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Defining Neurosymbolic Al

Abstract

Neurosymbolic Al focuses on integrating learning and reasoning, in particular,
on unifying logical and neural representations. Despite the existence of an
alphabet soup of neurosymbolic Al systems, the field is lacking a generally
accepted definition of what neurosymbolic models and inference really are. We
introduce a formal definition for neurosymbolic Al that makes abstraction of
its key ingredients. More specifically, we define neurosymbolic inference as the
computation of an integral over a product of a logical and a belief function. We
show that our neurosymbolic Al definition makes abstraction of key representative
neurosymbolic Al systems.

Keywords: Neurosymbolic Al

1. Introduction

Neurosymbolic AT (NeSy) is a term for AT models that combine more tra-
ditional symbolic Al techniques with the latest advances in deep learning. It
integrates raw neural and numerical data processing with symbolic reasoning and
background knowledge. The advantages of this combination have already been
demonstrated in applications such as providing safety guarantees [35], learning
from distant signals and supervision by deduction [2], and more [12, 19, 29].
Neurosymbolic Al is attracting a lot of attention [18, 6, 13, 11, 32, 9, 3, 30, 8] and
has been termed “the most promising approach to a broad AI” by Hochreiter [18]
and the “3rd wave in AI” by Garcez and Lamb [13]. It is mentioned as an innov-
ation trigger on Gartner’s hype cycle! and there are now dedicated journals?,
conferences?, and summer schools* devoted to neurosymbolic Al.

Despite the wide interest, the term neurosymbolic Al is used for describing
many different types of integrations of neural and symbolic Al systems. For
instance, Henry Kautz describes six different types of such integrations [20], some
requiring tighter interfaces between the neural and the symbolic component,
others looser ones. As Garcez and Lamb [13], we will focus on the original and
stricter interpretation of the term neurosymbolic AIl, which Garcez and Lamb
describe as “research that integrates in a principled way neural network-based
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learning with symbolic knowledge representation and logical reasoning”. This is
also the dominant view in the Neurosymbolic Al Journal and Conference. Within
this view there exist numerous models, systems and techniques that integrate
logic with neural network-based approaches, see for instance [24, 14, 6, 17| for
overviews. However, the focus in the field is very much on designing bespoke
systems that score best on the latest benchmarks, which results in an alphabet-
soup of systems. This comes at the expense of understanding the underlying
principles and commonalities that these systems share, which is significantly
hindering progress in the field. What is lacking is a commonly agreed formal
definition and framework for specifying, comparing and developing neurosymbolic
AT models and problems. It is precisely this gap that this paper wants to bridge.

More specifically, we contribute formal definitions of a neurosymbolic model
and neurosymbolic inference. These definitions are based on the observation
that the vast majority of neurosymbolic Al models combine logic with beliefs.
The term logic refers to the wide variety of logics that are used in neurosymbolic
AT ranging from Boolean logic to first-order and fuzzy logic, as well as their
combinations. The term belief refers to a weighting component that many
neurosymbolic AT models [22, 34, 26, 36] derived from statistical relational AT
models [10] use. Within our framework, neurosymbolic inference can be cast as
aggregation (or marginalisation) of a product of a logic and a belief function.
Our definitions provide a semantic framework for NeSy models that clarifies their
components and the way they interact. We will show that many representative
classes of NeSy models and tasks, including those based on probabilistic logic
[22, 36], fuzzy logic [4], or soft logic [26], can be cast within our definitions by
instantiating the logic, the belief function and the neural networks appropriately.
As a consequence, our definitions can be used to relate, compare and develop
different NeSy models in a principled manner, as well as to study fundamental
properties of NeSy.

2. Logic as the symbol level

In Garcez and Lamb’s perspective on neurosymbolic Al, the symbol level
is viewed as symbolic knowledge representation and logical reasoning. We will
therefore focus on using logical languages, although the proposed definitions in
principle apply to other formal languages and automata. We will also allow for a
wide range of semantics for these languages, in order to support Boolean, fuzzy
and other logics.

More formally, a language is a set of sentences over a set V = {V;},.; of
variables with domains D; that can be embedded in R and interact with operators
0.5 An interpretation w : V — R is an assignment of values to the variables
and we use 2 = RY tot denote the set of all possible interpretations over the
variables V. Given an interpretation w € ) and a sentence ¢ € L, the semantics

5The assumption of having R as a shared domain is made to simplify notation and can
easily be enforced, e.g. the domain of a discrete variable is often represented as integers.



w: L xQ — S of the language L maps ¢ to a semantic value u(p,w) in the
interpretation w, which we will often denote as ¢(w) for brevity. The set S of
semantic values is also assumed to be embeddable in R+.6

Note that variables can be separated into two distinct classes based on their
domain D;. If D; is equal to the set of semantic values S, then the variable V;
can be semantically interpreted and we will call it an atom variable. If it is not,
then V; does not have a direct semantic interpretation and it will instead be used
as an argument to an operator. Hence, we will call the latter argument variables.

We illustrate the different choices of language and semantics using both
fuzzy [37, 27] and Boolean semantics for propositional logic sentences.

Example 2.1 (Boolean propositional logic). Propositional logic is the language
that consists of sentences over a set V of only atom variables called propositions
that can be connected with logical connectives such as = and V. For example,
the sentence ¢

happy = (coffeeV publication), (2.1)

states that happiness h is only possible when having either a coffee ¢ or a
publication p. Propositional logic can be equipped with a Boolean semantics
by using S = {0,1} as domain for all propositions denoting false and true
and considering the interpretations w as mappings from V to S. The Boolean
semantics pp of propositional logic formulae then follow inductively. For instance,
the above formula ¢ evaluates to pp(w) =1 for the interpretation

wB(a):{l if a € {h,c}, 22)

0 otherwise.

Example 2.2 (Fuzzy propositional logic). Propositional logic can also be
equipped with a fuzzy semantics by setting the set S of semantic values to
the real unit interval [0,1] and using fuzzy operators such as the continuous
T-norms [16] to inductively define its semantics fip.

For instance, if one uses the Lukasiewicz T-norm max(0,z + y — 1) for the
conjunction and its corresponding T-conorm min(1,xz + y) for the disjunction,
the formula ¢ evaluates to pp(w) = min(1, 1 — w(h) + min(1,w(c) + w(p))) =1
for the interpretation

0.5 if a € {c,p},
wr(a) = 2.3

r(a) {1 otherwise. (2:3)
Example 2.3 (Linear SMT logic). The language of linear SMT logic is comprised
of sentences over a set of only argument variables that use linear arithmetic
operators to form linear arithmetic comparisons that can be connected with

6This assumption also simplifies notation and is not a hard one, e.g. it is common to
represent Boolean truth values T and falsehood L as 1 and 0.



any logical operator. For example, one can rewrite the propositional sentence of
Equation 2.1 as the linear SMT formula

h=1= (c+p>0), (2.4)

where h, ¢ and p are argument variable with domain {0,1}. SMT logic can
also be given a Boolean semantics by mapping arithmetic comparisons to the
set S = {0,1} by choosing 1 for interpretations, i.e. assignments of argument
variables, that satisfy the comparison according to arithmetic and 0 otherwise.

Numerous other logics exist, such as first-order and temporal logics, and their
semantics are also defined in terms of assigning values to variables or sequences
of variables (for temporal logics). Similar analyses can be made for automata
and other formal languages.

Logical inference can be viewed as inferring whether there are interpretations
that satisfy certain constraints w.r.t. their semantic values. For instance, SAT-
solvers address the question whether there exists an interpretation w that satisfies
a formula ¢, i.e. that satisfies ¢ p(w) = 1. In fuzzy logic, one might be interested
in considering only those interpretations w that satisfy ¢r(w) > 7. For these
reasons, it will be convenient to introduce logic functions.

Definition 2.4. (Logic function) A logic function [ is a function that takes a
formula ¢ and interpretation w and returns a non-zero semantic value only when
the value of ¢(w) is contained in a desired subset S; of the semantic values S.
That is, it is any function [ : L x Q — S with I(p,w) = 0 if p(w) ¢ S;. We call
the set S; the selection values of the logic function.

The intuition behind a logic function is that it outputs desired semantic
values for selected interpretations of interest based on a logical formula. For
most NeSy Al systems, especially those based on Boolean logic, {(p,w) = ¢(w).
It is only when working with both thresholds and fuzzy logic that more complex
logic functions might be necessary, such as l(¢p,w) = [pr(w) > 7], where []
denotes the Iverson brackets that evaluate to 1 if its argument evaluates to true,
and yields the value 0 otherwise.

3. Towards Neurosymbolic Models and Inference

Neurosymbolic AI models extend logic with neural networks and are, as we
will show, typically based on two components: a (possibly fuzzy) logic and a
(possibly probabilistic) neural belief [24]. While the semantic value p(w) of a
logical formula in an interpretation is captured by the semantic function u(p,w),
the belief component can be captured by the belief function bg(p,w). The
belief by (¢, w) can be interpreted as the weight indicating the degree of belief
that the interpretation w satisfies the formula ¢. It generally takes the form
of a parametrised function bg : L x 2 — R with parameters @ that takes an
assignment of variables and a sentence and outputs the belief. Luc: insert
statement as to how this fits with propositional variables



Example 3.1 (Parametrising a Boolean propositional sentence). Consider again
the sentence h =— (c V p) from Example 2.1. Now assume there is a
neural network that takes as input an image taken from a camera in your local
mathematics department. As output, the network returns three probabilities,
one probability pg ; for each variable i € {h, c,p}. Together, assuming h, ¢ and
p are independent, these probabilities can be combined into a simple probabilistic
belief function bg(p,w) by taking the product of the probabilities, i.e.

bo(p,w) = ] pZ,(f) (1 —pg )t (3.1)
ie{h,c,p}

Definition 3.2 (Neurosymbolic model). A neurosymbolic AT model (L, u, 2, bg)
consists of a logical language L with a semantics p over interpretations 2 and a
belief function bg with parameters 6.

Neurosymbolic AT models are used to perform inference. We view inference
in a neurosymbolic model (L, p1,Q,bg) as computing the integral graphically
illustrated in Figure 1. Neurosymbolic inference can be formally defined through
neurosymbolic functionals.

Definition 3.3 (Neurosymbolic Inference). Given a neurosymbolic model
(L, 1, 2, bp) and a logic function !, neurosymbolic inference is defined as comput-
ing the result of the following neurosymbolic functional

Folp) = /Q . w) bo(p, ) dw. (3.2)

Importantly, this definition leads to precise conditions under which neurosym-
bolic inference is well-defined. The conditions trivially follow from the definition
of the Lebesgue integral (Appendix A).

Proposition 3.4 (Well-defined neurosymbolic inference). Let (L, u, 2, bg) be
a neurosymbolic AT model and [ a logic function. If (2, 3, dw) is a measure
space for which the logic function [ and belief function bg are measurable, then
neurosymbolic inference is well-defined.

The choice of how to parametrise the belief bg is completely free and does
not necessarily have to involve neural networks. In fact, if one foregoes the use
of neural networks and considers probabilistic beliefs, then our definition of a
neurosymbolic model reduces to a definition for statistical relational Al (StarAl)
[10] models. Consequently, our view on neurosymbolic Al inference immediately
connects to inference in StarAl as well, showing the use of a unifying and formal
definition.

The question of how to perform learning from the quantities inferred by a
neurosymbolic functional can be answered in many different ways. In settings
where the belief is parametrised by neural networks, one can define a loss function
in terms of the neurosymbolic functional and learn via backpropagation of this
loss. In other settings, such as in StarAl, different approaches to learning such



A neurosymbol functional aggregates logically selected interpretations from a neural belief .

f f
Up,w) - bo(p,w) dw

Figure 1: The main intuition behind neurosymbolic inference. Note how the interpretations
of the logical language form the interface between neural and symbolic components.

Table 1: How to recover popular neurosymbolic frameworks as neurosymbolic inference. (B)
indicates the semantics are Boolean in the sense that they are based on true and false values
while (F) similarly indicates fuzzy semantics. The asterisk * expresses that probabilistic
parametrisations are allowed to be unnormalised.

System Language Semantics Belief function Logic function
DeepProbLog  Logic programs Well-founded (B) Probabilistic Boolean satisfaction
NMLN First-order logic Boolean (B) Probabilistic* Boolean satisfaction
SPL Propositional logic Boolean (B) Probabilistic circuit ~ Boolean satisfaction
NeurASP Logic programs Stable models (B) Probabilistic Boolean satisfaction

NeuPSL Logic programs Lukasiewicz (F) Probabilistic* Expected fuzzy values
LTN First-order logic Fuzzy (F) Embedded formula Fuzzy satisfaction
SBR First-order logic Fuzzy (F) Point prediction Fuzzy satisfaction

as expectation maximisation can also be used. In general, our framework does
not impose any restrictions on how to perform learning. We only define the
semantics of NeSy models and of inference, not of learning, as is usual in semantic
frameworks.

4. Neurosymbolic inference unify neurosymbolic AT

We will now show that our definitions of neurosymbolic models and inference
unifies many prominent neurosymbolic Al frameworks. These frameworks can be
characterised based on their language, semantics and parametrisation (Table 1).
We will mainly separate systems based on their Luc: boolean of fuzzy? semantics.

4.1. Neurosymbolic AI with Boolean semantics

Boolean logic is fundamental to computer science and is also the foundation
of a series of neurosymbolic systems with a probabilistic interpretation, such
as DeepProbLog [21], Neural Markov Logic Networks (NMLN) [23], Semantic
Probabilistic Layers (SPL) [1] and NeurASP [36]. All of these systems differ in
their choice of language, parametrisation or implementation of Boolean semantics,
e.g. stable model semantics [15] or well-founded semantics [31]. However, they
are similar in that they are all based on computing probabilities of sentences
being true or false. Returning to our running example, each of the systems can
compute the probability of the sentence “happiness is only possible when having
coffee or a publication” encoded in their respective languages.




Example 4.1 (Probabilistic Boolean neurosymbolic AI). Assuming an independ-
ent factorisation bg (Equation 3.1), the probability of the sentence h — (cVp)
being true is by definition

/u(h = (cvp)w) [ Y (1-pe) @ dhdedp,  (4.1)
B3 ie{h,c,p}

where dh, dc and dp are all binary counting measures that enumerate the 8
possible binary interpretations. That is, we have neurosymbolic inference with
the Boolean semantics u as logic function and a probabilistic belief function.

Each of the different Boolean neurosymbolic systems would perform this exact
computation, but with their own language and semantics. NMLN and SPL would
directly encode the sentence in first-order logic with the same Boolean semantics
as above. For DeepProbLog and NeurASP, the sentence h = (c V p) would
be encoded as a logic program with its corresponding well-founded or stable
models semantics.

In general, neurosymbolic systems based on Boolean semantics perform
inference according to Definition 3.3.

Claim 4.2. Inference in typical neurosymbolic systems based on Boolean se-
mantics corresponds to neurosymbolic inference of the form

/ l(@’w) b9(¢7w)dw7 (42)
Qp

where Q5 = BY is the set of all functions from atom variables V to Boolean
semantic values B = {0,1}.

Argument. We show that this statement holds for the case of 1) DeepProbLog,
SPL, NeurASP and 2) NMLNs. The foundational inference task in these
systems is computing the probability that a sentence ¢ is true, i.e.

P(g) = /Q o5(w)bo (0, w) duw. (4.3)

Hence, the logic function [ for DeepProbLog, SPL, NeurASP and NMLNs is
equal to the Boolean value ¢p(w) of the sentence ¢ in the interpretation w.
The belief function bg for all systems has to be a probability distribution, yet
their form differs per system. DeepProbLog and NeurASP choose an
independently factorising probability distribution as belief. That is, their belief
function is

bo(,w) = [ ] po.a(w(a)). (4.4)

a€A

SPL allows to parametrise the belief as a conditional probabilistic circuit [28]
that needs to be compatible with the logical formula . NMLNs see the



sentence ¢ as a first-order theory /\fil ©; consisting of N sentences. Their
belief function is then constructed as the normalised exponentiated sum

N
1 1
be (i, w) = Zezf\;l)\e,i-tpi,B(w) - Hexgvi.%B(w% (4.5)
i=1

where each \g; is a parametrised weight. g

In the probabilistic setting where the belief bg(p,w) is a probability dis-
tribution over the set of interpretations {2, neurosymbolic inference becomes
an instance of either weighted model counting (WMC) [7] or weighted model
integration (WMI) [5] depending on whether  is finite or infinite.

4.2. Neurosymbolic Al with fuzzy semantics

Fuzzy semantics for logical languages [27] has enjoyed much interest as a
continuous, more fine-grained alternative to the traditional Boolean semantics.
While Boolean semantics is a two-valued semantics based on absolute truth
and falsehood, fuzzy logic is an infinite-valued semantics [27] Luc: does not
have to be continuousLennert: Here continuous in the sense of having R as
domain. Should I say “uncountable degree of truth?” that expresses a continuous
degree of truth by mapping symbols and sentences to the real unit interval. For
neurosymbolic Al, the continuous nature of fuzzy semantic values can result in
a differentiable notion of satisfiability that makes the integration with neural
networks easier. However, it does lead to more diverse computations as different
systems can be interested in different restrictions of the fuzzy values of a sentence.

Example 4.3 (Fuzzy neurosymbolic Al). Luc: tough example Many fuzzy
neurosymbolic systems only compute the fuzzy value of a sentence given a single
fuzzy interpretation. For example, while Logic Tensor Networks (LTN) proposes
a construction to embed constants, variables, and functions as tensors or tensor
operations, they end up with fuzzy predicates that use fuzzy logic operators to
yield the fuzzy value of a sentence. Put differently, LTN proposes an intricate
way of parametrising a belief bg for a single fuzzy interpretation wg by assigning
a single fuzzy value to each of the atom variables. In case of our running example
with the Lukasiewicz T-norm, the belief bg of LTN would be a Dirac delta
function that gives a single fuzzy value for h, ¢ and p while ignoring all the other
possible fuzzy interpretations in the space Qp = [0, 1]3, leading to neurosymbolic
inference of the form

min(1,1 — w(h) + min(1,w(c) + w(p)))d(w — wg) dw = pr(wg). (4.6)
QF
This expression uses fuzzy evaluation as logic function and collapses to the fuzzy
value ¢ (wg) because of the Dirac delta function 4.

In general, our definition of neurosymbolic inference encompasses inference
in typical fuzzy neurosymbolic systems. While covering LTN and SBR inference
requires a slightly more complex rewrite of their inferred quantities, rewriting
exposes connections to other fuzzy systems like NeuPSL.



Claim 4.4. Inference in typical neurosymbolic systems based on fuzzy semantics
is neurosymbolic inference of the form

/ l(%w)bo(%w) dwa (47)
QF

where Qp = [0, ] is the set of all functions from the atom variables V to fuzzy
values in [0, 1].

Argument. We prove this claim for 1) logic tensor networks (LTN),
semantic-based regularisation (SBR) and 2) neural probabilistic soft logic
(NeuPSL).

LTN and SBR both compute the fuzzy value pr(we) of a sentence ¢ in a single
parametrised fuzzy interpretation wg. Only considering a single fuzzy
interpretation corresponds to choosing a belief function that is a Dirac delta
distribution, i.e. bg(p,w) = §(w — we). Indeed, we can use the collapsing
property of the Dirac delta distribution ¢ to write

or(wg) = /Q or(Ww)d(w — we) dw. (4.8)

Hence, LTN and SBR both have the fuzzy value pp(w) as logic function and a
Dirac delta as belief function.
NeuPSL sets the belief function to be the probability distribution

1
be((p,w) = E@Z@ 1 Aeo,ipi, F Z H e)\e i Pi, F(W (49)

similarly to NMLNs, but with fuzzy semantics. Its choice of logic function
changes from task to task, but NeuPSL generally computes fuzzy expected
values. For instance, the usual expected fuzzy value would use fuzzy satisfaction
pr(w) as logic function. O

Note how LTN and SBR use a very simple belief function that only paramet-
rises a single fuzzy interpretation while NeuPSL parametrises a belief over all
fuzzy interpretations.

Example 4.5 (Probabilistic fuzzy neurosymbolic AI). Systems like NeuPSL
relax the hard, Boolean semantic values of atomic expressions to soft, fuzzy values
in Lukasiewicz logic and define a probability distribution p(p,w) over the space
of fuzzy interpretations. This construction allows computing fuzzy expectations,
e.g. the expectation of the fuzzy value of the sentence h = (cV p)

]Ewwp(cp,w) [@F(w)] = 0 min(17 1- w(h) + min(]-v w(C) + W(p)»p(@vw) dw.
) (4.10)

This quantity can then be used to optimise the fuzzy value of a sentence in
expectation instead of only relying on a point estimate as LTN or SBR does.



Given the example of NeuPSL, it seems fuzzy neurosymbolic systems can
become more expressive by parametrising the continuum of fuzzy interpretations.
Indeed, instead of parametrising a probability distribution over all fuzzy inter-
pretations, one can use any other expressive belief function that covers more
than one fuzzy interpretations. For instance, to maintain a completely fuzzy
approach, one could turn the set Qg of fuzzy interpretations itself into a fuzzy
set by parametrising a membership function m : Q — [0, 1] that corresponds to
defining a fuzzy belief function. Luc: start with the example of NeuPSL and
then go for the implciations ... more digestable? Lennert: Done, this does seem
better.

4.8. Limitations

Our definition of neurosymbolic inference (Definition 3.3) makes certain
assumptions to simplify the exposition. For one, Equation 3.2 always integrates
over the entire space of interpretations, which does not cover marginal maximum
a posteriori (MMAP) tasks where only part of the interpretations is integrated
out while another is maximised over. Moreover, other inference tasks might
require nesting or composing different instances of Equation (3.2). For instance,
conditional inference in probabilistic neurosymbolic systems, e.g. SPL and
DeepProbLog, first compute the normalisation constant to then define conditional
belief functions. Another example is the weighted maxSAT task where a weighted
sum of satisfied clauses has to be maximised. This task can be seen as a
maximisation operation on top of a series of separate instances of Equation 3.2.
Covering all of these different cases would go beyond the scope of this paper, as
we focus on a simple definition of the most foundational neurosymbolic inference
tasks. Such a discussion is left for future work.

5. Related work

This is not the first attempt to arrive at a synthesis and a framework for
neurosymbolic Al. For instance, Odense and Garcez [25] introduce a semantic
framework for encoding logics into neural networks, and have a similar motivation
as our work. However, their emphasis is on the necessary conditions under which
a class of neural networks and logical systems can be said to be semantically
equivalent. That is, any specific neural network can be encoded as a logical
theory and the other way around. This is in line with Henry Kautz’s category
Neuralgymbolic to produce a neural network from logical rules. Our semantics
focuses more on making the logical and belief functions explicit, rather being
implicit about the neural network architecture, which is thus more in line with
Henry Kautz’s category Neural | Symbolic in which both the logical and
neural components remain and one is not reduced to the other.

Another related work is ULLER [33], which proposes a unified language for
learning and reasoning. It aims at the “frictionless sharing of knowledge” across
neurosymbolic systems and is intended as an interface language, or even interface
system, for contemporary neurosymbolic Al systems. Unlike our approach,
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ULLER is built upon a fixed first order logic and assigns a concrete semantics for
Boolean, fuzzy and probabilistic instances. In contrast, our framework is neither
looking for a lingua franca nor a unifying system for neurosymbolic Al, but
rather focuses on defining a wide variety of neurosymbolic models and inference
tasks in a mathematically sound way.

Other noteworthy approaches include van Bekkum et al. [30], who show
how to combine and visualize specific design patterns of learning and reasoning
architectures, Dash et al. [8] who characterise NeSy systems by input formats
and loss functions, and Marra et al. [24] who devise various dimensions of
neurosymbolic and statistical relational AI systems on which our definition
builds. While these are important developments that can eventually lead to an
extensive taxonomy of neurosymbolic Al systems, our definitions identify the
essential concepts of neurosymbolic models and show how these concepts define
abstract neurosymbolic inference tasks.

6. Conclusion

Lennert: Here we already summarise the advantages of the definition, right?
Or would we also put it somewhere earlier and clearer too?

Motivated by the wide range of existing neurosymbolic Al models and ap-
proaches, which appear quite different on the surface level, we proposed a general
and in a sense unifying definition of neurosymbolic Al systems that integrate
neural networks with logics. In our view, neurosymbolic inference consists of com-
puting an integral over a product of a logical and a belief function. We provided
evidence that our framework is general in that is makes abstraction of promin-
ent contemporary systems such as LTNs, NeuPSL, SBR, SPL, DeepProbLog,
NeurASP and NMLNs.

We believe that our definition will be useful for for developing both the theory
of neurosymbolic Al by providing a computational framework for designing,
evaluating and comparing different neurosymbolic Al systems and tasks, and
for studying their computational and mathematical properties. We also believe
it will be useful for developing an operational framework and system in which
many existing neurosymbolic Al systems can be emulated, see (... forthcoming).
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Appendix A. Basic of measure theory

Luc: do we really need this appendix — seems to add nothing except the
definition of meausurable spaces 7 Lennert: I am not sure, these are really the
absolute basics of measure theory so I guess we can also just rely on this being
“common” knowledge.

Our definition of neurosymbolic inference uses certain basic concepts from
measure theory that we outline here.

Definition Appendix A.1 (o-algebra and measurable spaces). Let X be a set,
then a o-algebra ¥ on X is a non-empty collection of subsets of X that satisfies
the properties

1.VSeX:Scey,
2. V(Sp)nen: (VieN: S, €X) = U,en5n €5,

3. V(Sp)nen: (Vi €N:S; €8) = (), on Sn € 5.

neN

That is, a o-algebra ¥ is closed with respect to taking the complement, countable
unions and countable intersections. If ¥ is a o-algebra on the set X, then the
couple (X, ¥) is called a measurable space. A function f between two measurable
spaces (S, Yg) and (T, X7) is called measurable if f~1(T) € Lg for each T € 7.

Example Appendix A.2 (A o-algebra for the Boolean interpretations of
propositional logic). Assume we limit the set A of atomic expressions of the
language of propositional logic to be finite, e.g. the modern Latin alphabet. In
this case, the set of all possible Boolean interpretations is isomorphic to B2S.
Any finite set can easily be provided with a o-algebra by taking the powerset of
that set, so a o-algebra of the set B2® of interpretations could be P(B2%). It is
trivial to verify that this collection indeed satisfies the necessary conditions to
be a o-algebra of B26.

Definition Appendix A.3 (Measure). Let (X, ) be a measurable space, then
a function o : ¥ — R U {00} is called a measure if it satisfies

1. o(@) =0,

2. Non-negativity: VS € X : ¢(5) > 0,

3. Sigma-additivity: V(S,)nen : (Vi,5,l e N: S, € EAS, NS =2) =
g (UnEN S") = ZnEN J(S”)

In other words, a measure is a positive map of subsets of X to the extended real
number line that “commutes” with countable unions.

Example Appendix A.4 (A measure for the Boolean interpretations of pro-
positional logic). Assume the same setting as in Example Appendix A.2 and
take the measurable space (Q,P(Q)) with Q = B?°. A well-known measure for
finite measurable spaces is the counting measure oc that outputs the cardinality
of each element of ¥, i.e. oc(5) =S|
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