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Abstract

Decision making under uncertainty in dynamic environments
is a fundamental AI problem in which agents need to deter-
mine which decisions (or actions) to make at each time step to
maximise their expected utility. Dynamic decision networks
(DDNs) are an extension of dynamic Bayesian networks with
decisions and utilities, and can be used to compactly represent
Markov decision processes (MDPs). We propose a novel al-
gorithm called mapl-cirup that leverages knowledge com-
pilation techniques developed for (dynamic) Bayesian net-
works to perform inference and gradient-based learning in
DDNs. Specifically, we knowledge-compile the Bellman up-
date present in DDNs into dynamic decision circuits and eval-
uate them within an (algebraic) model counting framework.
In contrast to other exact symbolic MDP approaches, we ob-
tain differentiable circuits that enable gradient-based param-
eter learning.

1 Introduction
Bayesian networks (BNs) have been widely adopted to
model real-world processes under uncertainty (Koller and
Friedman 2009; Russell and Norvig 2020). Unfortunately,
inference in BNs is computationally hard (#P-hard) (Roth
1996). To deal with this hardness, state-of-the-art techniques
apply knowledge compilation (KC), exploiting conditional
independencies as well as local structures (Chavira and Dar-
wiche 2008). More recently, KC has also been successfully
applied for inference in dynamic models (Vlasselaer et al.
2016), exploiting not only local, but also repeated structure
over time.

Dynamic decision networks (DDNs) combine dynamic
(Dean and Kanazawa 1989; Murphy 2002) and decision-
theoretic (Howard and Matheson 1984; Bhattacharjya and
Shachter 2007) Bayesian networks into a single modelling
language (Kanazawa and Dean 1989; Russell and Norvig
2020), capable of representing, for instance, Markov deci-
sion processes (MDPs) (Bellman 1957).

Example 1 (Monkey DDN, Figure 1). A monkey tries to
hit (H) you with suspicious mud. You can decide to move
(M ) or not. If you get hit, you might smell bad (B), but the
monkey celebrates and is less likely to hit you in the next time
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Figure 1: DDN for Example 1. DDNs provide a graphical
representation of the dependencies between variables at time
t and t+ 1, the latter represented by using a primed symbol
such as B′. For DDNs representing MDPs, the current state
is fully observed, i.e., all non primed state variables are ev-
idence (gray nodes). The ‘∗’ in the tables represent unspec-
ified truth values. The reward table represents an additive
reward function (Russell and Norvig 2020, Chapter 16.4.2).

step. Your decision and current state hence influence the next
state (primed variables). If the monkey misses, it gets angrier
and focuses more on its task, increasing the probability to hit
you. Moving decreases the probability of being hit. There is
a reward (R) associated with every state and decision.

Derkinderen and De Raedt (2020) explored a KC ap-
proach to model and solve a single-stage maximisation prob-
lem under uncertainty. Crucially, they leveraged the alge-
braic model counting framework (Kimmig, Van den Broeck,
and De Raedt 2017) where compiling once allows for solv-
ing a variety of tasks on top of the same compiled dia-
gram. In this work we investigate how to apply a similar
approach to the dynamic setting, solving dynamic decision
networks. To illustrate the benefit of applying the algebraic
model counting framework, we then use the same compiled
diagram of the decision task for parameter learning.

Our main contribution is the introduction of
mapl-cirup (Markov planning with circuit updates),
read as ‘maple syrup’. mapl-cirup is a variation of the
classic value iteration algorithm that uses KC to exploit



dependencies and repeated temporal structures. We adapt
the idea by Chavira and Darwiche (2008) to encode BNs as
weighted logic formulas and knowledge-compile them into
arithmetic circuits for efficient inference. Specifically, we
introduce dynamic decision circuits (DDCs) and use them
as a compilation target for DDNs. This reduces planning to
probabilistic inference in DDCs. As a second contribution
we show that the resulting differentiable representation can
be used for gradient-based parameter learning in MDPs.

2 Preliminaries
2.1 Model Counting and Knowledge Compilation
A prominent technique to perform probabilistic inference
with discrete random variables is reducing it to weighted
model counting (WMC) (Darwiche 2009). That is, encod-
ing a specific probabilistic inference problem as a weighted
propositional logic formula. Computing the weight of the
formula is then equivalent to computing the target proba-
bility. Chavira and Darwiche (2008), for instance, used this
technique to perform inference in BNs. Similar to these
works, we only focus on Boolean variables, and encode
multi-valued variables using a combination of Boolean ones.
Example 2 (Weighted Model Counting). Consider the the-
ory T = C ↔ A ∨ B, where we use weight function
w : {a 7→ 0.1,¬a 7→ 1 − 0.1, b 7→ 0.2,¬b 7→ 1− 0.2, c 7→
0.3,¬c 7→ 1− 0.3}. The weighted model count of T is then:

WMC (T,w) = w(a)w(b)w(c) + w(a)w(¬b)w(c)+
w(¬a)w(b)w(c) + w(¬a)w(¬b)w(¬c)

= 0.006 + 0.024 + 0.054 + 0.504 = 0.588

In case the weights have a probabilistic interpretation, the
weight 0.588 is the probability of the theory being satisfied.

Unfortunately, performing WMC on propositional logic
formulas is a computational hard task, #P-hard to be pre-
cise (Valiant 1979). We can see this intuitively in Example
2 where we explicitly enumerate all the satisfiable states. Of
course it is infeasible in practice to enumerate all satisfiable
states one by one. So instead, a state-of-the-art technique to
solving this is through knowledge compilation (KC) (Dar-
wiche 2002) — an approach also deployed by Chavira and
Darwiche (2008). The core idea is simple: take a propo-
sitional logic formula and compile it into a representation
where WMC, and consequently probabilistic inference, can
be performed in polytime (with respect to the size of the tar-
get representation). A key advantage of this approach is that
the compilation is weight agnostic. This means that multiple
WMC problems can be addressed using a single compila-
tion step, as long as those problem instances share the same
logic formula. This amortises the cost of (offline) compila-
tion, which is still computationally hard, over the multiple
(online) query steps that follow. This is especially useful for
repeated inference.
Example 3 (KC). The logic theory from Example 2 can be
represented as a directed acyclic graph (DAG) trivially enu-
merating all the possible models (Figure 2a). However, us-
ing knowledge compilation one can represent the same the-
ory in a more compact way (Figure 2b), while preserving the
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Figure 2: From the logic theory in Example 2 to the circuit,
via knowledge compilation. Evaluating the circuit in Figure
2c yields the weighted model count.

efficient WMC computation. Substituting the ∧ and ∨ con-
nectives with multiplication and addition operations respec-
tively, and the literals with the according weights, we obtain
the arithmetic circuit for WMC (T,w) (Figure 2c).

2.2 Algebraic Model Counting
A limitation of WMC is its restriction to the semiring of
positive real valued numbers, for instance probabilities. Al-
gebraic model counting (Kimmig, Van den Broeck, and
De Raedt 2017) alleviates this issue by defining meaningful
counting problems on (knowledge-compiled) logic formulas
using an arbitrary commutative semiring.

Definition 1. A commutative semiring is an algebraic
structure (A,⊕,⊗, e⊕, e⊗) such that 1) A is a set of do-
main elements; 2) addition ⊕ and multiplication ⊗ are bi-
nary operations A × A → A that are both associative and
commutative; 3)⊗ distributes over⊕; 4) e⊕ ∈ A is the neu-
tral element of ⊕; 5) e⊗ ∈ A is the neutral element of ⊗;
and 6) e⊕ is an annihilator for ⊗.

Definition 2 (Algebraic Model Counting). Given a com-
mutative semiring S = (A,⊕,⊗, e⊕, e⊗), a propositional
logic theory T , and a labelling function α : L 7→ A, map-
ping literals L of the variables in T to values from the semir-
ing domain A, the task of algebraic model counting (AMC)
is to compute:

AMC (S, T, α) =
⊕

m∈M(T )

⊗
ℓ∈m

α(ℓ), (1)

where ⊗ℓ∈mα(ℓ) is the label of a model m represented as a
set of literals ℓ true in m, andM(T ) are the models of T .

A plethora of problems in artificial intelligence can be
formulated as algebraic model counting problems (Kimmig,



Van den Broeck, and De Raedt 2017). For instance, comput-
ing gradients using the gradient semiring (Manhaeve et al.
2018), which is useful for learning tasks. Derkinderen and
De Raedt (2020) adapted the AMC framework to perform
decision making under uncertainty by formulating the com-
putation of maximum expected utilities (MEUs) as algebraic
model counts. First, they define an appropriate labelling
function for the set of literals L of a logic formula:

{α(ℓ) = (pℓ, euℓ, Dℓ) | ℓ ∈ L} ⊂ A, (2)
where pℓ is the probability of ℓ, euℓ its expected utility, and
Dℓ = {ℓ} if ℓ is a decision literal, or Dℓ = ∅ otherwise.
Second, they adapt the expected utility semiring to incor-
porate maximisation. This results in the algebraic structure
Smeu = (A,⊕,⊗, e⊕, e⊗) with

a1 ⊕ a2 =

{
max(a1, a2) if D1 ̸= D2

(p1 + p2, eu1 + eu2, D1) otherwise

a1 ⊗ a2 = (p1 · p2, p1 · eu2 + p2 · eu1, D1 ∪D2)

e⊕ = (0, 0,D) and e⊗ = (1, 0, ∅)
where a1, a2 ∈ A and D ⊂ L being the set of all decision
variables and their negation. Furthermore, max(a1, a2) re-
turns the element (a1 or a2) with the highest expected utility
(eu1/p1 or eu2/p2, where the divisor is a technical detail re-
lated to normalizing under the presence of constraints). Note
that a semiring contains two operations, while decision mak-
ing under uncertainty involves three: max, sum, and prod-
uct. This considerably complicates inference but is solved
in Smeu by the input-dependent⊕-operation. Consequently,
Smeu is not a semiring in general, and must only be used
while constraining the variable ordering within the AMC
computations. This is supported by several knowledge com-
pilation tools. For more details we refer to Derkinderen and
De Raedt (2020).

2.3 Representing Markov Decision Processes
While Derkinderen and De Raedt (2020) were able to solve
decision making problems, their technique does not con-
sider temporal or sequential dependencies between deci-
sions. Such scenarios are usually modelled using MDPs
(Puterman 2009). MDPs are formal models for dynamic de-
cision problems in a fully observable and stochastic envi-
ronment, with additive rewards. They consist of a set of (ex-
plicit) states S, a set of actions A, a reward function R(s, a),
and a probabilistic transition function T (s, a, s′) = P (s′ |
s, a) expressing the probability of ending up in state s′ given
the current state s and the action a performed in it.

Solving an MDP, i.e., finding the best action for each state,
corresponds to solving the following recursive equation for
every state s ∈ S

U(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P (s′|s, a)U(s′)

}
(3)

This is the renowned Bellman equation, which can be solved
using the value iteration algorithm (Bellman 1957). Value
iteration typically starts with U(s) = 0, ∀s ∈ S, and itera-
tively updates the value of U (also called the utility) accord-
ing to Equation 3. A single value iteration step is referred to

as a Bellman update. Value iteration is guaranteed to con-
verge to the optimal solution for a discount factor γ ∈ [0, 1).
That is, for each state, the action yielding the maximum ex-
pected reward.

Graphically, MDPs can be represented using dynamic de-
cision networks (DDNs) —a dynamic and decision-theoretic
extension of standard BNs (cf. Figure 1). Just as in BNs,
DDNs use circular nodes to represent random variables.
Additionally, DDNs also contain reward nodes (diamond
shaped) and decision nodes (rectangular shaped). Note that
in DDNs ‘actions’ are called ‘decisions’.

Contrary to MDPs, where states (s and s′) are modelled
explicitly, DDNs instead model the random variables that
constitute the state. This is illustrated in Figure 1. An ad-
vantage of representing MDPs as DDNs, i.e., using random
variables instead of explicit states, is a (potential) exponen-
tial reduction in the representation size (Russell and Norvig
2020, Section 17.1.4). This is analogous to the space effi-
ciency of Bayesian networks over flattened state encodings.
Representing the state as a Bayesian network, as done in
Figure 1 at time t+ 1, is equivalent to using factored MDPs
(Boutilier, Dearden, and Goldszmidt 2000). We will heavily
exploit this structure in the next section.

3 Dynamic Decision Circuits
The main advantage of KC lies in the possibility of amortis-
ing the computationally hard compilation step over multiple
circuit evaluations. Assuming that the structure of a DDN
does not change over time, the idea is to compile only once
the logic formula representing the transition from one time
step to the next, and to reuse the resulting compiled cir-
cuit to solve the underlying DDN (i.e., exploit the repeated
structure). This idea is inspired by the work of Vlasselaer
et al. (2016), who compile the transition function of dynamic
Bayesian networks into a transition circuit. This allows them
to perform efficient filtering.

Instead of applying knowledge compilation to the filter-
ing process, however, we introduce a novel encoding to
knowledge-compile the Bellman equation (cf. Equation 3).
More concretely, we want to compile the structure underly-
ing the transition in a DDN into a circuit such that evalu-
ating it using the Smeu algebraic structure (cf. Section 2.2)
corresponds to a Bellman update. Evaluating the circuit in-
volves three operations (max, sum, and product), in contrast
to only two (sum and product) in the work of Vlasselaer et al.
(2016).

In order to represent a Bellman update, every term in
Equation 3 should have a corresponding graphic element in
its DDN. Comparing Equation 3 and the DDN in Figure 1,
we can see that this is indeed the case for the terms R(s, a)
and P (s′ | s, a). However, there does not exist a graphi-
cal equivalent for the accumulated expected reward coming
from the future (U(s′)). Therefore, we augment the DDNs
with a utility node U . In Figure 3 we perform this augmen-
tation for the DDN in Figure 1.

3.1 Encoding
Below we describe how to encode DDNs as propositional
logic formulas, assuming Boolean random variables. This



can easily be extended to multi-valued random variables us-
ing the encoding from Chavira and Darwiche (2008). Sim-
ilarly, our encoding also consists of Boolean indicator vari-
ables λ and Boolean parameter variables θ.

First, we generate indicator clauses. Intuitively, they en-
code the values a variable can assume, and that it must as-
sume exactly one of them. For non-Boolean variables Y with
domain {y1, . . . , yn}, we have(

λy1 ∨ . . . ∨ λyn

) ∧
for i<j

(¬λyi ∨ ¬λyj ) (4)

When a variable is instead Boolean, we simply encode it
with λx such that the truth value corresponds to that of x.

Second, we introduce parameter clauses. Each parameter
variable θ corresponds to a value in the probability, reward,
or utility tables of a DDN.

• Probabilities P (x′
i|pa1, . . . , pan)∨

pa1,...,pan

(
λpa1

∧ . . . ∧ λpan
∧ θx′

i|pa1,...,pan

)
↔ λx′

i
(5)

• Rewards R(x1, . . . , xn) = ri

λx1 ∧ . . . ∧ λxn ∧ λri ↔ θri (6)

• Decisions Di

λdi
↔ θdi

(7)

• Utilities U(x′
1, . . . , x

′
n) = ui

λx′
1
∧ . . . ∧ λx′

n
∧ λui

↔ θui
(8)

Example 4 (Encoding of the Monkey DDN). We encode
every element of the DDN in Figure 3 as described above.
The decision variable (M ): λm ↔ θm.
The reward (R):

λr1 ∨ λr2 ∨ λr3 ,
¬λr1 ∨ ¬λr2 , ¬λr1 ∨ ¬λr3 , ¬λr2 ∨ ¬λr3 ,
λh ∧ λr1 ↔ θr1 , λb ∧ λr2 ↔ θr2 , λm ∧ λr3 ↔ θr3

The transition for H ′:

λh′ ↔(λh ∧ θh′|h) ∨ (¬λh ∧ λm ∧ θh′|¬h,m)

∨ (¬λh ∧ ¬λm ∧ θh′|¬h,¬m)

Note that θh′|h,m and θh′|h,¬m were merged together into
θh′|h, effectively exploiting context-specific independence.

M

H

B

R

H ′

B′
U

H′ B′ U(H′, B′)

h′ b′ u1

h′ ¬b′ u2

¬h′ b′ u3

¬h′ ¬b′ u4

Figure 3: Dynamic decision network (DDN) for Example 1
augmented with the utility node U . For each state, which
corresponds to a specific instantiation of the primed vari-
ables, we associate a utility parameter ui.

The transition for B′:

λb′ ↔(λh ∧ λh′ ∧ θb′|h,h′) ∨ (¬λh ∧ ¬λh′ ∧ θb′|¬h,¬h′)

∨ (λh ∧ ¬λh′ ∧ θb′|h,¬h′) ∨ (¬λh ∧ λh′ ∧ θb′|¬h,h′)

∨ (λb ∧ θb′|b) ∨ (¬λb ∧ θb′|¬b)

Finally, the utility variable (U ):
λu1 ∨ λu2 ∨ λu3 ∨ λu4 ,
¬λu1 ∨ ¬λu2 , ¬λu1 ∨ ¬λu3 , ¬λu1 ∨ ¬λu4 ,
¬λu2 ∨ ¬λu3 , ¬λu2 ∨ ¬λu4 , ¬λu3 ∨ ¬λu4 ,
λh′ ∧ λb′ ∧ λu1 ↔ θu1 ,
λh′ ∧ ¬λb′ ∧ λu2

↔ θu2
,

¬λh′ ∧ λb′ ∧ λu3
↔ θu3

,
¬λh′ ∧ ¬λb′ ∧ λu4

↔ θu4

3.2 Labelling
We now introduce the labelling function that maps literals to
elements of Smeu (cf. Section 2.2). Concretely, we define a
triple label (pℓ, euℓ,Dℓ) for each literal ℓ, representing the
probability, the expected utility, and the set of decisions, re-
spectively. This enables us to solve DDNs using AMC.

First, all indicator variables are labelled as:

α(λℓ) = α(¬λℓ) = (1, 0, ∅), (9)

which corresponds to the neutral element e⊗ from Smeu.
Second, we label the parameter variables.

• Probabilities with p = P (x′
i|pa1, . . . , pan):

α(θx′
i|pa1,...,pan

) = (p, 0, ∅) (10)

α(¬θx′
i|pa1,...,pan

) = (1− p, 0, ∅) (11)

• Rewards, where R(x1, . . . , xn) = ri:

α(θri) = (1, R(x1, . . . , xn), ∅) (12)
α(¬θri) = (1, 0, ∅) (13)

• Decisions:

α(θd) = (1, 0, {d}), α(¬θd) = (1, 0, {¬d}) (14)

• Utilities, where U(x′
1, . . . , x

′
n) = ui:

α(θui) = (1, U(x′
1, . . . , x

′
n), ∅) (15)

α(¬θui
) = (1, 0, ∅) (16)

Note that Equation 15 reflects the recursive nature of the
Bellman equation. In the context of value iteration we ini-
tialise the label

α(θui) = (1, 0, ∅) (17)
Example 5 (Labelling of the Monkey encoding). We pro-
vide the labelling function for the encoding in Example 4.
All the indicator variables are set as specified by Equation 9.

The decision parameter is:
α(θm) = (1, 0, {d}), α(¬θm) = (1, 0, {¬d})

The reward parameters are:

α(θr1) = (1,−10, ∅), α(θr2) = (1,−4, ∅),
α(θr3) = (1,−1, ∅),
α(¬θr1) = α(¬θr2) = α(¬θr3) = (1, 0, ∅)



The probabilities for H ′:

α(θh′|h) = (0.2, 0, ∅), α(¬θh′|h) = (0.8, 0, ∅),
α(θh′|¬h,m) = (0.5, 0, ∅), α(¬θh′|¬h,m) = (0.5, 0, ∅),
α(θh′|¬h,¬m) = (0.8, 0, ∅), α(¬θh′|¬h,¬m) = (0.2, 0, ∅)

The labelling function for B′ can be produced in a similar
way. The utility parameters are initially set as specified by
Equation 17.

3.3 Compiling
Given the encoding of a DDN as a propositional logic for-
mula, and given the proper labelling function, we can pro-
ceed to compiling the circuit. To this end, we can use an off-
the-shelf knowledge compiler, label the leaves in the com-
piled structure, and evaluate the circuit using AMC:

U(x) = AMC (Smeu,∆, α|x), (18)

which yields the maximum expected utility for the current
time step. Here we denote the compiled circuit by ∆, and use
the subscript |x to indicate instantiating the state variables
X to the values x. In the circuit this translates to changing
the indicator variables’ weights. For instance in the monkey
example, to condition on H = h, we set α(¬λh) = (0, 0, ∅).
Definition 3 (Decision Circuit, by Bhattacharjya and
Shachter (2007)). A decision circuit is a rooted, directed,
acyclic graph whose leaf nodes are labelled with variables
or constants, and whose other nodes are either summation,
multiplication, or maximisation.

Definition 4 (Dynamic Decision Circuit). A dynamic deci-
sion circuit (DDC) is a decision circuit labelled with a re-
cursive labelling function, which associates each leaf with a
value that can depend on the evaluation of the circuit itself.

With Equation 18 we can compute the maximum expected
utility only if we know the utility coming from the future,
i.e., U(s′). In the next section we show how to perform this
AMC call recursively.

4 mapl-cirup
We explained how to obtain a (dynamic decision) circuit ∆
from a DDN, and how to evaluate it —via algebraic model
counting— with the labelling function α. Next, we provide
a variation of the classic value iteration algorithm in which
the Bellman update is substituted with an AMC call on ∆.

4.1 Bellman Update Using Circuits
Algorithm 1 shows mapl-cirup’s value iteration ap-
proach. Initially, the value of each state is set to zero in
Line 4. Then, it iteratively performs Bellman updates un-
til convergence (Line 5 to 11). The Bellman update itself
(Equation 3) is replaced by an AMC call in Line 7, corre-
sponding to Equation 18. Similar to classic value iteration,
this update is performed for each state s ∈ S, i.e., for each
possible instantiation x (Line 6). The newly computed val-
ues U ′(x) are then used in the next update step by updating
the utility labels α(θu) in Line 8. Figure 4 depicts intuitively
how mapl-cirup differs from the classic value iteration

repeat 

 !<- 0 

foreach state  in  do 

[ ] !<-  

 !<-  

 !<-  

until  < 

U
s S

U′ s max
a [R(s, a) + ∑

s′ 

P(s′ |s, a)γU[s′ ]]
δ | |U′ − U | |
U U′ 

δ ϵ

DDC

explicit

Figure 4: The classic value iteration algorithm as imple-
mented by mapl-cirup.

algorithm for planning in MDPs: the loop over the states is
explicit, but the Bellman update is encoded as a DDC. Im-
portantly, the compilation of the circuit is amortised over
|VI|2|X| steps. Where, |VI| is the number of iterations re-
quired to converge (to the optimal policy), and |X| is the
number of state variables in the dynamic decision network
(DDN) given in input.

Theorem 1 (Correctness of mapl-cirup). Algorithm 1
correctly computes the optimal solution for the problem en-
coded via the DDC ∆ and labelling function α.

Proof. (Sketch) The proof follows from the correctness
of mapl-cirup’s components. Since the convergence of
value iteration has already been proven, we must only prove
that we correctly use the AMC framework to perform a
Bellman update. We use Smeu as it was defined origi-
nally (Derkinderen and De Raedt 2020), leaving only the
labelling function and the encoding to be analysed. The la-
belling function is a mere application of the function de-
scribed along Smeu. We map the DDN parameters to the
appropriate labels, and update the parameters U similarly to
the Bellman update (Equation 3) while the correspondence
between states and utility parameters is guaranteed by the
encoding. The remainder of the encoding is an adaptation of
the encoding by Chavira and Darwiche (2008).

Algorithm 1: Value Iteration with DDCs

1: inputs: the DDC ∆ , the labelling function α, the con-
vergence error to terminate ϵ

2: local variables: U , U ′, vectors of utilities for states x;
δ the infinite norm of the change in the utilities

3: procedure mapl-cirup(∆, α, ϵ)
4: U ← 0
5: repeat
6: for each instantiation x do
7: U ′(x)← AMC (Smeu,∆, α|x)

8: α(θu)← U ′

9: δ ← ||U ′ − U ||
10: U ← U ′

11: until δ < ϵ
12: return U



A computational drawback of mapl-cirup is the num-
ber of utility parameters U . Namely, we introduce one such
parameter for each state, to store the state value that is used
during the next update step (Figure 3, Section 3). This neg-
atively affects the number of variables involved in the com-
piled representation ∆, as well as its size. Moreover, this en-
coding forces mapl-cirup to iterate over all the explicit
states. Investigating a more compact representation for the
utility function, for example similarly to Hoey et al. (1999),
is therefore a promising direction for future work that would
solve both problems.

A key benefit of mapl-cirup is that ∆ is only compiled
once, effectively exploiting the repeating temporal structure
and amortizing the compilation cost over multiple iterations.
Indeed, ∆ remains constant throughout the whole value it-
eration process. This also means that it is useful to dedicate
more computational resources to achieving a more compact
representation ∆ before starting the value iteration process.

4.2 Learning
As mapl-cirup follows the compile+evaluate paradigm,
it provides access to the plethora of techniques developed
within the algebraic model counting framework. Therefore
we can re-use the circuit ∆ to learn for example reward pa-
rameters in the following learning task. We are given a data
set E of trajectories τ = ⟨s0, a0:k, r0:k⟩, each composed of
the initial known state s0, the k + 1 consecutive actions
a0:k taken from that state, and the rewards r0:k obtained
after each of those actions. Additionally, we are given the
corresponding DDN where each variable may have an un-
known reward parameter, i.e., the reward is an additive func-
tion where (unknown) rewards are associated with state vari-
ables. The task consists of learning those unknown reward
parameters, while the intermediate states are unobserved.

We tackle this task using a gradient-based approach, ex-
ploiting the algebraic framework to compute gradients on
top of ∆. To this aim, we introduce a mean squared error
loss function:

1

|E|
∑
τ∈E

k∑
t=0

(
ceut;θ(s0, a0:t)− rt

)2
(19)

ceut;θ(s0, a0:t) =
∑
st

P (st|s0, a0:t)Rθ(st, at) (20)

where we parametrise Rθ with learnable parameters; and use
ceut;θ(s0, a0:t) as the expected utility at time t, given the
current parameters θ, the initial state and actions leading up
to t. By using this loss function, we minimise the difference
between the expected utility ceu and the actually observed
reward at time t, rt. This loss function is readily computable
from the already compiled ∆. Additionally, probability pa-
rameters can be simultaneously learned by integrating the
work of Gutmann et al. (2008) on top of our method. To
do that, we must account for the rewards and decisions, and
therefore use the expected utility semiring on top of DDCs.

5 Related Work
Similar to mapl-cirup, SPUDD (Hoey et al. 1999) is
a variation of the classic value iteration algorithm using
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Figure 5: Comparison between mapl-cirup and SPUDD.
It reports the value iteration time (VI) and the total time
(KC+VI) including the compilation. SPUDD does not dis-
tinguish them because it interleaves compilation and VI.

knowledge compilation. It performs the Bellman update
symbolically by replacing its elements with algebraic de-
cision diagrams (ADDs) (Bahar et al. 1997). These ADDs
exploit shared values to form compact representations, and
support multiplication and addition between each other.
During its value iteration process, SPUDD performs mul-
tiple compilation operations. mapl-cirup, on the other
hand, compiles only once and reuses the diagram ∆ multi-
ple times. Moreover, we perform parameter learning, which
is not tackled by SPUDD, on top of the same ∆.

Although SPUDD was introduced over two decades ago,
it is still considered the state-of-the-art approach for solving
factored MDPs exactly, as mentioned in multiple recent pub-
lications on approximate methods (Hayes et al. 2021; Heß,
Sundermann, and Thüm 2021; Moreira et al. 2021; Dudek,
Shrotri, and Vardi 2022; Tan and Nejat 2022).

Vlasselaer et al. (2016) investigate how dynamic Bayesian
networks (Murphy 2002) benefit from knowledge compi-
lation techniques. However, they do neither investigate the
decision-theoretic setting, nor perform learning. In an or-
thogonal way, Derkinderen and De Raedt (2020) use al-
gebraic model counting with circuits in order to compute
expected utilities and optimise decisions. Their work is re-
stricted to non-temporal problems, while we consider a set-
ting with decisions spanning over time.

Finally, recurrent sum-product-max networks (Tatavarti,
Doshi, and Hayes 2021) have recently been introduced.
These are circuits whose structure and parameters are
learned directly from data and not compiled from a model.
They learn from fully-observed trajectories where the to-
tal accumulated reward is provided as a signal, making it
a different learning task than ours. In addition, to the best of
our understanding, their approach does not perform an exact
Bellman update. They update the utility value per-variable,
instead of considering all the explicit states, making it more
similar to a linear approximation (Guestrin et al. 2003).



SPUDD mapl-cirup

model |X| |∆| VI [s] |∆| KC [s] VI [s]

monkey 2 11 664 < 0.01 163 0.01 0.005
elevator 4 5 794 < 0.01 277 0.02 0.003
coffee 6 142 519 0.03 2542 0.6 0.054
factory 7 38 163 0.01 2932 0.93 0.105

Table 1: Comparison between mapl-cirup and SPUDD
on the circuit size (|∆|), i.e., the total number of nodes, the
compilation time (KC), the time to find the best solution
(VI). SPUDD reports time with a precision of 0.01s. It does
not provide the knowledge compilation time.
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Figure 6: Dynamic decision networks with structure (in
bold) and n = 3 variables.

6 Experiments
We performed our experimental evaluation with an Intel
CPU E3-1225v3 @3.20 GHz and 32 GB of memory. All ex-
periments ran 10 times and we report the average run time.
We omit the variance when negligible. The hyperparameters
for mapl-cirup were as follows: discount factor γ = 0.9
and tolerance ϵ = 0.1. As a timeout, we use 600s of total run
time (indicated by a dashed line on the figures). On the im-
plementation side we used the PySDD package (Darwiche
et al. 2018). In order to mitigate some of the performance is-
sues with Python3 we JIT-compiled the circuit for the Bell-
man update using Numba (Lam, Pitrou, and Seibert 2015).
As a comparison we include SPUDD (version 3.6.2, written
in C++), with the same hyperparameters. 1

(Q1) How does mapl-cirup perform in general? To
address this question, we evaluate mapl-cirup on three
MDP instances of different sizes from the SPUDD repos-
itory: elevator, coffee, and factory. We addition-
ally include the monkey instance of Example 1, and de-
sign two DDN families that are parametric in the number of
state variables |X| as to better illustrate the scalability. The
first family has a cross-stitch-like structure, while the sec-
ond forms a chain of dependencies. These are depicted in
Figure 6. We devised them also to investigate how the struc-
ture imposed by intra-state dependencies can be exploited
by mapl-cirup and SPUDD. In particular, the chain-like
structure represents an extreme case, because the cascade

1https://github.com/ML-KULeuven/mapl-cirup

cross-stitch chain

|X| |∆| |VI| |∆≈| |∆| |VI| |∆≈|
2 327 20 352 259 17 205
3 815 45 554 632 39 461
4 2 220 21 1 244 1 851 37 648
5 4 230 37 1 277 3 872 19 756
6 12 606 52 1 738 11 005 51 999
7 17 365 49 2 364 − − 1 265
8 39 623 53 2 753 − − 2 223
9 − − 3 242 − − 1 481

10 − − 2 989 − − 1 816

Table 2: Comparison of mapl-cirup’s circuit size, with
(|∆≈|) and without (|∆|) the linearly approximated utility
function. Included is the number of iterations until conver-
gence (|VI|), and the number of variables (|X|).

of dependencies leads to an exponential blow-up (see Ap-
pendix A). On the other hand, the cross-stitch-like structure
represents a more realistic scenario, where only some of the
state variables depend on others. As a baseline and to ver-
ify correctness, we compare to the SPUDD algorithm. For
the parametric instances we additionally include SPUDD-
isd (Boutilier, Dearden, and Goldszmidt 2000), which al-
lows SPUDD to more natively and compactly encode those
instances (cf. Appendix, Section A). The results reported in
Table 1 and Figure 5 indicate that mapl-cirup is able to
solve dynamic decisions problems up to reasonable sizes.
Both mapl-cirup and SPUDD suffer from the exponen-
tial explosion inherent to the hardness of decision making
problems. Due to the utility function representation, this
impacts mapl-cirup more than SPUDD. mapl-cirup
produces a much smaller circuit (|∆|) than SPUDD since it
only knowledge-compiles a single time step and reuses the
same circuit ∆ over time. In contrast, SPUDD manipulates
the circuits, compiling new ones at each iteration resulting
in a larger total node count.

(Q2) How does the exponential representation of the util-
ity function influence performance? The main drawback
of mapl-cirup is how it currently represents the utility
function explicitly inside the circuit itself (cf. Section 4.1).
Therefore, we explored the effect of removing the exponen-
tial encoding of the utility function by means of a well-
known linear approximation (Guestrin et al. 2003), which
reduces the number of utility nodes in the circuit from 2|X|

to |X| (cf. Appendix, Section A). We report the circuit sizes
|∆≈| in Table 2 and the run times in Figure 7. These re-
sults show that indeed the utility function encoding impacts
the size of ∆ and thereby the run time. It also demonstrates
that improvements are possible, and that these can be com-
patible with our compilation approach that exploits structure
and enables differentiable learning (cf. Q3).

(Q3) Is the loss function a good indicator for learning
the rewards? We consider two evaluation metrics: the
average relative error on i) the reward parameters, and ii)
the reward of each state. The latter metric is important for
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planning, because the policy is computed on the total re-
ward of each state. We use the previously outlined learn-
ing method, using the expected utility semiring to compute
the loss function, and TensorFlow’s automatic differentia-
tion abilities (Abadi et al. 2015) to extract the gradients.
The Adam optimiser (Kingma and Ba 2015) was used with
learning rate α = 0.1, ϵ̂ = 10−7, and the rest of the pa-
rameters set as default. Moreover, we initialised the reward
parameters with values sampled uniformly from the interval
of integers [−30, 30]. The dataset contains 100 trajectories
(|E| = 100) each of length 5 (k = 5). The training was per-
formed on batches of size 10. We demonstrate the ability of
the method by focusing on the coffee example, with ad-
ditional reward parameters. To generate the dataset we sam-
pled the coffee example enriched with extra reward pa-
rameters to make it more challenging, and initialised them
with values sampled uniformly from the interval of integers
[1, 10]. When learning, we assume that we do not know the
distribution of the reward parameters. We ran the learning
method 10 times, reporting the average and standard devia-
tion in Figure 8. Two extra experiments are included in the
Appendix (cf. Section B). These results show the parameter
and state error decreasing along with the loss, affirmatively
answering Q3 that the loss function acts as an approximate
signal for learning the rewards. Specifically, we significantly
decrease the relative state error from 2.94 to 0.41 on aver-
age. The relative parameter error is slightly larger, which is
possible due to the additive nature of the reward function,
and the additional freedom this yields to represent the state
rewards.

7 Conclusions and Future Work
We introduced dynamic decision circuits, together with a
value-iteration-based algorithm called mapl-cirup that
reduces Markov planning to inference in DDCs. Thanks to
the compile+evaluate paradigm, the compiled diagram can
be used within the algebraic model counting framework to
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Figure 8: Results of learning reward parameters on the
coffee example. It plots the average of each metric over
10 runs (line) and the standard deviations (coloured region).

solve other tasks. We specifically identified and solved a
learning task, where the reward parameters are learned from
trajectories, in an offline reinforcement learning fashion.
Our approach goes beyond planning for factored represen-
tations. It is the starting point to integrate exact inference
methods with new approximate approaches such as policy
gradient reinforcement learning.

As future work we consider investigating more efficient
representations for the utility function, e.g., by integrating
the ADD operations used within SPUDD, since it alleviates
the computational cost while keeping the method exact. Or-
thogonal to that, approximation methods (St-Aubin, Hoey,
and Boutilier 2000) can be combined with mapl-cirup,
leading again to improved run times and the possibility to
scale to larger domains. In addition to the explored learning
setting, exploiting the compiled, differentiable representa-
tion for other tasks, such as sensitivity analysis (Bhattachar-
jya and Shachter 2010), may be of interest.

Appendix
A Inference
Intra-state dependencies —also called ‘correlated action ef-
fects’ or ‘synchronic constraints’ (Boutilier, Dearden, and
Goldszmidt 2000)— are dependencies between state vari-
ables within the same time slice. An example of this is
given by the DDN in Figure 1. The probability distribu-
tion P (B′|H,H ′) contains an intra-state dependency where
a variable such as B′ depends not only on variables from
the previous time step, but also on variables from the current
time step, e.g., H ′.

To encode the DDN of Figure 1 in a symbolic MDP solver
that can not manage intra-state dependencies, they must first
be removed by adding extra variables (Guestrin et al. 2003).
This means splitting B′ into B′

h′ and B′
¬h′ , where

P (B′
h′ |H,M) = P (B′|H,H ′ = h) and

P (B′
¬h′ |H,M) = P (B′|H,H ′ = ¬h),

for all instantiations of M . Flattening out a DDN with a rich
intra-state structure may lead to an exponential blow-up, as
we exemplify in Figure 10.
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(a) Highly stochastic transition function
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Figure 9: Results of learning reward parameters on the
coffee example. It plots the average of each metric over
10 runs (line) and the standard deviations (coloured region).

mapl-cirup does not suffer from this ailment as it
leverages knowledge compilation to exploit exactly these
complex dependencies. SPUDD, on the other hand, as it
was introduced by Hoey et al. (1999), can not exploit these
dependencies. In order to handle them, it requires a non-
trivial extension, as described by Boutilier, Dearden, and
Goldszmidt (2000), which is implemented in the official re-
lease of SPUDD. We therefore distinguish between SPUDD
and SPUDD-isd, even though it is a single implementation.
Where, the former corresponds to the original algorithm, and
it requires the flattening described above to handle intra-state
dependencies, while the latter includes the extension that can
manage them.

In Q2 of the experimental section, the linear approxima-
tion we used is described by Guestrin et al. (2003) in the
following way.

Definition 5. A linear value function over a set of ba-
sis functions H = {h1, . . . , hk} is a function V that can
be written as V (x) =

∑k
j=1 wjhj(x) for some weights

w = (w1, . . . , wk)
′.

Normally these weights are learned, but we randomly ini-
tialised them, without focusing on the accuracy of the ap-
proximation, because it was out of the scope of our work.
However, since in this way the approximation breaks the
convergence property, we set an horizon limit of 50 itera-
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Figure 10: Intra-state chain structure (left) leading to an ex-
ponential explosion in its MDP formulation (right). Deci-
sions, rewards, and some transitions are omitted for clarity.

tions (∼ the maximum number of iterations required by the
exact algorithm to convergence) during our experiments.

B Learning
In order to further evaluate the capabilities of our learning
task we executed two extra experiments. First, we changed
the transition function of the coffee example to be less de-
terministic. The results are reported in Figure 9a. The qual-
ity of the learned parameters is only slightly influenced, but
a higher variance is also noticeable. This is expected since
we do not observe the intermediate states of a trajectory.
Second, we perform the training on a smaller dataset with
10 trajectories instead of 100 (still of length k = 5), and
batches of size 5 (instead of 10). The results are reported
in Figure 9b. Interestingly, despite the fact that, of course,
more epochs are required, and more variance is associated
with the relative parameters error, even with such a small
amount of data the learned parameters have a good quality,
close to the ones learned from 100 examples.
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zoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme, the EU H2020 ICT48 project “TAILOR” un-
der contract #952215, and the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
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