
Published as a conference paper at COLM 2025

Have Large Language Models Learned to Reason?
A Characterization via 3-SAT

Rishi Hazra1, Gabriele Venturato2, Pedro Zuidberg Dos Martires1 & Luc De Raedt1,2

1Centre for Applied Autonomous Sensor Systems (AASS),
Örebro University, 70182, Sweden
2Department of Computer Science, KU Leuven, 3001, Belgium
{rishi.hazra, pedro.zuidberg-dos-martires}@oru.se
{gabriele.venturato, luc.deraedt}@kuleuven.be

Abstract

Large Language Models (LLMs) have been touted as AI models possessing
advanced reasoning abilities. In theory, autoregressive LLMs with Chain-
of-Thought (CoT) can perform more serial computations to solve complex
reasoning tasks. However, recent studies suggest that, despite this capacity,
LLMs do not truly learn to reason but instead fit on statistical features.
To study the reasoning capabilities in a principled fashion, we adopt a
computational theory perspective and propose an experimental protocol
centered on 3-SAT – the prototypical NP-complete problem lying at the
core of logical reasoning and constraint satisfaction tasks. Specifically,
we examine the phase transitions in random 3-SAT and characterize the
reasoning abilities of state-of-the-art LLMs by varying the inherent hardness
of the problem instances. By comparing DeepSeek R1 with other LLMs, our
findings reveal two key insights (1) LLM accuracy drops significantly on
harder instances, suggesting all current models struggle when statistical
shortcuts are unavailable (2) Unlike other LLMs, R1 shows signs of having
learned the underlying reasoning. Following a principled experimental
protocol, our study moves beyond the benchmark-driven evidence often
found in LLM reasoning research. Our findings highlight important gaps
and suggest clear directions for future research. Link to our code.

1 Introduction

The success and versatility of Large Language Models (LLMs) have sparked widespread
interest and debate on whether LLMs are capable of reasoning. Recent studies suggest that
LLMs are inherently capable of zero-shot reasoning (Kojima et al., 2022). This ability has
been shown to emerge and improve with scale (Wei et al., 2022a; Srivastava et al., 2023), and
can be further enhanced through prompting techniques that encourage LLMs to think step-by-
step (Wei et al., 2022b; Yao et al., 2023b). Demonstrations include, inter alia, planning (Huang
et al., 2022; Hazra et al., 2024b), theorem proving (Jiang et al., 2023; Welleck et al., 2022),
search and optimization (Romera-Paredes et al., 2024; Hazra et al., 2024a), self-reflection (Yao
et al., 2023a; Madaan et al., 2023), and tool usage (Schick et al., 2023).

Conversely, a growing body of research presents a more critical view of these reasoning
abilities. For instance, LLMs may exhibit limitations in consistent logical reasoning (Ark-
oudas, 2023; Saparov & He, 2023), effective planning (Valmeekam et al., 2022), and accurate
self-evaluation of their outputs (Stechly et al., 2023). So, to what extent can LLMs reason?

Recent works address this question by characterizing LLMs’ theoretical capabilities and
limitations using worst-case complexity analysis. Peng et al. (2024) demonstrated that
multi-layer transformers cannot solve problems such as Derivability, 2-SAT, and Horn SAT.
However, with T-chain of thought (CoT) steps, transformers’ abilities can be extended up to
those solvable by Boolean circuits of size T (Li et al., 2024). Moreover, with polynomially
many correct intermediate CoT steps, an LLM can compute all circuits in polynomial size,

1

https://github.com/RishiHazra/LLM-SAT

Published as a conference paper at COLM 2025

P/poly, a superclass of P. Therefore, LLMs should be able to solve reasoning problems falling
into these complexity classes, like 2-SAT and Horn-SAT. It is also expected to solve some –
but not all – 3-SAT instances since certain problems may require circuit complexities that
exceed polynomial bounds. Empirically, this aligns with test-time compute scaling studies
that show improved reasoning performance with increased computational resources (Light-
man et al., 2024; Snell et al., 2025). Thus, from a theoretical standpoint, LLMs equipped
with CoT possess the capacity to solve reasoning problems falling in P or P/Poly.

However, despite this, recent works have shown that LLMs are not learning to reason,
by fitting on statistical features and not internalizing the logic (i.e. learning to reproduce
the style and not logic) (Zhang et al., 2023) much like the Clever Hans Cheat (Bachmann
& Nagarajan, 2024). With the advent of Large Reasoning Models (LRMs) like DeepSeek
R1 (DeepSeek-AI, 2025a) which leverage more test-time compute, there is renewed optimism
about enhancing reasoning capabilities. However, it is unclear if this marks a real step
change, due to limitations in current reasoning benchmarks like (1) growing concerns about
dataset contamination1 (Zhang et al., 2024) that can inflate the reasoning performance; (2)
conflation of commonsense reasoning rooted in retrieving world knowledge, and logical or
deductive reasoning – requiring algebraic manipulation of knowledge (Genesereth & Nilsson,
1987) – making it challenging to decouple the two.

To move beyond these limitations, a more principled approach to evaluating reasoning
is needed. We adopt Leon Bottou’s definition, which defines reasoning as “algebraically
manipulating previously acquired knowledge to answer a new question” (Bottou, 2014). This
closely aligns with Russell and Norvig’s description of AI as rational thinking (Russell &
Norvig, 2010). Building on this, we ask: Have LLMs learned to reason, and if so, to what
extent? We answer through the following contributions:

(1) Characterizing LLM-reasoning from a computational theory perspective. Adhering to
Leon Bottou’s definition, we propose an experimental framework centered on 3-SAT, to eval-
uate reasoning. Introduced in Figure 1, 3-SAT is a foundational problem in computational
complexity, and many problems in AI such as (propositional fragments of) logical reasoning,
planning, and constraint satisfaction can be reduced to 3-SAT. We also extend our analysis
to tractable fragments like 2-SAT (NL-Complete) (Bollobás et al., 2001) and 1-3 Horn-SAT
(P-Complete) (Demopoulos & Vardi, 2006) which also exhibit phase transitions, revealing
interesting observations across complexity classes. Our approach provides a formal and
robust evaluation of reasoning abilities and bridges computational theory with modern AI.

(2) Studying Phase Transition Characteristics of LLMs. We investigate the phase transition
characteristics of LLMs (Cheeseman et al., 1991), i.e., how LLMs’ performance varies in the
easy and hard regions of the problem space, unlike standard reasoning benchmarks that
overlook variations due to inherent hardness of problems. We observe that LLM performance
declines in the hard region where statistical features are largely absent.

(3) Comprehensive evaluation of state-of-the-art LLMs. We conducted extensive exper-
iments across state-of-the-art open-source and proprietary LLMs. We find a significant
gap between the performances of DeepSeek R1 (DeepSeek-AI, 2025a) to other LLMs like
GPT-4o (OpenAI, 2024), Claude 3.7 Sonnet (Anthropic, 2025), Gemini 2.0 Flash (Google,
2024), and DeepSeek V3 (DeepSeek-AI, 2025b). Interestingly, the CoT traces produced by
DeepSeek R1 reveal patterns suggestive of an in-context tree search with backtracking,
which may account for its superior performance. In contrast, the other models consistently
fail to demonstrate comparable reasoning capabilities. This leads us to believe that LRMs
like R1 could be a step-change in reasoning abilities.

2 Preliminaries

2.1 Phase Transitions in Random 3-SAT

We study the reasoning capabilities of LLMs on random 3-SAT problems. 3-SAT consti-
tutes one of the most fundamental problems in computer science as it is the prototypical

1Data closely resembling the benchmark leaks into the training data.

2

Published as a conference paper at COLM 2025

Figure 1: The 3-SAT problem, visualized using a variant of the SAT game (Roussel). In SAT,
the goal is to return a truth assignment to Boolean variables that satisfies a Boolean formula
in conjunctive normal form (CNF), or return unSAT if none exists. In the visualization, each
row represents a clause—a disjunction (logical OR, ∨) of literals, where each literal is either
positive (X1) or negative (¬X1). A clause is satisfied if at least one of its literals is assigned
true. Clauses are joined by logical AND (∧), so all must be satisfied for the formula to hold.
If no such assignment exists, the formula is unsatisfiable.

NP-complete problem, lying at the foundation of computational complexity theory. More-
over, various prevalent reasoning problems in artificial intelligence, such as planning and
constraint satisfaction, can be reduced to solving 3-SAT problems (Garey & Johnson, 1990).

By randomly sampling 3-SAT formulas2, we avoid domain-specific biases, and it lets
us control the complexity of the generated formulas. In fact, an interesting empirical
observation is the presence of a phase transition in random 3-SAT problems (Cheeseman
et al., 1991). When randomly sampling 3-SAT formulas, one can observe a sharp change in
the probability of a 3-SAT formula being satisfiable when plotted against α = m/n, where m
is the number of clauses and n is the number of variables. For random 3-SAT, this phase
transition occurs at αc ≈ 4.267 (Mertens et al., 2006; Ding et al., 2015), i.e. the point at which
a randomly sampled 3-SAT formula has equal probability to be satisfiable or unsatisfiable.
This naturally divides 3-SAT problems into three regions: the under-constrained region
below the threshold (Easy), the constrained region in the neighborhood of the threshold
(Hard), and the over-constrained region above the threshold (Easy), cf. Figure 2.

2.2 SAT Solvers

SAT solvers are tools to automatically verify the satisfiability of propositional logic formulas.
The Davis–Putnam–Logemann–Loveland (DPLL) algorithm (Davis et al., 1962) is a key
component of modern SAT solvers. It consists of a backtracking-based algorithm, equipped
with heuristics, to efficiently explore the search space and determine if a formula is satisfiable
(Figure 2). The algorithm selects a literal and assigns a truth value to it. This is applied
recursively until all clauses are satisfied, meaning that the original formula is satisfiable.
Modern SAT solvers are based on Conflict-Driven Clause Learning (CDCL) (Silva & Sakallah,
1996) which enhances DPLL with conflict analysis and clause learning. In Figure 2, we show
how the time to determine the satisfiability of a random 3-SAT formula varies in function of
α. Most prominently, we see a pronounced peak in runtime around the αc.

Analogously to characterizing SAT solvers by their behavior with varying α, we study the
reasoning capabilities of LLMs with respect to the phase transition in random 3-SAT.

3 Related Work

Merrill & Sabharwal (2023) established that multi-layer transformers belong to the complex-
ity class log-uniform TC0. Subsequently, Peng et al. (2024) demonstrated that multi-layer
transformers cannot solve problems such as Derivability, 2-SAT, Horn SAT, and Circuit

2We use Selman et al. (1996) random model, where clauses are sampled with replacement.

3

Published as a conference paper at COLM 2025

Figure 2: [Left]: Random 3-SAT Phase Transitions (Cheeseman et al., 1991). Plotted in
red is the probability of a randomly sampled 3-SAT formula being satisfied against the
hardness α of the formula. We can observe a clear phase transition occurring at αc ≈ 4.267
(marked by a green - -). We identify two Easy regions, one on either side of αc. The gray
area in the middle denotes the Hard region. The boundaries of the hard region are defined
where the probability of the formula being satisfied ceases to be deterministically 1 (left) or 0
(right). The solid blue line shows the mean time taken by the MiniSAT solver to solve 3-SAT
instances. Notably, there is a spike in the solver’s runtime near αc. This is due to the absence
of useful heuristics in this region, forcing the solver to resort to exhaustive searches. [Right]:
DPLL Search Trace from a SAT Solver for the given formula. Red boxes denote unsatisfiable
assignments; the green box highlights a satisfying one. 0, 1 are truth assignments.

Evaluation unless L=NL. While these results provide worst-case performance bounds for
transformer architectures, their relevance to average-case complexity is limited (Coarfa et al.,
2000), therefore, offering only partial insights into the practical reasoning capabilities of
LLMs. Notably, recent works have shown that T chain of thought (CoT) steps can extend
transformers’ abilities beyond TC0, up to those solvable by Boolean circuits of size T (Li
et al., 2024). With T being polynomial in the input size, LLMs can in theory solve problems
in P class like 2-SAT and Horn SAT. Our SAT experiments support this, showing improved
reasoning with extended CoT steps. Yet, a central question remains: can LLMs learn to reason
effectively, given that they are theoretically capable?

To this end, Dziri et al. (2023) investigate the performance of LLMs on compositional tasks
with varying levels of complexity. Their experiments reveal a significant performance
decline as task complexity increases, measured by problem size and reasoning depth. The
findings indicate that while models can memorize single-step operations from training, they
fail to compose these steps into correct reasoning paths. Similarly, Zhang et al. (2023) found
that BERT-based models fail to generalize to out-of-distribution data even within a tractable
(i.e., not NP-complete) problem class, overfitting to statistical features during training. Our
results extend these findings by showing that performance declines are better explained by
inherent problem hardness – as captured by phase transitions – rather than size or depth alone.

Closest to our work is the NPHardEval (Fan et al., 2024), which examines reasoning across
various computational complexity classes. We extend this by analyzing phase transition
characteristics and how performance varies with inherent problem hardness. Our evaluation
focuses on classes with known phase transitions (Schaefer, 1978), including 2-SAT (NL-
Complete), 1-3 Horn-SAT (P-Complete), and 3-SAT (NP-Complete). By comparing LRMs
with LLMs, we gain deeper insights into the impact of longer reasoning traces, performance
across easy and hard regions, and variation with model count (i.e., number of solutions).

Our findings also align with Xiang et al. (2025), who claim that classical CoT training data
fails to capture the non-linear and iterative nature of complex reasoning. They propose
Meta-CoT, which explicitly models this “thinking” process. We observe that DeepSeek R1

4

Published as a conference paper at COLM 2025

exhibits Meta-CoT-like behavior, autoregressively generating search trees that reflect latent
reasoning steps – suggesting that the model has, to some extent, learned to reason.

4 Methodology

4.1 Using LLMs as 3-SAT Solvers

To use LLMs as 3-SAT solvers, we reframe the 3-SAT problem as a natural language menu-
selection problem, termed as SAT-Menu. As shown in Box 1, the prompt input to the LLM
consists of a task outline, along with a specific scenario detailing the dietary preferences of a
set of people. The LLM’s objective is to identify a combination of orderable (akin to positive
literals) and non-orderable (akin to negative literals) food items that meet these preferences;
or declare the situation unsatisfiable (unSAT) if no valid combination exists. Note, that
the prompt example in Box 1 constitutes a minimal example stripped of all details. The
complete system prompt incorporates techniques known to enhance the apparent reasoning
capabilities of LLMs, such as chain-of-thought (CoT) (Wei et al., 2022b) and in-context
learning (Brown et al., 2020) (see Box 2 in Appendix for the full prompt).

Additionally, we introduce a second problem formulation where the LLM is directly given
the underlying 3-SAT formula in Conjunctive Normal Form (CNF). We refer to this scenario
as SAT-CNF. Specifically, in this setting, the problem is presented as a list of integers to the
LLM, similar to the approach outlined in SAT Game (Figure 1). For more details about the
prompt, we refer the reader to Box 3 in the Appendix.

Box 1: SAT-Menu Prompt

System Message
Your task is to output two distinct lists of food items, one denoting what can be ordered
(‘orderable’) and the other what cannot (‘not orderable’), to meet the preferences of a group
of individuals. Each person must find the selection satisfactory based on their likes and
dislikes. The satisfaction criteria are: 1. A person is satisfied if at least one liked item is
in ‘orderable’ list or one disliked item is in ‘not orderable’ list. 2. No item can appear
on both lists. 3. All participants must be satisfied by the combination of the two lists. 4.
Importantly, if no such combination exists that satisfies all, output empty lists for both. Check
carefully before finalizing. You always think step-by-step and show all your work in the
explanation. Output your final solution as a comma-separated list of strings in Python code
⟨orderable = [...], not orderable = [...]⟩.

Input for a new problem
Preferences: Jay: Likes nachos, ratatouille. Dislikes pie. Ada: Likes pie. Dislikes burger,
ravioli. Zoe: Likes ravioli. Dislikes pie, burger. Arun: Likes ratatouille. Dislikes pie, nachos.
Ula: Likes ratatouille. Dislikes ravioli, nachos. Ying: Likes nachos, ratatouille. Dislikes burger.

We consider two 3-SAT variants to evaluate reasoning – Decision problem (NP-complete)
where the model determines satisfiability, answering “yes” or “no”; and the Search problem
(NP-hard), where it should return a satisfying assignment if it exists, else return “no”.

Since we have theoretical bounds that apply specifically to autoregressive LLMs, we restrict
our evaluation to state-of-the-art models that follow this paradigm – namely, GPT-4o (Ope-
nAI, 2024), Gemini 2.0 Flash (Google, 2024), Claude 3.7 Sonnet (Anthropic, 2025), and
DeepSeek V3 (DeepSeek-AI, 2025b). Additionally, we include DeepSeek R1 (DeepSeek-AI,
2025a) in our analysis, as (1) we have access to its chain-of-thought (CoT) “thinking” tokens,
which we can confirm are generated autoregressively3; (2) it is one of the top models4. The
generation configurations are listed in Appendix Table 2. To verify the LLM-generated
solutions, we employed MiniSAT v2.2 (Eén & Sörensson, 2003) solver.

3Although other thinking models exist, they either do not expose their thinking tokens or only
provide them through their respective user interface. As such, we cannot verify whether their
reasoning is produced autoregressively or through search-based methods at test time.

4https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

5

Published as a conference paper at COLM 2025

Figure 3: [Left] 3-SAT performance comparison for the search version of SAT-Menu. [Right]
Accuracy vs. satisfiability ratio on the search version of SAT-Menu. We only include
satisfiable instances and analyze hard (solid line) and easy regions (dashed line) separately.
We use 90% confidence intervals to quantify uncertainty around the estimated accuracy. In
the plots, these intervals help assess the reliability of accuracy estimates – narrow bands
indicate high certainty, while wider bands suggest greater variability.

Notably, techniques such as Tree-of-Thoughts (Yao et al., 2023a), Best-of-N (Wang et al.,
2023) sampling, or other tree-based search frameworks effectively wrap LLMs in an external
symbolic search and are beyond the scope of our analysis. These methods use the LLM to
generate ideas (nodes of the tree) while orchestrating search or backtracking over a tree
data structure. Crucially, the graph algorithm (e.g., tree traversal, backtracking) is not
internally generated or maintained by the LLM. Instead, it is externally imposed. Our goal
is to assess whether LLMs can natively reason – for example, whether they can generate
multiple candidate solutions, maintain them in memory, reason over them, and converge to
a consistent answer entirely in context.

4.2 Dataset Generation

To generate 3-SAT data, we varied α = m/n as a parameter to guide the generation process.
For each n ∈ [1, 10], we selected α ∈ [1, 11] based on feasible values of m. Table 1 in
the Appendix provides the full range of values. MiniSAT v2.2 (Eén & Sörensson, 2003)
labels each instance as satisfiable or unsatisfiable. Additionally, each instance is annotated
with model count (i.e. number of feasible solutions for a formula) using the D4 model
counter (Lagniez & Marquis, 2017).

For SAT-Menu setup, we map each instance (i.e. CNF formula) to a menu selection puzzle.
The goal is to select a combination of orderable and non-orderable food items in a way that
satisfies everyone’s preferences. To this end, a food item is sampled without replacement
corresponding to the list of variables in the formula. Then, every clause in the formula is
treated as the preferences for an individual, leading to the creation of two distinct lists for
each person: “Likes,” for food items linked to positive literals, and “Dislikes,” for those
associated with negated literals, cf. Box 2.

Detailed statistics and data generation processes for 2-SAT and Horn-SAT are provided in
Appendix A. All our experiments use a pool of randomly sampled ≈ 5000 formulas which
include satisfiable and unsatisfiable instances.

5 Results

5.1 Do LLMs Reason?

We evaluate the performance of LLMs by measuring their accuracy in solving SAT Search
across formulas with varying α. As shown in Figure 3 [Left], we find that all LLMs exhibit

6

Published as a conference paper at COLM 2025

Figure 4: Performance across all complexity classes for the search problem. R1 outperforms
all LLMs across all complexity classes. From left to right, 3-SAT (SAT-CNF), 1-3 Horn SAT
(SAT-CNF), and 2-SAT (SAT-Menu). It can be observed that LLM performances are affected
around the critical points for 3-SAT (αc = 4.267) and 2-SAT (αc = 1.0). We use 90%
confidence intervals to quantify uncertainty around the estimated accuracy – narrow bands
indicate high certainty.

inverted phase transitions (Easy-Hard-Easy pattern) in the SAT Search problem. Their
performance is high in the easy regions, while it significantly drops to ≈ 10% in the hard
region. The hard region performance remains unaffected by in-context learning (Appendix
Figure 10). We also observe that R1 significantly outperforms other LLMs where R1’s
accuracy in the hard region surpasses even the easy-region performance of LLMs.

A similar performance trend is observed for SAT-Decision (Appendix Figure 10). From the
confusion matrix (Appendix Figure 12), we observe that R1 accurately detects satisfiable
formulas, demonstrating a higher degree of soundness in its reasoning. However, it often
fails to find the satisfying assignment itself, indicating limited completeness in the hard
region. Other LLMs, by contrast, exhibit lower levels of both soundness and completeness.

In Figure 3 [Right], we plot the performance of LLMs against the satisfiability ratio, defined
as model count

2n , where the model count is the number of satisfying assignments and n is
the number of variables. This denotes the probability that a randomly selected variable
assignment satisfies the given 3-SAT theory5. We can observe a clear dependence between
the accuracy and satisfiability ratio: formulas with more satisfying assignments tend to be
easier for LLMs. This holds across both easy and hard regions. R1, however, maintains
consistent accuracy regardless of satisfiability ratio, much like a classical SAT solver.
Similar plots comparing other LLMs are shown in Appendix Figure 11.

We also test 2-SAT (Figure 4), where we observe a distinct dip in LLM performance around
the known phase transition at αc = 1 (Bollobás et al., 2001), indicating sensitivity to structural
hardness even in problems within NL class. However, LLMs show no clear patterns on 1–3
Horn-SAT. In contrast, R1 achieves near-perfect accuracy on both 2-SAT and Horn-SAT,
showing no degradation near the phase transition. This suggests that R1 handles problems
in the lower complexity classes with ease.

5.2 Has R1 internalized search?

We qualitatively analyzed the search traces generated by R1 and other LLMs on SAT-CNF
(Figure 5) and SAT-Menu tasks (Figure 8). Specifically, we annotated the “thinking” traces
and attempted to map them to known symbolic search algorithms to better understand the
type and depth of search strategies employed, particularly by R1.

In Figure 5, we highlight a failure case where both R1 and GPT-4o incorrectly conclude
that a satisfiable formula is unsatisfiable. Despite such failures, our analysis reveals that R1
consistently exhibits surprisingly coherent and interpretable search behaviors, including:

5Note, this is different from the probability that at least one satisfying assignment exists. Two
formulas can both be satisfiable but have different model counts, hence different satisfiability ratios.

7

Published as a conference paper at COLM 2025

?

?

? ? ?

?

?

?

?

?

?

?

1

2

3

4

5

6
10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

 Let me start by checking for unit clauses, but wait, all clauses here are disjunctions of three literals. So, there
 are no unit clauses. (Heuristic Usage: Unit Clauses)
 Another approach is to look for pure literals. A pure literal appears only in positive or only in negative form
 throughout all clauses. (Heuristic Usage: Pure Literals)
 ...
 Next approach: look for variables that appear frequently. Let's count the occurrences of each variable
 (ignoring sign). (Heuristic Usage: Maximum Occurences in Minimum Size clauses)
 ...
 Now, let's check clause 4: [-4 (False), -8,6]. So need -8 or 6. Let's see if we can set 6 to True. Let's check clauses
 involving 6. So if we set 6=True, then clauses 4,8,16,20,25,26,28 are satisfied. But clauses 21 and 22 would
 require 8 and 1 respectively. (Heuristic Usage: Lookahead in step 6)

 ... Wait, clause 6: [-6, -9,3]. Since 6 is True, -6 is False. -9 is True (since 9=False). So clause 6 requires 3 to be
True. So 3 must be True. (Mistake: Clause 6 is already satisfied in step 7, however, it’s not wrong to set

 ... Clause 10: [-4 (False), -1,2 (False). So need -1=True → 1=False. Wait, but earlier in clause 22, we needed
 1=True. So we have a conflict: 1 must be both True and False. This means our current assignments lead to a
 contradiction. We need to backtrack. (Backtracking: Step 9)

 It seems that every path I try leads to a contradiction. Therefore the original formula may be unsatisfiable.

 Since we have reached a contradiction
and the conflicting variables are
already fixed, there is no satisfying
assignment possible.

7

8

9

 Where did we go wrong? Let's see. The conflict arises from setting 6=True, which leads to clause 22 requiring
 1=True, but clause 10 requiring 1=False. Let's backtrack to where we set 6=True. Maybe instead of setting
 6=True, we should set 6=False and see what happens. Wait, but when we set 4=True, clause 4: [-4, -8,6] → -4
 is False, so need -8 or 6. If we set 6=False, then we need -8 to be True → 8=False. So let's try setting
 6=False. Let's backtrack to where we set 4=True and 5=True, but then instead of setting 6=True, set
 6=False. (Self-Reflection: In step 9, deciding what node to backtrack to)

 ... Clause 27: [-2, -7 (False), -3 (False). So need 2=False. (Mistake: In step 11, is unset due to backtracking.)

 So setting 4=False leads to several clauses being satisfied. Clause 18: [-10,5,4]. 4=False → need
 5=True. (Mistake: Unit propagation mistake in step 14. Clause 18 is already satisfied by =False.)

 10=False,7=True,9=False,5=True,4=True,6=False,8=False,2=False. But 1 must be both True and False. So this
 path is invalid. Hmm. Let's backtrack further. Maybe setting 5=True was the wrong choice. Let's try setting
 5=False instead. Let's backtrack to where we set 10=False,7=True,9=False. (Backtracking: Step 14)

 Alternatively, maybe the formula is unsatisfiable. But I need to check thoroughly. Let me check another path.
 Suppose instead of setting 10=False, what if we set 10=True? (Self Correction: Step 20)

1

2

3

4

5

7

6

?

?

?

?

?

[[-9, 10, -7], [7, 5, 6], [3, -2, -7], [-4, -8, 6], [-10, -7, -4], [-6, -9, 3], [9, -4, 5], [-8, -4, 6], [3, -6, 1], [-4, -1, 2], [-6, -4, -10],
[4, -3, -6], [4, -7, -5], [7, -10, 3], [-9, 5, -1], [-5, 1, 6], [5, -4, -8], [-10, 5, 4], [1, -3, -4], [7, 6, 9], [-6, -4, 8], [-6, 1, -4],
[7, 2, -6], [4, -9, 3], [-7, 6, -10], [6, -5, 4], [-2, -7, -3], [6, -1, 4], [-10, -6, -9], [2, 7, 3]]

 We'll make guesses when necessary,
 but backtrack if a contradiction arises.
We can try a greedy approach — assign
a variable to make the clause True if not
yet assigned. If already assigned, check if
it satisfies the clause.

 Clause 1: Assign: 10: True
 Clause 2: Assign: 7: True
 Clause 3: Assign: 3: True
 Clause 4: Assign: 4: False
 Clauses 5,6,7,8,9,10,11
 Clause 12: Assign 6: False
 Clause 14: Assign 5: False
 Clause 14 is satisfied
 Clause 15: Assign 9: False
 Clauses 16,17 are satisfied
 Clause 18 not satisfied
 This means our current assignment is
 invalid. To satisfy clause 18, at least one
 of:
 x10 = False contradicts earlier
 x5 = True contradicts
 x4 = True contradicts.

 So no way to satisfy clause 18 without
 violating previous assignments.

Figure 5: Failure Cases: SAT-CNF traces for DeepSeek-R1 and GPT-4o. Although the input
formula is satisfiable, both models incorrectly predict it as unsat. Colored boxes indicate
model behaviors: cyan for heuristic variable selection, orange - - - for mistakes, green . . . for
backtracking, yellow for self-reflection, and violet for self-correction. Left branch always
represents a True assignment. ⊥ marks unsatisfiability, and ? indicates an unexplored
subtree. Integers are denoted as variables (10 → X10). Numbers show the order of steps.
The input formula is in CNF, where each list of integers represents a clause (e.g., [-9, 10, -7]
7→ (¬X9 ∨ X10 ∨ ¬X7)), and the full formula is a conjunction (∧) of these clauses.

• Tree search: R1 constructs and logically navigates a search tree. It maintains an awareness
of its current position in the search space and builds upon previous decisions.

• Heuristic usage: R1 actively applies classical SAT-solving heuristics, including: (1) Unit
Clause Elimination: Identifies and assigns values to literals that appear alone in a clause.

8

Published as a conference paper at COLM 2025

(2) Pure Literal Elimination: Searches for literals that appear with only one polarity across
all clauses and assigns them accordingly. (3) MOMS (Maximum Occurrences in Minimum
Size clauses) (Crawford & Auton, 1996; Hooker & Vinay, 1995): Prioritizes variables that
occur most frequently in the smallest clauses. (4) Lookahead (Heule et al., 2012; Heule
& Kullmann, 2017): Anticipates the downstream consequences of assignments before
committing. (5) Unit Propagation: Deduces necessary assignments implied by current
decisions and propagates them through the formula.

• Backtracking: Upon encountering conflicts, R1 identifies the source of the inconsistency
and backtracks. In many cases, it performs backjumping (i.e., jumping to the most recent
conflicting node) to return to the most recent cause of failure (Steps 9, 13).

• Self-reflection: When conflicts arise, R1 engages in reasoning about why the contradiction
occurred, revisits earlier decisions, and identifies the specific variable assignments that
led to inconsistency.

• Self-correction: R1 demonstrates the ability to recognize flawed strategies or inconsistent
outcomes, revise previous decisions, and explore alternative branches in the search space.

Overall, R1 seems to have learned the underlying logic of search and not just the style –
unlike, GPT-4o which performs a greedy search without backtracking. We examined why
R1 occasionally fails despite structured behavior, identifying key failure modes:

• Incomplete. Despite initiating a structured search process, R1 often terminates prema-
turely without fully exploring the search tree. Consequently, it fails to guarantee finding
a satisfying assignment even if one exists. This is depicted by ? in Figure 5.

• Limited soundness. R1 sometimes generates logically inconsistent intermediate states by
overlooking clauses (e.g., considering only 47 out of 48 clauses) or incorrectly handling
variable assignments after backtracking (e.g., treating a previously unset variable as
assigned in Step 11). This results in invalid reasoning states (Steps 3, 14 in Figure 5).

• R1 uses human-like narration in its reasoning trace – expressing internal dialogue, or
narrative-style thinking. While this makes the trace more interpretable for humans, it
introduces redundant and verbose explanations that do not advance the logical search.

We also analyze SAT-Menu traces in Figure 8 (Appendix) and observe that the search
process is noticeably more unstructured compared to SAT-CNF. While R1 still displays
many abovementioned behaviors such as tree search, heuristic application, backtracking,
self-correction, and reflection, it struggles to map SAT-Menu inputs into structured CNF-
like representations, which it could potentially handle more effectively. This limitation
suggests that R1’s reasoning ability is still closely tied to familiar input formats, and its
generalization to more natural or abstract representations remains a challenge.

We find that R1’s output tokens grow polynomially with input tokens (Figure 13, Appendix),
unlike other LLMs whose outputs remain largely constant. This suggests that R1 adapts
its reasoning depth based on input size – aligning with theoretical work showing that
polynomially many CoT steps can boost a LLMs’ reasoning power (Li et al., 2024). We
hypothesize that merely training LLMs to produce longer CoT traces via next-token pre-
diction may still encourage statistical patterns in learning rather than true reasoning as
highlighted in Bachmann & Nagarajan (2024). In contrast, R1’s improved performance
may stem from reinforcement learning, which can guide models to develop coherent and
goal-directed thought processes, rather than just mimicking token sequences (as evidenced
by the performance difference between DeepSeek R1 and its base model V3, cf. Figure 3)

6 Discussion

In this section, we analyze the LLM performance by drawing analogies with SAT solvers
and discuss the implications for the reasoning capabilities of LLMs.

Why are Easy regions easy? The reason why MiniSAT is capable of solving problems in the
easy regions faster than problems around αc is due to the heuristics built into the solver that
guide the search for satisfying solutions (e.g. unit propagation, MOMS). That is, heuristics
work well when they can exploit statistical features in the problem instance to be solved.

9

Published as a conference paper at COLM 2025

LLMs, too, appear to perform well in these easy regions. However, this performance can be
reinterpreted as statistical pattern matching rather than genuine reasoning. For example,
LLMs may associate a high number of input tokens with unsatisfiability – an assumption
that often holds for overconstrained formulas (see Appendix B). In such cases, the model is
not solving the problem logically but reacting to superficial cues in the input.

Why is the Hard region hard? Around the critical phase transition threshold (αc), known
heuristics fail due to the complexity and combinatorial explosion of possible assignments
inherent to NP-hard problems such as 3-SAT. As a result, solvers resort to exhaustive or
extended search procedures. In this hard region, statistical patterns are weak or nonexistent,
making heuristic guidance less effective.

Without statistical patterns, LLMs must rely on multi-step reasoning – a task at which they
typically struggle. This aligns with Bottou’s definition of reasoning. Specifically, these
models struggle to compose known functions (such as variable selection, assignment,
backtracking) into longer, novel reasoning chains that generalize beyond their training
distribution. Similar observations have been made by Dziri et al. (2023) for function
composition and by Zhang et al. (2023) for logical reasoning using BERT (Devlin et al., 2019).

In contrast, R1 shows signs of having learned the underlying reasoning. Its ability to
generalize to longer or harder reasoning problems – potentially outside its training distri-
bution – suggests a shift from pattern matching to structured search. While its reasoning
process remains incomplete, this progress marks a step-change in LLM reasoning abilities –
something that is not immediately apparent in standard reasoning benchmarks, which are
increasingly saturated (cf., Figure 7 in Appendix). It opens up a promising path, encouraging
the community to build on its training recipe.

What if the tested models were trained on SAT data? We suspect that all models have
likely encountered SAT data during pretraining. This is evidenced by their immediate use
of terminology and strategies (e.g., DPLL, tree search, backtracking) when presented with
SAT instances in CNF form. However, the core concern is not whether SAT-related content
exists in the training data (which it likely does), but whether our specific evaluation is
compromised by data leakage. We address this by considering two scenarios:

• Exact data overlap. The strongest form of data leakage occurs when the evaluation set
contains identical instances present in the model’s training data. This scenario is highly
unlikely in our case. We use a custom SAT data generator, and neither the data nor the
generator was open-sourced before publication. This rules out direct memorization.

• In-distribution, but non-identical data. The most plausible scenario is that the evaluation
data shares a distributional similarity with pretraining data. Even in this case, our
evaluation results on the Hard region minimize reliance on shallow statistical patterns.

A third possibility is out-of-distribution generalization, where models must rely on reason-
ing rather than statistical shortcuts. This is consistent with prior work (Zhang et al., 2024;
Dziri et al., 2023), which demonstrates that LLMs trained on reasoning tasks suffer sharp
performance degradation under even modest distribution shifts when fitting on statistical
patterns. We also highlight our SAT-Menu setup, where the problem is reframed as a
menu-based preference selection task. It is extremely unlikely that such a format appears in
pretraining data, yet we still observe a clear performance gap between R1 and other models.

7 Conclusion

While R1 shows promising results in reasoning, it should be noted that our experiments
were conducted on bounded 3-SAT problems with a maximum of 10 variables and 110
clauses. In contrast, classical solvers can solve problems with thousands of variables with
perfect accuracy. Moreover, R1 still struggles in the hard region and its reasoning is neither
perfectly sound (i.e. produces incorrect conclusions), nor complete (i.e. it cannot guarantee
finding a solution). For better reliability and accuracy, it is advisable to use search scaffolds
with LLMs, aligned with neurosymbolic techniques (De Raedt et al., 2020) – recognizing
the ability of LLMs as approximate idea-generators for problems as against directly solving
them (Kambhampati et al., 2024) – while invoking solvers for completeness (cf. Appendix C).

10

Published as a conference paper at COLM 2025

Acknowledgments

This work was supported by the Wallenberg AI Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foundation, by the EU H2020 ICT48
project “TAILOR” under contract #952215, and the KU Leuven Research Fund (C14/18/062).
This research received funding from the Flemish Government (AI Research Program) and
Flanders Research Foundation (G097720N). The resources and services used in this work
were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foun-
dation - Flanders (FWO) and the Flemish Government. We also thank Deepak Nathani,
Holger Hoos, Heikki Mannila, Paolo Frasconi, Pascal Van Hentenryck, Ross King, Giuseppe
Marra, Pieter Delobelle, Hendrik Blockeel, and Raffaele Marino for their valuable feedback.

References
Anthropic. Claude 3.7 sonnet and claude code. 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Konstantine Arkoudas. Gpt-4 can’t reason. arXiv, 2308.03762, 2023. URL https://api.
semanticscholar.org/CorpusID:260704128.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv,
2403.06963, 2024. URL https://api.semanticscholar.org/CorpusID:268364153.

Béla Bollobás, Christian Borgs, Jennifer T Chayes, Jeong Han Kim, and David B Wilson. The
scaling window of the 2-sat transition. Random Structures & Algorithms, 18(3):201–256,
2001.

Léon Bottou. From machine learning to machine reasoning: An essay. Machine learning, 94:
133–149, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020. URL https://proceedings.neurips.cc/paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems
are. In Proceedings of the 12th International Joint Conference on Artificial Intelligence - Volume
1, IJCAI’91, pp. 331–337. Morgan Kaufmann Publishers Inc., 1991.

Cristian Coarfa, Demetrios D Demopoulos, Alfonso San Miguel Aguirre, Devika Subrama-
nian, and Moshe Y Vardi. Random 3-sat: The plot thickens. In International Conference on
Principles and Practice of Constraint Programming, pp. 143–159. Springer, 2000.

James M Crawford and Larry D Auton. Experimental results on the crossover point in
random 3-sat. Artificial intelligence, 81(1-2):31–57, 1996.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

Luc De Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe Marra. From statistical
relational to neuro-symbolic artificial intelligence. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4943–4950. International
Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/
688. URL https://doi.org/10.24963/ijcai.2020/688. Survey track.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025a. URL https://arxiv.org/abs/2501.12948.

11

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://api.semanticscholar.org/CorpusID:260704128
https://api.semanticscholar.org/CorpusID:260704128
https://api.semanticscholar.org/CorpusID:268364153
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.24963/ijcai.2020/688
https://arxiv.org/abs/2501.12948

Published as a conference paper at COLM 2025

DeepSeek-AI. Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.
19437.

Demetrios D Demopoulos and Moshe Y Vardi. The phase transition in the random hornsat
problem. In Computational Complexity and Statistical Physics. Oxford University Press, 2006.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association
for Computational Linguistics, June 2019. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pp. 59–68,
2015.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin,
Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya
Sanyal, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Lim-
its of transformers on compositionality. In Advances in Neural Information Processing Sys-
tems, volume 36, pp. 70293–70332, 2023. URL https://proceedings.neurips.cc/paper
files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf.

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International conference on
theory and applications of satisfiability testing, pp. 502–518. Springer, 2003.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval:
Dynamic benchmark on reasoning ability of large language models via complexity classes,
2024. URL https://arxiv.org/abs/2312.14890.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Michael R. Genesereth and Nils J. Nilsson. Logical foundations of artificial intelligence. Morgan
Kaufmann Publishers Inc., 1987.

Google. Introducing gemini 2.0: Our new ai model for the agentic
era. 2024. URL https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos
Martires. REvolve: Reward Evolution with Large Language Models for Autonomous
Driving, 2024a. URL https://arxiv.org/abs/2406.01309.

Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc De Raedt. SayCanPay: Heuristic Plan-
ning with Large Language Models using Learnable Domain Knowledge. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 20123–20133, 2024b.

Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Commun. ACM, 60(8):
70–79, July 2017. ISSN 0001-0782. doi: 10.1145/3107239. URL https://doi.org/10.1145/
3107239.

Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding cdcl sat solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn Shehory
(eds.), Hardware and Software: Verification and Testing, pp. 50–65. Springer Berlin Heidelberg,
2012.

John N Hooker and V Vinay. Branching rules for satisfiability. Journal of Automated Reasoning,
15(3):359–383, 1995.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In Proceedings
of the 39th International Conference on Machine Learning, volume 162, pp. 9118–9147, 2022.

12

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://arxiv.org/abs/2312.14890
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://arxiv.org/abs/2406.01309
https://doi.org/10.1145/3107239
https://doi.org/10.1145/3107239

Published as a conference paper at COLM 2025

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda
Li, Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding
formal theorem provers with informal proofs. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Subbarao Kambhampati, Karthik Valmeekam, L. Guan, Kaya Stechly, Mudit Verma, Sid-
dhant Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in
llm-modulo frameworks. arXiv, 2402.01817, 2024. URL https://api.semanticscholar.
org/CorpusID:267413178.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. Large language models are zero-shot reasoners. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 22199–22213,
2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 667–
673, 2017. doi: 10.24963/ijcai.2017/93. URL https://doi.org/10.24963/ijcai.2017/93.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers trans-
formers to solve inherently serial problems. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=v8L0pN6EOi.

B. Liu, Yuqian Jiang, Xiaohan Zhang, Qian Liu, Shiqi Zhang, Joydeep Biswas, and Peter
Stone. Llm+p: Empowering large language models with optimal planning proficiency.
arXiv, 2304.11477, 2023. URL https://api.semanticscholar.org/CorpusID:258298051.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank
Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir
Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-
feedback. In Advances in Neural Information Processing Systems, volume 36, pp. 46534–
46594, 2023. URL https://proceedings.neurips.cc/paper files/paper/2023/file/
91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.
doi: 10.1162/tacl a 00562. URL https://aclanthology.org/2023.tacl-1.31.

Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold values of random k-sat
from the cavity method. Random Structures & Algorithms, 28(3):340–373, 2006.

Cristopher Moore, Gabriel Istrate, Demetrios Demopoulos, and Moshe Y Vardi. A
continuous–discontinuous second-order transition in the satisfiability of random horn-sat
formulas. Random Structures & Algorithms, 31(2):173–185, 2007.

OpenAI. Gpt-4o system card. 2024. URL https://cdn.openai.com/gpt-4o-system-card.
pdf.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the trans-
former architecture. arXiv, 2402.08164, 2024. URL https://api.semanticscholar.org/
CorpusID:267636545.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej
Balog, M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg,
Pengming Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathemati-
cal discoveries from program search with large language models. Nature, 625(7995):

13

https://openreview.net/forum?id=SMa9EAovKMC
https://api.semanticscholar.org/CorpusID:267413178
https://api.semanticscholar.org/CorpusID:267413178
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.24963/ijcai.2017/93
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://api.semanticscholar.org/CorpusID:258298051
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://aclanthology.org/2023.tacl-1.31
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://api.semanticscholar.org/CorpusID:267636545
https://api.semanticscholar.org/CorpusID:267636545

Published as a conference paper at COLM 2025

468–475, Jan 2024. ISSN 1476-4687. doi: 10.1038/s41586-023-06924-6. URL https:
//doi.org/10.1038/s41586-023-06924-6.

Olivier Roussel. The SAT Game. https://www.cril.univ-artois.fr/en/software/
satgame/.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3
edition, 2010.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic
formal analysis of chain-of-thought. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=qFVVBzXxR2V.

Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pp. 216–226, New York, NY,
USA, 1978. Association for Computing Machinery. doi: 10.1145/800133.804350. URL
https://doi.org/10.1145/800133.804350.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models
can teach themselves to use tools. In Advances in Neural Information Processing Systems,
volume 36, pp. 68539–68551, 2023. URL https://proceedings.neurips.cc/paper files/
paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf.

Bart Selman, David G Mitchell, and Hector J Levesque. Generating hard satisfiability
problems. Artificial intelligence, 81(1-2):17–29, 1996.

JP Marques Silva and Karem A Sakallah. Grasp-a new search algorithm for satisfiability. In
Proceedings of International Conference on Computer Aided Design, pp. 220–227. IEEE, 1996.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time
compute optimally can be more effective than scaling parameters for reasoning. In
The Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=4FWAwZtd2n.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso,
Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex
Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen
Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane,
Anantharaman S. Iyer, Anders Johan Andreassen, Andrea Madotto, Andrea Santilli, An-
dreas Stuhlmüller, Andrew M. Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela
Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu
Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan,
Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla
Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan
Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk
Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour,
Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf,
Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Chris-
tian Voigt, Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan
Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi,
Daniel Levy, Daniel Moseguı́ González, Danielle Perszyk, Danny Hernandez, Danqi Chen,
Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti
Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam,
Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-
Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor
Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma
Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A Chi, Ethan Dyer, Ethan
Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fate-
meh Siar, Fernando Martı́nez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong,

14

https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-023-06924-6
https://www.cril.univ-artois.fr/en/software/satgame/
https://www.cril.univ-artois.fr/en/software/satgame/
https://openreview.net/forum?id=qFVVBzXxR2V
https://doi.org/10.1145/800133.804350
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n

Published as a conference paper at COLM 2025

Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista
Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez, Gregor
Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Ha-
jishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze,
Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet,
Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac,
James B Simon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson,
Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason
Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim,
Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan
Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant,
Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph
Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu,
Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh
Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Mathewson, Kristen Chiafullo, Kse-
nia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao,
Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency,
Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros-
Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Hoeve,
Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis,
Martin Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna
Baitemirova, Melody Arnaud, Melvin McElrath, Michael Andrew Yee, Michael Cohen,
Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swkedrowski,
Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suz-
gun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh
Gheini, Mukund Varma T, Nanyun Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari
Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita
Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer,
Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi,
Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung,
Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter W
Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil,
Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière,
Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert
Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan
Jacobs, Rui Zhang, Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan
Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam
Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel Stern
Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan
Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepi-
deh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar
Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam
Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon Thormeyer, Simone
Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha
Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana
Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tat-
sunori Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan,
Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias
Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham,
Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Venkatesh Ramasesh,
vinay uday prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saun-
ders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu,
Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri,
Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou,
Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and
Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of

15

Published as a conference paper at COLM 2025

language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. GPT-4 doesn’t know it’s
wrong: An analysis of iterative prompting for reasoning problems. In NeurIPS 2023
Foundation Models for Decision Making Workshop, 2023. URL https://openreview.net/
forum?id=PMtZjDYB68.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large
language models still can’t plan (a benchmark for LLMs on planning and reasoning about
change). In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. URL
https://openreview.net/forum?id=wUU-7XTL5XO.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought
reasoning in language models. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022a. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large
language models. In Advances in Neural Information Processing Systems, volume 35, pp.
24824–24837, 2022b. URL https://proceedings.neurips.cc/paper files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi.
Naturalprover: Grounded mathematical proof generation with language mod-
els. In Advances in Neural Information Processing Systems, volume 35, pp. 4913–
4927, 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
1fc548a8243ad06616eee731e0572927-Paper-Conference.pdf.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden,
Duy Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp
Franken, Nick Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learn-
ing how to think with meta chain-of-thought, 2025. URL https://arxiv.org/abs/2501.
04682.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In Advances in Neural Information Processing Systems, volume 36, pp. 11809–
11822, 2023a. URL https://proceedings.neurips.cc/paper files/paper/2023/file/
271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2023b. URL https://openreview.net/
forum?id=WE vluYUL-X.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SATLM: Satisfiability-aided language
models using declarative prompting. Advances in Neural Information Processing Systems,
36, 2024.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck.
On the paradox of learning to reason from data. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 3365–3373, 8 2023. doi:
10.24963/ijcai.2023/375. URL https://doi.org/10.24963/ijcai.2023/375.

16

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=PMtZjDYB68
https://openreview.net/forum?id=PMtZjDYB68
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=yzkSU5zdwD
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1fc548a8243ad06616eee731e0572927-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1fc548a8243ad06616eee731e0572927-Paper-Conference.pdf
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.04682
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.24963/ijcai.2023/375

Published as a conference paper at COLM 2025

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao,
Pranav Raja, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele, Lunati, and
Summer Yue. A careful examination of large language model performance on grade
school arithmetic. arXiv, 2405.00332, 2024.

17

Published as a conference paper at COLM 2025

Appendix for “Have Large Language Models Learned to
Reason? A Characterization via 3-SAT”

The appendix is organized as follows. Dataset Statistics § A, Output analysis of LLMs § B,
LLM + Solver integration § C, and Full Prompts § D.

Figure 6: 3-SAT Dataset Statistics. Figures depict clauses m (left) and α (right) distribution
across SAT and unSAT instances, highlighting that unSAT problems typically feature more
clauses and higher α values.

A Dataset Statistics

A.1 3-SAT

Table 1 lists all values of the range of α corresponding to each n. For α values within the
(6, 11] interval, we incremented α by 1. For the [1, 6] interval, which contains the most
“interesting problems,” we aimed for finer granularity by choosing the smallest possible
α increment. This increment ensures that, given the number of variables n, we obtain an
integer number of clauses m. For example, with n = 3, the minimum increment is αinc = 1,
and for n = 4, it is αinc = 0.25. For each αinc we generated 300 formulas.

The distribution of formulas according to the number of variables is detailed as follows:
3,000 formulas with 3 variables, 7,500 with 4 variables, 9,000 with 5 variables, 4,500 with 6
variables, 3,000 with 7 variables, 13,500 with 8 variables, 3,000 with 9 variables, and 16,500
with 10 variables.

As shown in Figure 6, the range of clauses (m) varies in [5, 90], and the alpha (α = m/n)
ranges in [1.1, 11.0]. For unSAT instances, the clauses range from 9 to 110, with the alpha
varying in [2.60, 11.0]. Across the entire dataset, the average number of variables (n) is 7.2,
the average number of clauses (m) is 33, and the mean α is 4.7. This diverse dataset provides
a broad spectrum for analyzing the impact of variable and clause distribution on formula
satisfiability.

A.2 2-SAT

For the experiments on 2-SAT, we followed the same formula generation procedure used for
3-SAT. However, the α range was reduced to [1, 10], as the unsatisfiability transition occurs
earlier in 2-SAT problems. This adjustment allowed us to reduce the dataset size while
preserving relevant data for analysis. For each α value, detailed in Table 1, we generated
100 formulas. The resulting dataset comprises a total of 29,600 formulas, of which 4,860 are
satisfiable.

18

Published as a conference paper at COLM 2025

Table 1: Table shows the range of alpha value for each n (i.e. number of variables) in the
generated dataset. We generate 300 formulas per α value.

n Range of α
3 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
4 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0,

5.25, 5.5, 5.75, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
5 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8,

5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
6 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
7 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
8 1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75, 1.875, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625, 2.75,

2.875, 3.0, 3.125, 3.25, 3.375, 3.5, 3.625, 3.75, 3.875, 4.0, 4.125, 4.25, 4.375, 4.5,
4.625, 4.75, 4.875, 5.0, 5.125, 5.25, 5.375, 5.5, 5.625, 5.75, 5.875, 6.0, 7.0, 8.0, 9.0,
10.0, 11.0

9 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
10 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,

3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,
5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0

Table 2: Configuration Parameters for LLMs
Model Temperature Top p Max Tokens
GPT-4o 0.3 1 16000
Claude 3.7 Sonnet 0.3 1 8192
Gemini 2.0 Flash 0.3 1 8192
DeepSeek V3 0.3 1 8000
DeepSeek R1 0.3 1 8000 (up to 32,000 for CoT)

A.3 Horn-SAT

We generate formulas for random 1-3 Horn SAT, following the methodology outlined
by Moore et al. (2007). Intuitively, 1-3-HornSAT formulas contain clauses with only 1 and 3
literals and correspond to 3-SAT in the Horn category, which are P-complete rather than
NP-complete.

Specifically, we sampled formulas from H2
n,d1,d2

and H3
n,d1,0,d3

distributions, where d1 was
fixed to 0.5 to simplify the sampling space, and d2 and d3 (referred to as α) were varied
to analyze formula behavior. For consistency with 2-SAT and 3-SAT analyses, α was
incremented from 0 to 12 in steps of 1, resulting m = αn + 0.5n + 1 clauses for these Horn
formulas. Notice that for α = 0, the formulas still contain 0.5n + 1 clauses due to the fixed
d1 parameter. The choice of d1 = 0.5 ensures we can observe a satisfiability threshold across
different α values and small n. Lower values produced trivially satisfiable formulas at small
n, for all α values, and were therefore avoided. We empirically explored d1 values starting
at 0.2 in increments of 0.1 before selecting 0.5.

We generated 300 formulas for each α value and formula type, with n ranging from 3 to 10.
This range aligns with our other experimental settings, as opposed to the significantly larger
n = 20, 000 used by Moore et al. (2007). Each dataset contains 31,200 formulas. Among
these, 5,036 formulas are satisfiable.

B LLMs as Solvers: Output Analysis

We observed the following behaviors in the generated outputs, including chain-of-thought
(CoT) reasoning:

19

Published as a conference paper at COLM 2025

Figure 7: Performance comparison of DeepSeek R1 with the next best LLM for math and
coding benchmarks. The figure shows the narrow performance margin between models
suggesting that benchmarks are saturated. Sources: (DeepSeek-AI, 2025a; Anthropic, 2025;
Google, 2024; OpenAI, 2024; DeepSeek-AI, 2025b)

Diverse Reasoning Techniques: LLMs employ varying reasoning techniques depending on
the prompt type (SAT-CNF vs. SAT-Menu) and even adapt their approach across individual
problems within the same prompt type.

SAT-CNF Reasoning: The dominant strategy involves backtracking, as illustrated in Box
5. Occasionally, LLMs employ local search, where it assigns items to “orderable” and
“not-orderable” lists and iteratively modifies these based on detected conflicts (e.g., We can
create two sets for liked and disliked items and then compare them to find any conflicts. Let’s begin
by creating a list of all the likes and dislikes to identify conflicts.).

SAT-Menu Reasoning: The primary strategy here is trial-and-error. Occasionally, LLMs
apply heuristics such as the Maximum Occurrence in Minimum-sized clauses (MOMS)
heuristic to prioritize variables appearing most frequently in the smallest clauses (e.g., We
start by making a tally of how many people like or dislike each food item... If we put ’macaron’ on the
’orderable’ list, we will satisfy many people who like it.”).

“Lazy” Solutions: As noted in subsequent text, LLMs often produce “lazy” solutions in many
cases, either providing an outline of how to solve the problem or asking to be delegated to a
solver.

We also discuss some interesting failure cases we observed during our experiments. In
the SAT-CNF context, it was observed that LLMs, often opt to pass the task to an external
SAT solver rather than solving it themselves. Additionally, when attempting to find a
solution, these models tend to provide only a conceptual outline of the solution instead of a
concrete answer, a tendency that becomes more pronounced with larger formulas. When
prompted explicitly for a solution, LLMs might simplistically conclude that the problem
is unsatisfiable due to its complexity, as shown in Box 4. Although this reasoning is not
entirely sound – as over-constrained formulas can still potentially be solvable – it appears
that LLMs might be leveraging this as a statistical feature.

In contrast, R1 always attempts to solve all problems. We discuss a failure case of R1 for
SAT-Menu input where R1 finds a satisfying assignment even though none exists. We note
interesting search-based behaviors as shown in Figure 8.

20

Published as a conference paper at COLM 2025

Let me start by considering which items can be placed in orderable
or not_orderable to satisfy the maximum number of people ...
(Heuristic Usage: MOMs heuristic)

Disliked by Ying, Mel, Mei, Tao, Taj (wait, Taj likes caramel,
right?), no: Taj likes caramel and custard, dislikes bread

Wait, let's recheck all: (Self-correction)

Assume naan is in not_orderable. Then: - Satisfied people due to
naan being not_orderable: Naina, Lin, Chao, Gia, Lan, Ty, Riya, Eli,
Arun, Jay, Vic, etc. Now, the people who liked naan (Ying, Nita, Du,
Tara, Kavi, Sky, Nic) need to be satisfied via other items. Ying:
Likes gelato. If gelato is in orderable, she's satisfied.

Alternatively, if naan is in orderable, Nic is satisfied because he
likes naan. Let's see other people who have dependencies on naan.
Du: Likes naan. Dislikes custard, burger. So if naan is in
orderable, Du is satisfied. (Heuristic Usage: Lookahead)

Gia: Likes caramel. Else, dislikes naan (not_orderable) and burger (burger
is in orderable). But burger is in orderable, so Gia needs caramel in
orderable. If caramel is not in orderable, then Gia is not
satisfied. (Mistake: In step 5, Gia is already satisfied since naan
is in non_orderable) naan

gelato

burger

bread

caramel

custard

Mel: Likes custard. If custard is in orderable → satisfied. Else, he
dislikes bread (not_orderable) and caramel (caramel is in orderable, so that
doesn't help). So Mel needs custard in orderable. (Mistake: In step 6, Mel
is already satisfied since bread is in non_orderable)

Du's preferences: Likes naan (not_orderable), dislikes custard (orderable)
and burger (orderable). So he needs either custard or burger in
not_orderable. But both are in orderable. So Du is not satisfied. Therefore,
this approach fails. So, adding custard to orderable causes Du to be
unsatisfied. So we need another way to satisfy Mel
(Self Reflection: Step 7)

Ah, right! So Mel dislikes bread and caramel. If bread is in not_orderable,
then Mel is satisfied. So we don't need to put custard in orderable. That
resolves the issue with Du. (Self-correction)

So let's remove custard from orderable. Now, orderable is [gelato, burger,
caramel], not_orderable is [naan, bread]. (Backtracking: Step 7)

bread

caramel

custard

guacamole guacamole

1

2

3

4

5

6

7

8

9

12

14
13

14

14

14

1410

11

Alternative plan: Put burger in not_orderable. (Local Search: Variable flip
in step 13 while other variable assignments remain fixed.)

This seems to cover everyone. Let's double-check each person: Tara:
naan in not_orderable → OK. Kavi: naan in not_orderable → OK. Looks
like everyone is satisfied. (Mistake: In step 14, Tara and Kavi like
naan, but naan is in non_orderable)

Ying: Likes gelato, naan. Dislikes caramel. Nita: Likes naan,
burger. Dislikes custard. Naina: Likes caramel, guacamole.
Dislikes naan. Mia: Dislikes guacamole, bread, gelato.
Mel: Likes custard. Dislikes bread, caramel. Lou: Likes guacamole,
burger. Dislikes bread. Lin: Dislikes naan, gelato, guacamole.
Chao: Likes burger, gelato. Dislikes naan. Tao: Dislikes bread,
caramel, gelato. Mei: Likes gelato, burger. Dislikes caramel.
Taj: Likes caramel, custard. Dislikes bread. Val: Likes gelato,
custard. Dislikes bread. Gia: Likes caramel. Dislikes naan,
burger. Pia: Likes burger. Dislikes caramel, custard.
Sal: Likes caramel, gelato. Dislikes custard. Ansh: Likes caramel.
Dislikes guacamole, custard. Du: Likes naan. Dislikes custard,
burger. Lan: Likes guacamole. Dislikes custard, naan. Tara: Likes
naan, burger. Dislikes caramel. Ian: Likes gelato. Dislikes bread,
caramel. Eva: Likes caramel. Dislikes bread, burger. Ru: Likes
gelato. Dislikes bread, caramel. Li: Likes burger. Dislikes
gelato, bread. Ty: Likes bread. Dislikes naan, caramel.
Riya: Dislikes naan, bread, burger. Qi: Likes bread. Dislikes
burger, caramel. Eli: Likes custard. Dislikes naan, caramel.
Jay: Likes guacamole. Dislikes burger, caramel. Arun: Dislikes
custard, burger, naan. Meg: Likes bread, custard, gelato. Raj:
Dislikes custard, burger, caramel. Kavi: Likes burger, naan.
Dislikes gelato. Vic: Dislikes bread, gelato, guacamole. Sky:
Likes naan. Dislikes burger, guacamole. Nic: Likes naan, caramel.
Dislikes burger.

Figure 8: Failure Cases: SAT-Menu traces for DeepSeek-R1. Although the input formula
is unsatisfiable, R1 incorrectly predicts it as satisfiable. Colored boxes indicate model
behaviors: cyan for heuristic variable selection, orange - - - for mistakes, green . . . for
backtracking, yellow for self-reflection, violet for self-correction, and magenta for local
search. Left branch always represents an assignment to the orderable list and vice versa. ⊥
marks unsatisfiability. Numbers show the order of steps.

C Can an LLM + Solver boost performance?

To aid LLMs in reasoning tasks, recent studies have explored pipelined approaches using
LLMs to parse inputs into solver-compliant outputs, leveraging off-the-shelf solvers to
derive the final answer (Ye et al., 2024; Liu et al., 2023). This approach is aligned with
neurosymbolic techniques (De Raedt et al., 2020), which combine the universal function
approximation capabilities of neural networks with the precision of symbolic systems.

To explore a similar setting in the context of 3-SAT, we ask whether we can augment LLMs
with an external solver wherein the LLM translates (pseudo)-natural language into a format
that a symbolic SAT solver, such as MiniSAT, can process. To this end, we prompt the LLM
to translate 3-SAT formulas, which we provide in the SAT-Menu input format, into solver-
compliant 3-SAT formulas. We then use a 3-SAT solver to solve the translated instance
(see Box 5 in Appendix). We dub this approach SAT-Translate and plot GPT-4 Turbo’s
performance in Figure 9.

We observe that when LLMs have access to an external solver, there is a significant increase
in their accuracy, reaching at best, in GPT-4’s case, ≈ 100% across the entire range of α.
We attribute this to the relatively lower computational complexity of translating 3-SAT
formulas compared to solving them (i.e. finding satisfying assignments). Interestingly, we

21

Published as a conference paper at COLM 2025

Figure 9: The figure compares LLM-Modulo frameworks (denoted as SAT-Translate) –
here, GPT-4 Turbo equipped with a solver – with standalone GPT-4 using SAT-Menu and
SAT-CNF inputs. SAT-Translate approach (in green) outperforms the rest, showing the
significance of augmenting LLMs with symbolic solvers.

find that varying the input format between SAT-CNF and SAT-Menu does not significantly
enhance LLMs inherent reasoning capabilities. The marked improvement in performance
is primarily observed when they are equipped with an external solver. While ours is a
straightforward approach, one could also explore tighter integrations as proposed in LLM-
Modulo frameworks (Kambhampati et al., 2024) which augments LLMs with critics and
verifiers (Hazra et al., 2024b), recognizing the ability of LLMs as approximate idea-generators
for problems as against directly solving them.

It should be noted that the input to the LLM is based on fixed templates, the rules of which
can be captured using regular grammar. Thus, one could write a simple parser to map the
menu input to a CNF formula. However, mapping from ambiguous natural language to
solver-compliant input may be non-trivial for the LLMs. Generally, outputs from LLMs
often require additional post-processing to meet specific guidelines.

22

Published as a conference paper at COLM 2025

D Full Prompts

Here, we provide full prompts used in our experiments for SAT-Menu (Box 2) and SAT-CNF
(Box 3).

Box 2: SAT-Menu Prompt

System Message
Your task is to output two distinct lists of food items, one denoting what can be ordered
(‘orderable’) and the other what cannot (‘not orderable’), to meet the preferences of a group
of individuals. Each person must find the selection satisfactory based on their likes and
dislikes. SATISFACTION CRITERIA: : 1. A person is satisfied if at least one liked item
is in ‘orderable’ list or one disliked item is in ‘not orderable’ list. 2. No item can appear
on both lists. 3. All participants must be satisfied by the combination of the two lists. 4.
Importantly, if NO such combination exists that satisfies all, output empty lists for both.
Check carefully before finalizing. You always think step-by-step and show all your work in
the explanation. Output your final solution as a comma-separated list of strings in Python
code ⟨orderable = [...], not orderable = [...]⟩.

Pairs of Preferences and Solutions for in-context learning
Few-shot Examples . . .

Input for a new problem
Preferences: Jay: Likes nachos, ratatouille. Dislikes pie. Ada: Likes pie. Dislikes burger,
ravioli. Zoe: Likes ravioli. Dislikes pie, burger. Arun: Likes ratatouille. Dislikes pie, nachos.
Ula: Likes ratatouille. Dislikes ravioli, nachos. Ying: Likes nachos, ratatouille. Dislikes burger.

Generated Solution for the given problem
Solution: First, let’s list out the likes and dislikes of each person and then categorize the food
items based on their preferences.

Jay: Likes nachos, ratatouille. Dislikes pie.
Ada: Likes pie. Dislikes burger, ravioli.
Zoe: Likes ravioli. Dislikes pie, burger.
Arun: Likes ratatouille. Dislikes pie, nachos.
Ula: Likes ratatouille. Dislikes ravioli, nachos.
Ying: Likes nachos, ratatouille. Dislikes burger.

Now, let’s categorize the items as ‘orderable’ and ‘not orderable’ based on the given
preferences.

From the above preferences, we can create the following lists:

Orderable: pie, ratatouille, nachos
Not orderable: burger, ravioli

Let’s examine if this combination satisfies all the participants’ preferences.

1. Jay: Satisfied by ratatouille in orderable list.
2. Ada: Satisfied by pie in orderable list.
3. Zoe: Satisfied by burger in not orderable list.
4. Arun: Satisfied by ratatouille in orderable list.
5. Ula: Satisfied by ratatouille in orderable list.
6. Ying: Satisfied by nachos in orderable list.

All participants are satisfied with this combination, and no item appears in both lists.
So the final lists are:

```python
orderable=[pie, ratatouille, nachos]
not orderable=[burger, ravioli]
```

23

Published as a conference paper at COLM 2025

Box 3: SAT-CNF Prompt

System Message
Let’s play the SAT (satisfiability) game. The input is a list of clauses, where each clause
is represented as a disjunction of literals (variables or their negation connected by logical
OR). Your task is to find valuation of Boolean variables such that a Boolean CNF formula
evaluates to True. The solution should be in form of a dictionary where keys are variables and
values are Boolean (True or False). SATISFACTION CRITERIA: 1. At least one literal in each
clause should be True. 2. A variable can’t be both True and False in the dictionary. 3. MOST
IMPORTANTLY, if NO satisfying assignment exists, you MUST output an EMPTY dictionary.
Check carefully before finalizing. You always think step-by-step and show all your work in
the explanation. Output the solution in Python code dictionary, enclosed within ⟨output : ...⟩.

Input for a new problem
Formula:

[[−3, 1,−4], [−4,−2, 1], [−1,−4, 5], [5, 1, 2], [−5, 4, 2], [−4, 3, 1],

[1, 5,−3], [−2, 1, 3], [1,−5,−4], [4,−3,−1], [−2, 5,−3]]

Generated Solution for the given problem
Solution: To find a satisfying assignment for this CNF (Conjunctive Normal Form) formula,
we will use a simple approach and try to construct a solution iteratively while checking at
each step if the clauses are satisfied or not. We will go through the clauses one by one and
make arbitrary decisions on the truth values of the literals. We have to ensure that no variable
is assigned both True and False, and each clause must have at least one True literal.

We start with the first clause [-3, 1, -4]. Let’s arbitrarily decide:
3 is False (so -3 is True),
1 is True (so we satisfy the clause [-3, 1, -4] because 1 is True or -3 is True),
4 is True (since we haven’t made any decision on 4, we do not yet satisfy the clause with -4,
but that won’t be an immediate issue).

Our current assignments are now: 1: True, 3: False, 4: True.

Next, we consider the second clause [-4, -2, 1]. Since 1 is True, this clause is already satisfied.

Next is [-1, -4, 5]. We need to satisfy this clause without changing the truth value of 1 or 4, so
we choose to make 5 True.

Our assignments are now: 1: True, 3: False, 4: True, 5: True.

Next, we look at [5, 1, 2]. Since 5 is True, this clause is already satisfied.

Next is [-5, 4, 2]. We need to satisfy this without changing 5 or 4, so we set 2 to True.

Our current assignments are: 1: True, 2: True, 3: False, 4: True, 5: True.

Now the next clause is [-4, 3, 1]. Since 4 is True, -4 is False, but 1 is True, so the clause is satisfied.

For the clause [1, 5, -3]. This clause is already satisfied by 1 being True.

For [-2, 1, 3]. This clause is also satisfied because 1 is True.

For [1, -5, -4]. This is again satisfied because 1 is True.

Next clause is [4, -3, -1]. This clause is satisfied with 4 being True.

The last clause is [-2, 5, -3]. This is satisfied because 5 is True.

All clauses are satisfied with our current assignments, so we return:

```python
output: {1: True, 2: True, 3: False, 4: True, 5: True}
```

24

Published as a conference paper at COLM 2025

Box 4: SAT-CNF (Lazy Solution)

System Message
Let’s play the SAT (satisfiability) game. The input is a list of clauses, where each clause is
represented as a disjunction of literals (variables or their negation connected by logical OR).
Your task is to find valuation of Boolean variables such that a Boolean CNF formula evaluates
to True. The solution should be in form of a dictionary where keys are variables and values
are Boolean (True or False). The satisfaction criteria are: 1. At least one literal in each clause
should be True. 2. A variable can’t be both True and False in the dictionary. 3. If no satisfying
assignment exists, you should output an empty dictionary. You always think step-by-step
and show all your work in the explanation. Output the solution in Python code dictionary,
enclosed within ⟨output : ...⟩.

Input for a new problem
Formula:

[[7, 9,−4], [1,−8,−4], [−1, 3,−8], [10, 3,−8], [9,−1,−8], [−4, 10, 6], [−7, 1,−8], [−3, 5,−6],

[−5, 8, 6], [8,−9, 5], [8,−5,−9], [5,−8,−9], [−2, 4, 9], [8,−2, 6], [9,−5, 6], [−10,−4,−2], [−1, 2,−8]

[−3,−5,−4], [−8,−2,−3], [1, 3, 9], [8,−10,−1], [−8,−2,−10], [4,−10, 3], [−9, 4,−8], [7, 8,−10],

[−4, 5,−3], [7, 6, 2], [−5,−7,−4], [−4, 7,−9], [−10, 2, 5], [3,−1, 10], [−5,−4,−7], [−3, 8, 4],

[−10,−3,−4], [6, 4,−1], [8, 7, 9], [1, 3, 10], [10, 8, 9], [−3, 9, 4], [−5, 9,−1], [−4, 8, 9], [2,−4,−1],

[−4, 10,−7], [5,−7,−10], [2, 8, 7], [9,−2, 10], [−7, 2,−4], [5,−3, 4], [1,−5, 4]]

Generated Solution for the given problem
Solution: To solve this satisfiability problem, we need to determine an assignment of
truth values to the variables such that all clauses are satisfied. With such a large and
complex problem, an efficient systematic approach or use of an algorithm like the DPLL
(Davis–Putnam–Logemann–Loveland) algorithm would be ideal. However, since we’re
expected to think step-by-step, let’s attempt a simplified analysis.

We start by looking for unit clauses, which contain only one literal, or pure literals, which
appear in one polarity only throughout the formula. Observing the clauses, we can’t
immediately spot such helpful shortcuts due to the complexity. Instead, we can iterate
through the clauses, and try to assign truth values to the variables in a way that satisfies as
many clauses as possible. We might need to backtrack if we reach a contradiction.

We must make some initial choices and see if those choices can lead to a consistent solution.
Let’s start with the first clause ‘[7, 9, -4]’. We can begin by setting 7 to True, 9 to True, or
the negation of 4 (-4) to True. Let’s decide to set 7 to True. This is an arbitrary choice at the
beginning, and we may need to backtrack if this leads to a contradiction later.

Now, we need to check other clauses and see if this choice is consistent with them and try to
fill in further values. We will need to iterate through each clause and see if it’s possible to
satisfy it given our previous choices.

Given the complexity of the problem and the large number of variables and clauses involved,
solving it by hand or by a step-by-step explanation is impractical. In practice, we would use a
SAT solver software to find the satisfying assignment, if one exists. A SAT solver automatically
handles the process of proposing variable assignments, backtracking, and deducing necessary
assignments based on the structure of the formula.

For the purposes of this answer, since I cannot run a SAT solver in real-time, I will have to
state that solving this problem by hand is unfeasible within this format. The output, given the
complexity, cannot be determined without the use of algorithmic assistance. If no satisfying
assignment exists (meaning the formula is unsatisfiable), or we cannot solve it by a simple
theoretical process within this framework, the output would be an empty dictionary.

```python
output: {}
```

25

Published as a conference paper at COLM 2025

 (0-shot) (0-shot) (0-shot)

 (3-shot) (3-shot) (3-shot)

Figure 10: 0-shot vs. 3-shot accuracy. The figure compares 0-shot and 3-shot performance
comparing all LLMs. It can be observed that in-context learning does not enhance perfor-
mance in the hard region. The setup SAT-Menu. The plot was generated using a size 4
moving window on α values.

Box 5: SAT-Translate Prompt

System Message
You are provided with a list of preferences from different individuals, each specifying items
they like and dislike. Create a logical expression in Conjunctive Normal Form (CNF) that
satisfies a set of individual preferences regarding likes and dislikes of certain items. The
condition for an individual’s satisfaction is that either at least one item they like is included, or
at least one item they dislike is excluded in your selection. Format the final CNF expression in
LaTeX. Ensure all item names are retained in the final output. Do not include any explanation.

Input for a new problem
Preferences: Om: Likes naan, curry. Dislikes tandoori. Bao: Likes curry. Dislikes naan,
tandoori. Nic: Likes naan. Dislikes curry, tandoori. Pat: Likes curry. Dislikes naan, tandoori.
Du: Likes tandoori, naan, curry. Kim: Likes curry. Dislikes tandoori, naan.

Generated Solution for the given problem
Solution:

(naan ∨ curry ∨ ¬tandoori) ∧ (curry ∨ ¬naan ∨ ¬tandoori) ∧ (naan ∨ ¬curry ∨ ¬tandoori)∧
(curry ∨ ¬naan ∨ ¬tandoori) ∧ (tandoori ∨ naan ∨ curry) ∧ (curry ∨ ¬tandoori ∨ ¬naan)

26

Published as a conference paper at COLM 2025

Figure 11: Accuracy vs. satisfiability ratio. R1 maintains consistent accuracy regardless of
satisfiability ratio. In contrast, the performance of other LLMs is impacted by the number
of satisfying assignments – more the satisfying assignments, higher the performance. The
first row is for SAT-Menu and the second row is for SAT-CNF. We only include satisfiable
instances and analyze easy (dashed line) and hard regions (solid line) separately.

27

Published as a conference paper at COLM 2025

Figure 12: Confusion matrices for the decision version of 3-SAT. It can be observed that,
except R1, all other LLMs struggle to correctly classify unsatisfiable instances. This suggests
that R1 is more sound (detects sat/unsat correctly) than complete (cannot guarantee to find
a solution). The cell annotations reflect classification accuracy, normalized over the true
counts (column) to account for the imbalance between SAT and unSAT instances. The setup
is SAT-Menu with 0-shot prompting.

28

Published as a conference paper at COLM 2025

Figure 13: Correlation between output (generated) and input tokens. R1 output tokens
grows polynomially with the input tokens. In contrast, the generated tokens of other LLMs
remain largely unchanged.

29

	Introduction
	Preliminaries
	Phase Transitions in Random 3-SAT
	SAT Solvers

	Related Work
	Methodology
	Using LLMs as 3-SAT Solvers
	Dataset Generation

	Results
	Do LLMs Reason?
	Has R1 internalized search?

	Discussion
	Conclusion
	Dataset Statistics
	3-SAT
	2-SAT
	Horn-SAT

	LLMs as Solvers: Output Analysis
	Can an LLM + Solver boost performance?
	Full Prompts

