] # Assumed
orientation metrics
orientation_reward = (1 - x_orientation**2 - y_orientation**2) * np.exp(
orientation_reward_temp * (1 - x_orientation**2 - y_orientation**2))

# Total Reward Calculation
total_reward = speed_reward + health_penalty + orientation_reward

# Reward Components Dictionary
reward_components = {

’speed_reward’: speed_reward ,
’health_penalty’: health_penalty ,
’orientation_reward’: orientation_reward

}

return total_reward , reward_components
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G.1.3 Adroit Hand

”In Box 17, we present the best-performing reward from REvolve with a fitness score of 0.81. In
Box 18, the best-performing reward from REvolve Auto has a fitness score of 0.64.”

Box 17: Best reward function from REvolve: Adroit Hand

def compute_reward(observation , joint_velocities , joint_forces):
# Example observables
goal_pos = observation[28] # Using door_pos as an approximation for the goal
position
palm_to_handle = np.linalg.norm(observation[35:38]) # Magnitude of vector from
palm to handle
door_hinge_angle = observation[28]
completion_threshold = 1.35 # radians, as per task success definition

# Parameters
dist_temp = 10.0 # Temperature parameter for distance cost transformation
hinge_temp = 5.0 # Temperature parameter for hinge reward transformation

# Components mutation: Distance cost modification with exponential decay
dist_cost = -np.exp(-palm_to_handle / dist_temp)

# Door hinge reward: reward for rotating the door handle
door_hinge_reward = np.exp((door_hinge_angle - completion_threshold) / hinge_temp)
if door_hinge_angle < completion_threshold else 1.0

# Checking if the door is sufficiently opened to consider the episode a success
if door_hinge_angle >= completion_threshold:

completion_bonus = 100.0 # Significant bonus for completing the task
else:

completion_bonus = 0.0

# Total reward calculation
total_reward = dist_cost + door_hinge_reward + completion_bonus

# Returning the total reward and the individual components as a dictionary
return total_reward , {’dist_cost’: dist_cost , ’door_hinge_reward’:
door_hinge_reward , ’completion_bonus’: completion_bonus}

˜

Box 18: Best reward function from REvolve Auto: Adroit Hand

def compute_reward(observation: np.ndarray) -> (float, dict):
# Defining temperature parameters for the transformations
temp_position = 0.1 # Temperature for position reward transformation
temp_door_open = 0.05 # Temperature for door open reward transformation

# Extract necessary components from the observation
position_reward = observation[-2] # Assuming last but one value corresponds to
positional info
door_open_reward = observation[-1] # Assuming last value indicates door being open
or not

# Apply transformations with temperature parameters
transformed_position_reward = np.exp(temp_position * position_reward) - 1 #
Subtracting 1 to ensure a baseline of 0
transformed_door_open_reward = np.exp(temp_door_open * door_open_reward) - 1

# Calculate total reward
total_reward = transformed_position_reward + transformed_door_open_reward

# Constructing the dictionary of individual reward components
reward_components = {

’position_reward’: transformed_position_reward ,
’door_open_reward’: transformed_door_open_reward

}

return total_reward , reward_components
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Figure 12: Compares policy training with REvolve, REvolve Auto and expert-designed reward
functions on episodic steps from the start of the training for the Autonomous Driving [Left] and
Adroit Hand [Right]. Note, that episodic steps in Autonomous Driving denote how long an agent
drives (i.e. higher is better). In contrast, episodic steps in Adroit Hand denote the number of steps the
agent takes to solve the tasks (lower is better).

Figure 13: Episodic Steps during training for Env 1 [Left] and Env 2 scenario [Right].

Do REvolve reward functions lead to higher success rates? In Figure 12, we see that REvolve-
designed rewards converge to a higher number of episodic steps compared to expert-designed rewards,
signifying a better success rate per episode – higher is better for Autonomous Driving and vice versa.
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