
SayCanPay: Heuristic Planning with Large Language Models
Using Learnable Domain Knowledge

Rishi Hazra1, Pedro Zuidberg Dos Martires1, Luc De Raedt12

1Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden
2KU Leuven, Belgium

{rishi.hazra, pedro.zuidberg-dos-martires, luc.de-raedt}@oru.se

Abstract

Large Language Models (LLMs) have demonstrated impres-
sive planning abilities due to their vast “world knowledge”.
Yet, obtaining plans that are both feasible (grounded in af-
fordances) and cost-effective (in plan length), remains a chal-
lenge, despite recent progress. This contrasts with heuristic
planning methods that employ domain knowledge (formal-
ized in action models such as PDDL) and heuristic search
to generate feasible, optimal plans. Inspired by this, we pro-
pose to combine the power of LLMs and heuristic planning
by leveraging the world knowledge of LLMs and the prin-
ciples of heuristic search. Our approach, SayCanPay, em-
ploys LLMs to generate actions (Say) guided by learnable
domain knowledge, that evaluates actions’ feasibility (Can)
and long-term reward/payoff (Pay), and heuristic search to
select the best sequence of actions. Our contributions are (1)
a novel framing of the LLM planning problem in the con-
text of heuristic planning, (2) integrating grounding and cost-
effective elements into the generated plans, and (3) using
heuristic search over actions. Our extensive evaluations show
that our model surpasses other LLM planning approaches.

1 Introduction
With the rise of Large Language Models (LLMs), there has
been a growing interest in leveraging their generative capa-
bilities for planning tasks (Huang et al. 2022a; Valmeekam
et al. 2022; Silver et al. 2022; Liu et al. 2023). These models
have the ability to generate long-horizon plans, capitalizing
on their extensive “world knowledge” gained from training
on vast amounts of data (e.g. eggs are typically stored in the
refrigerator, and placing an apple in the fridge will cool it).
Such expansive knowledge can be exploited to plan in an
open-world context (Ding et al. 2023). Moreover, planning
in the natural language space offers significant flexibility
especially, with the advent of multimodal foundation mod-
els (Lakhotia et al. 2021; Du et al. 2022; Brohan et al. 2023).
Such models have made it easier to represent various modal-
ities such as vision, speech, and even actions in the form of
natural language, thus bypassing the need to have domain-
specific knowledge (e.g. PDDL) that traditional planning ap-
proaches require. However, LLM-based planning often faces
challenges, particularly in generating feasible plans. It can

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fail to model action affordances (or pre-conditions)1 due to
difficulty in modeling the state of the world (e.g. grab milk
from the fridge even if the door is closed) or having a pre-
trained world model that is not aligned with the current envi-
ronment (e.g. using a controller to regulate the heater where
only a knob exists), leading to infeasible plans. Moreover,
such models focus greedily on the next actionable step with-
out considering its relevance to the ultimate goal, resulting in
longer, cost-inefficient plans (Valmeekam et al. 2023). Re-
cent works like SayCan (Ahn et al. 2022) have sought to
address the affordance problem by using pretrained skills to
evaluate the action’s executability – Can the action be exe-
cuted in the current state? However, the plan cost remains a
concern.

In contrast, traditional planning provides an established
approach to developing a sequence of actions to transition
from an initial state to a goal state. It uses a domain file (with
action models defined in PDDL specifying pre- and post-
conditions) and heuristic search planners like Fast Down-
ward (Helmert 2006) to ensure feasibility through ground-
ing in preconditions, and generating cost-effective plans by
employing search trees to select the best (or shortest) se-
quence of actions. However, obtaining a domain file for
complex real-world environments is difficult, and its use
restricts planning to a closed-world setting. These meth-
ods also struggle to handle partial observations, although
approximate planning (Kaelbling, Littman, and Cassandra
1998) can alleviate it.

Integrating LLMs with classical planning offers a promis-
ing research path, merging the generative abilities and
(open) world knowledge of LLMs with the methodologi-
cal rigor of planning algorithms. To this end, we extend
the following contributions. (1) We propose to frame lan-
guage model planning in the context of heuristic planning,
which to our knowledge, is the first of its kind (§ 4). (2) We
incorporate feasibility and cost-effective elements into the
generated plans using a joint scoring named SayCanPay2.
As shown in Figure 1, it guides the planning through three
key steps: (i) Say: Given a goal and an initial observation,

1In robotics, affordances refer to possible actions that can be
executed, which is conceptually similar to inferring preconditions
in planning – what actions are feasible in a certain situation.

2Code link: https://rishihazra.github.io/SayCanPay/

0.99 0.96 0.22pick up red key
pick up green ball
toggle red door
done task

0.21

0.99 0.96 0.250.24

0.98 0.230.00

0.00

0.00

0.95 0.40.00

 SayCanPay

Step 1: pick up green ball
Step 2: drop ball in void
Step 3: pick up red key
Step 4: toggle red door
Step 5: drop key in void
Step 6: pick up purple box
Step 7: done task

SayCan

Step 1: pick up red key
Step 2: drop key in void
Step 3: pick up green ball
Step 4: drop ball in void
Step 5: pick up red key
Step 6: toggle red door
Step 7: drop key in void
Step 8: pick up purple box
Step 9: done task

Say Can PayNet

 Say

Step 1: pick up green ball
Step 2: drop ball in void
Step 3: pick up purple box
Step 4: toggle red door
Step 5: drop key in void
Step 6: pick up purple box
Step 7: done task

infeasible actions sub-optimal actions

Goal: pick up the box.
Initial State: Room 1 has
agent, red key, green ball.
Room 2 has purple box. The
door connecting Room 1 and
Room 2 is locked. The green
ball is blocking the door.

Step 1:

feasible and cost-effective

Figure 1: Figure illustrates how SayCanPay scores the next action in BabyAI environment (Chevalier-Boisvert et al. 2019).
Given inputs: goal g and initial observation o0, the Say model generates candidate actions with associated probabilities. These
are then scored for feasibility by the Can model and for payoff by the Pay model. Here, the Can model deems both pick up
red key and pick up green ball equally probable (i.e. both preconditions are satisfied). However, the Pay model ensures a better
payoff for pick up green ball. We compare plans generated by Say, SayCan, and SayCanPay scoring. Say scoring can lead to
infeasible plans and SayCan to feasible but longer plans. The displayed grid is purely illustrative, with no visual inputs used.

the LLM generates likely candidate actions at each step; (ii)
Can: An affordance model scores these actions’ feasibility,
mirroring the evaluation of preconditions; (iii) Pay: Another
model scores the actions according to their estimated payoff,
akin to heuristic estimators (§ 5). The Can and Pay models
undergo domain-specific training to align the plans with the
current environment (§ 6). (3) Using this combined score as
a heuristic, we search for the most feasible and cost-effective
plan (§ 5.2). We demonstrate both quantitatively and quali-
tatively, how our proposed joint scoring and heuristic search
improve over the current LLM planning frameworks (§ 7.3).

2 Related Work on Planning with LLMs
Table 1 categorizes LLM planning works into two broad
categories based on whether the inputs (goals, states) and
output actions (I/O) are natural language (NL) or symbolic
(PDDL, scripting language). The approaches in the first cat-
egory (Huang et al. 2022a; Valmeekam et al. 2022) often
fail to model action affordances and the state of the world,
leading to the generation of infeasible plans (Valmeekam
et al. 2022). To improve the groundedness, recent works
have explored planning guided by learnable domain-specific
models that score the actions’ feasibility akin to precondi-
tions (Huang et al. 2023; Lin et al. 2023). Notably, Say-
Can (Ahn et al. 2022) uses pretrained low-level skills to
ground the LM-generated actions. Others have used online
planning with environmental and human feedback (Huang
et al. 2022b). A limitation of such models, however, is their
short-sighted nature, as they focus greedily on the next feasi-
ble action without considering its long-term relevance to the
goal. Moreover, the plans are generated in an online fashion,
interleaving action generation and execution, thus simplify-
ing state tracking. In contrast, SayCanPay performs offline
planning (i.e. complete plan generation while maintaining
an internal world state) with both precondition and heuristic
estimators, improving plan feasibility and cost-efficiency.

Another line of work employs LLMs to create offline

symbolic plans, leveraging LLMs’ training on open-source
codebases, where actions appear as function calls (Singh
et al. 2023; Liang et al. 2023). The feasibility of plans is
ensured through assertion checks (assert ⟨ preconditions ⟩),
that may trigger recovery actions. However, it relies solely
on the LLM’s domain knowledge which is limited to its
training data and may not be aligned with the agent’s current
environment (e.g. espresso machine operations vary widely).
Conversely, SayCanPay uses additional models trained with
domain-specific knowledge collected from the current envi-
ronment. There are also efforts to fine-tune LLMs like Code-
T5 (Wang et al. 2021) to generate plans in PDDL (Pallagani
et al. 2022). This requires a significant amount of training
data (given LLMs’ minimal PDDL exposure) which is not
entirely justified by their performance.

Yet another exciting line of work explores hybrid I/O
systems like LLM+P (Liu et al. 2023) wherein, given a
PDDL domain file (with a predefined action model), the
LLM maps the NL inputs (task description, input observa-
tion) to a PDDL problem file. A symbolic planner then gen-
erates the plan. However, its effectiveness is limited by the
closed-world constraint of the domain file, the necessity for
fully observable states, and the LLM’s restricted capability
in translating NL to PDDL (Xie et al. 2023).

3 Preliminaries
Planning Framework. We formulate our planning prob-
lem, based on approximate planning (Golowich, Moitra,
and Rohatgi 2022), as a finite-horizon Partially Observ-
able Markov Decision Process (POMDP) given by the tuple
⟨S,SG, b0,A,O, R,T⟩. Here, S is state space, SG ⊆ S is a
set of goal states, b0 is the initial belief state, A is the set of
actions, O is a set of observations retrieved from states via
an observation function O, R : O → R is a known reward
function, T : S × A → ∆S is a known stochastic transition
function and ∆S is a distribution over states. Belief states
represent the agent’s knowledge of the environment at any

Model I/O Planner Domain Knowledge Search Planning
Affordances Heuristics

HSP (Bonet and Geffner 2001) Symbolic Symbolic ✓ ✓ Heuristic Offline
LLM+P (Liu et al. 2023) Hybrid Symbolic ✓ ✓ Heuristic Offline
Planning LM (Huang et al. 2022a) NL LLM ✗ ✗ Greedy∗ Offline
SayCan (Ahn et al. 2022) NL LLM ✓ ✗ Greedy∗ Online
Grounded Decoding (Huang et al. 2023) NL LLM ✓ ✗ Greedy∗ Online
Text2Motion (Lin et al. 2023) NL LLM ✓ ✗ Greedy∗ Online
ProgPrompt (Singh et al. 2023) Symbolic LLM ✓ ✗ Greedy∗ Offline
Plansformer (Pallagani et al. 2022) Symbolic LLM ✓ ✗ Greedy∗ Offline
SayCanPay (Beam-Action) NL LLM ✓ ✓ Heuristic Offline

Table 1: Table contrasts SayCanPay with existing works. I/O: input (goal/task, observation/state) / output (actions), NL: natural
language. Here, Greedy∗ suggests the algorithm greedily selects actions while (possibly) searching over tokens.

point, given as b ∈ ∆S . Additionally, let Ht := (A×O)t−1

denote the set of histories at step t, namely the set of
action/observation sequences (o0, a1, o1, . . . , at−1, ot−1) or
(a1:t−1, o0:t−1) the agent has access to before selecting ac-
tion at. It is assumed that the goal states are fully observable.

Unlike MDPs, the optimal policy in a POMDP typically
takes actions depending on not just the most recent observa-
tion but the entire history. The objective of the planning al-
gorithm is to find the optimal sequence of actions a1:T (i.e.
an optimal plan) from an initial belief state b0 to a given goal
state g ∈ SG. Here, T is the length of the horizon.

Heuristic Search Planning. In real-world scenarios
where the state space can be exponentially large to explore
exhaustively, heuristic search planning (HSP) becomes use-
ful (Bonet and Geffner 2001). Essentially, it uses heuristic
functions fheur : Ht × SG → R to guide the search process
in the planning problem, by computing a cost estimate from
a given history of actions and observations. An example is
the Best-First Search algorithms that select the most promis-
ing (next) action(s) using a linear combination of previously
accumulated cost facc for history ht−1, and the estimated
cost fheur from updated history ht = (ht−1, at) and goal g.

f(ht) = z1 · facc(ht−1) + z2 · fheur(ht, g) (1)

Here z1, z2 ∈ {0, 1}. The next action at =
argminht

f(ht). Special cases are the A∗ algorithm algo-
rithm (z1 = 1 and z2 = 1) and Greedy Best-First Search
(z1 = 0 and z2 = 1).

4 Language Model Planning Framework
We keep the same POMDP formulation while updating our
interpretations of the tuple. Previous works have shown that
language models (LMs) trained on extensive data would in-
ternalize rich world knowledge that can be queried for down-
stream tasks like planning (Hao et al. 2023). This is akin
to an internal transition function Tint. Similarly, LMs also
maintain and update an internal belief state bintt over tokens
(or actions). An observation function maps states to NL ob-
servations, O : S → O. The updated POMDP is now given
as ⟨S,SG, b

int
0 ,A,O, R,Tint⟩. In our offline planning ex-

periments, we assume the following: (i) O = {o0} inducing
belief state bint0 = 1s0 , while ot = ∅ ∀ t > 0, due to lack

of environmental feedback; (ii) sparse rewards = 1 for plan
success, else 0. While our LM does not utilize the reward
function, one could use it for alignment (Ziegler et al. 2020).
Problem Statement: Given a NL goal g, history h0 =
(o0), and a LM generating actions at with probability
p(at|ht−1, g), generate the most likely plan (a1:T) to go
from bint0 to g, i.e., argmaxa1:T

P (a1:T |h0, g).
We aim to maximize the plan’s probability, reframing LM
planning as a classical search problem, where we repeatedly
expand the current plan a1:t−1 by adding action at. Rewrit-
ing the probability P (a1:T |h0, g) recursively as:

= P (a1:t−1, at, at+1:T |h0, g)

= p(a1:t−1|h0, g)p(at|h0, a1:t−1, g)p(at+1:T |h0, a1:t, g)

= p(a1:t−1|h0, g) · p(at|ht−1, g) · p(at+1:T |ht, g)

To align with Eq 1 of the planning problem, we take
log on both sides and maximize rather than minimize. We
get accumulated value facc(ht−1) = log p(a1:t−1|h0, g),
heuristic payoff fheur(ht, g) = p(at+1:T |ht, g), and f(ht) =
logP (a1:T |h0, g). Rewriting the above equation:

f(ht) = facc(ht−1) + log
(
p(at|ht−1, g) · fheur(ht, g)

)
(2)

The additional p(at|ht−1, g) reflects that, unlike classical
planning which evaluates only feasible actions based on pre-
conditions, LMs assign probabilities to each action. Here,
next action at = argmaxht

f(ht).
Technically, the LM generates actions wherein each ac-

tion is a sequence of tokens until the end-of-sequence to-
ken, ⟨EOS⟩. For each action step a = (w1, . . . , wn) com-
posed of tokens wi, the LM computes the action probability
as p(a) = p(w1)

∏n
i=2 p(wi|w1:i−1). Planning LM (Huang

et al. 2022a) proposed a greedy decoding strategy wherein
the LM greedily picks the next token, henceforth referred
to as Greedy-Token baseline (Figure 2 Left). The generated
action is then appended to the history ht= (ht−1, at), and the
generation process repeats until a “done task” action is gen-
erated. Subsequent works (Lin et al. 2023) have investigated
beam search over tokens. However, we are mainly interested
in searching on the level of actions and not tokens.

Abstraction

(a) Greedy-Token (b) Beam-Token Single Greedy-Action step (c) Greedy-Action (d) Beam-Action

goal history best token discarded token discarded action best action next best token next-best action

Figure 2: The figure outlines decoding strategies – Greedy-Token, Greedy-Action, and Beam-Action. Greedy-Token greedily
selects the next best token by its probability. Greedy-Action (which is a beam search over tokens) greedily selects the next best
action based on a specific decoding score. Beam-Action uses a beam search over actions, maintaining k beams and selecting
the best sequence as the plan. Here, nodes represent either tokens wt or actions at. The best plan is given by (a∗1, a

∗
2, a

∗
3) and

represented in red. The second-best node is in orange, discarded ones in black. Here, for Beam-Action, m = 3 and k = 2.

5 SayCanPay Inference
The core concept of SayCanPay is to guide LMs in gener-
ating feasible and cost-effective plans. The process unfolds
in three key steps: (1) Say: At each step t, the LM gener-
ates the top-m candidate actions with associated probabil-
ities {p(ait|ht−1, g)}mi=1. This generation employs a beam
search over tokens. (2) Can: Next, a trained domain-specific
model weighs these candidate actions on their feasibility,
mirroring precondition evaluation. (3) Pay: Finally, a trained
domain-specific estimator weighs the candidate actions ac-
cording to their estimated payoff. The probabilities from
these three components are then combined to select the next
action. An overview of SayCanPay is provided in Figure 1.

In what follows, we instantiate the LM planning problem
with two decoding strategies (or search algorithms that se-
lect the next action(s)): Greedy Action (§ 5.1) and Beam
Action (§ 5.2). Each strategy is explored using three distinct
decoding scores (i.e. score used by the search algorithm to
select the next action) – Say, SayCan, SayCanPay. We then
elaborate on the training of Can and Pay models (§ 6).

5.1 Greedy-Action
In this decoding strategy, we maintain a single action se-
quence and at each step, greedily choose the next best action
based on a specific decoding score. This is akin to perform-
ing Greedy Best-First Search with z1 = 0 and z2 = 1. The
decoding score for each candidate action ait is given as:

f(hi
t) = log

(
p(ait|ht−1, g) · fheur(h

i
t, g)

)
Here, the best action a∗t = argmaxhi

t
f(hi

t), where hi
t =

(ht−1, a
i
t) denotes the current history with ith candidate ac-

tion. As shown in Figure 2, this approach can be viewed as
being “greedy” with respect to actions while using “beams”
over the tokens. Now, we explore three variations of the
strategy based on how the decoding score is computed.

• Say: In this decoding score, we set the estimated payoff
fheur(h

i
t, g) = 1 ∀ i ∈ {1, . . . ,m}. Hence, the action is

selected solely based on the LM generation probability,
without considering feasibility or payoff.

f(hi
t) = log

(
p(ait|ht−1, g)︸ ︷︷ ︸

=:psay
ai
t

)
(3)

• SayCan: Here, the action feasibility is also considered.
Let, σt = (at, pre(at)) where pre(at) denotes the pre-
conditions of at. The “can” probability3, is denoted by
p(pre(at)|ht−1, g). Again, fheur(h

i
t, g) = 1 ∀ i.

f(hi
t) = log

(
p(σi

t|ht−1, g)
)

= log
(
p(ait|ht−1, g)︸ ︷︷ ︸

=:psay
ai
t

· p(pre(ait)|ht−1, g)︸ ︷︷ ︸
=:pcan

ai
t

)
(4)

• SayCanPay: This decoding score accounts for the esti-
mated payoff in addition to the abovementioned scores.
Hence, the best action is selected based on a combined
score of Say, Can, and Pay scores.

log
(
p(ait|ht−1, g)︸ ︷︷ ︸

=:psay
ai
t

· p(pre(ait)|ht−1, g)︸ ︷︷ ︸
=:pcan

ai
t

· fheur(h
i
t, g)︸ ︷︷ ︸

=:ppay
ai
t

)
(5)

5.2 Beam-Action
In heuristic planning, multiple potential plans (i.e. action se-
quences) are simultaneously maintained and iteratively ex-
panded until the goal is achieved. To simulate this behav-
ior, we propose to manage k action sequences. It works as

3The goal g is used to evaluate the preconditions of “done task”.

follows – each sequence is expanded with m candidate ac-
tions (where m ≥ k) from the LM, resulting in a total of
k ×m sequences. Then, top-k sequences are retained using
a specific decoding score accumulated over the sequence, as
shown below. Once all k-beams have terminated, we select
the sequence with the highest (length-normalized)4 accumu-
lated score. To avoid repetition, we only show the SayCan-
Pay version. The rest can be similarly formulated.

top-k
[

1

|hij
t |

(
facc(h

i
t−1)+log p(σj

t |hi
t−1, g)·fheur(h

ij
t , g)

)]
Here, i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, k ≤ m. The updated
history hij

t = (hi
t−1, a

j
t) is obtained by adding the action

ajt to the ith beam history hi
t−1. The outcome becomes the

value for facc(ht) for the next iteration. Note, that setting
k = 1 results in Greedy-Action decoding.

Our proposed decoding has similarities with Tree-of-
Thoughts inference (Yao et al. 2023) which also maintains
multiple reasoning paths to decide the next step. However,
our method is specifically tailored for planning problems.
It uses search and evaluation techniques akin to planning
methods, making it more suited for such challenges. Now,
we discuss training details of the Can and Pay models.

6 Learning the Can and Pay Models
To train our domain-specific Can and Pay models, we collect
N -expert trajectories E = {τ}Nn=1 for each environment us-
ing an oracle planner, where τi = (o0, g, a1, a2, . . . , aT , r).
Note, r = 1 for all expert trajectories.

6.1 Can Model
We model it as a classification problem, where the positive
action (i.e., the action whose preconditions are satisfied) is
assigned the highest probability from a set of one positive
and a few negative actions. Specifically, we sample a batch
of actions [ht−1, g, at, at̸̄=t, ã]

1:B from expert trajectories E .
We then train a model Mcan with the aim of minimizing the
InfoNCE loss (van den Oord, Li, and Vinyals 2019):

− 1

B

B∑
i=1

log
Mcan(hi

t−1, g
i, ait)∑

a∈{ai
t,a

i
t̄ ̸=t

,ãi} Mcan(hi
t−1, g

i, a)

Here, B is the batch size, at is the positive action from
trajectory τi executed in the context of history ht−1 with
goal g, at̄ ̸=t is a negative action sampled from the same
trajectory τi, but at a different time-step t̄, and ã is a neg-
ative action sampled from a different trajectory τj ̸=i with
a different initial observation o0 and goal g. Mcan con-
sists of an uncased Bert model (Devlin et al. 2019) with
a probe layer and is trained end-to-end to correctly iden-
tify the positive action. The input to Mcan is of the for-
mat ‘⟨Goal⟩{g} ⟨History⟩{ht−1} ⟨NXT⟩{at}’. Here, ‘⟨∗⟩’
serves as special tokens. The output is the Can probability
pcan
at

:= Mcan(ht−1, g, at). The model is trained across mul-
tiple batches for F1-score convergence on the validation set.

4Since different beams can have different sequence lengths.

Our approach is different from SayCan (Ahn et al. 2022)
which trains multiple affordance functions (corresponding
to different skills), through temporal-difference-based rein-
forcement learning to predict the likelihood of a particular
skill succeeding (i.e., executing) in the current state. Here,
we show two training I/O examples, one with positive action
and another one with negative action.

Input ⟨Goal⟩ pick up the purple box. ⟨Initial State⟩ Room
1 has yellow key, agent. Room 2 has purple box. The door
connecting Room 1 and Room 2 is locked. ⟨Step 1⟩ pick up
yellow key. ⟨NXT⟩ toggle yellow door.
Output 1.0 // feasible
Input ⟨Goal⟩ pick up the purple box. ⟨Initial State⟩ Room
1 has yellow key, agent. Room 2 has purple box. The door
connecting Room 1 and Room 2 is locked. ⟨Step 1⟩ pick up
yellow key. ⟨NXT⟩ pick up purple box.
Output 0.0 // infeasible

6.2 Pay Model
We model it as a regression problem to estimate action
payoffs. Using expert trajectories E , we create a dataset
with each batch as [g, ht−1, at, r]

1:B . Given sparse rewards
(i.e. rT = 1), we use temporal discounting δ ∈ (0, 1)
to assign discounted rewards to previous actions in
the trajectory5. This ensures that actions closer to the
end receive higher rewards and vice versa. Specifically,
rT−1 = δ, rT−2 = δ2, and so on. We also sample neg-
ative actions from other paths (akin to the Can model)
with a reward of 0. The model is trained to align the
discounted reward of the action and the predicted reward
from Mpay by minimizing the mean squared error (MSE)
loss 1

B

∑B
i=1(r

i − Mpay(g
i, hi

t−1, a
i
t))

2. The model uses
an uncased Bert plus a regression layer whose output is
bounded in [0, 1] via a sigmoid activation. The input format
is the same as the Can model. The output is the estimated
payoff, fheur(ht, g) = Mpay(g, ht−1, at). I/O examples:

Input ⟨Goal⟩ pick up the purple box. ⟨Initial State⟩ Room
1 has yellow key, agent. Room 2 has purple box. The door
connecting Room 1 and Room 2 is locked. ⟨Step 1⟩ pick up
yellow key. ⟨Step 2⟩ toggle yellow door. ⟨Step 3⟩ drop key
in void. ⟨Step 4⟩ pick up blue box. ⟨NXT⟩ done picking up.
Output 1.0 // end of plan
Input ⟨Goal⟩ pick up the purple box. ⟨Initial State⟩ Room
1 has yellow key, agent. Room 2 has purple box. The door
connecting Room 1 and Room 2 is locked. ⟨Step 1⟩ pick up
yellow key. ⟨Step 2⟩ toggle yellow door. ⟨Step 3⟩ drop key
in void. ⟨NXT⟩ pick up blue box.
Output 0.6 //δ · r
Input ⟨Goal⟩ pick up the purple box. ⟨Initial State⟩ Room
1 has yellow key, agent. Room 2 has purple box. The door
connecting Room 1 and Room 2 is locked. ⟨Step 1⟩ pick up
yellow key. ⟨Step 2⟩ toggle yellow door. ⟨Step 3⟩ drop key
in void. ⟨NXT⟩ pick up green box.
Output 0 // very low payoff

5δ for the Pay model training is unrelated to the POMDP.

Environment Example Goal Example Initial Observation Plan Length |A|
Ravens
(Tower of Hanoi seq)

Move the gray
disk in rod 2

Blue disk on top of gray disk. Gray disk on top of green disk. Green
disk in rod 1. The disks can be moved in rod 1, rod 2, rod 3.

3.3 7.5

Ravens
(Put Blocks in Bowls)

Put the yellow
blocks in gray
bowls

There is a gray bowl 1, gray bowl 2, gray bowl 3, yellow block 1,
yellow block 2, yellow block 3, blue bowl 1, red block 1, green bowl
1, orange block 1.

6.1 25

BabyAI (Pickup) Pick up the ball Room 1 has purple ball. Room 2 has yellow key, agent. Room 3 has
red key. The door connecting Room 1 and Room 2 is locked. The
door connecting Room 2 and Room 3 is locked.

6.7 7.7

VirtualHome Read book 5.9 150

Table 2: Table displays tasks from each environment, average plan length, and average action space size |A|. For VirtualHome,
we do not specify an initial observation since it is hard to describe a room environment. Here, the action space varies with
episodes, depending for instance on the number of objects.

Setup Say Model Greedy-Token Greedy-Action Beam-Action
Say SayCan SayCanPay Say SayCan SayCanPay

Ravens
(tower of hanoi)

Vicuna 45 48 48 50 54 68 70
Flan-T5 30 30 39 42 38 50 50

Ravens
(put blocks in bowls)

Vicuna 30 51 52 54 52 52 56
Flan-T5 96 96 96 96 98 98 98

BabyAI
(pickup)

Vicuna 59 62 81 88 72 94 94
Flan-T5 0 0 30 36 1 36 30

VirtualHome
Vicuna 0 32 49 52 48 52 53
Flan-T5 0 0 30 48 30 41 50

Table 3: Table shows the planning success (i.e. the number of plans out of 100 that reached the goal within limited steps) on
the test split across different environments using Vicuna, Flan-T5 models. It can be observed that the best decoding strategy is
Beam-Action and the best decoding score is SayCanPay.

7 Experimental Setup
7.1 Say Model
The Say model does not undergo any fine-tuning and is
used only for inference. We experimented with two types of
transformer architectures. (i) Decoder type: 13b-parameter
Vicuna model (Chiang et al. 2023) trained by fine-tuning
LLaMA (Touvron et al. 2023). (ii) Encoder-decoder type:
Flan-T5-11b (Chung et al. 2022) which is the instruction
fine-tuned version of the T5 transformer (Raffel et al. 2020).
Existing works have demonstrated the planning abilities
of both the decoder type (Pallagani et al. 2022) and the
encoder-decoder type architectures (Valmeekam et al. 2023,
2022). Since the generated plan is in free-form language and
may contain unrecognizable (for the environment) words
or incorrect syntax, it cannot be directly translated into ac-
tionable steps in the environment. Following Huang et al.
(2022a), we use an exhaustive list of admissible actions (fea-
sible and otherwise), and at the end of each action step, map
the generated action to the closest admissible action using
minimum edit distance. Interleaving action generation and
mapping ensures that all subsequent steps are conditioned
on admissible actions, thus mitigating compounding errors.
We provide 3 examples (input goal and observation, output
plan) to the model via few-shot prompting.

7.2 Environments
We tested in three environments, detailed in Table 2.

• Ravens (Zeng et al. 2021) is a PyBullet simulated task set
focusing on “pick and place”. It includes 10 tabletop tasks,
of which we use two: (i) Tower of Hanoi (sequence), a
variation of the classic puzzle focusing on specific inter-
mediate goals, like moving a particular disk to a desig-
nated rod while keeping the traditional constraints. This
creates more goal diversity; (ii) Put blocks in bowls re-
quires placing blocks into bowls based on rules like put
yellow block in green bowls. We adapt the environment
for language tasks, observations, and actions.

• BabyAI (Chevalier-Boisvert et al. 2019) is a 2D-grid
world environment where a bot is provided a language task
sampled from a predefined grammar. We focus on pickup
tasks where the agent navigates to collect an object, of-
ten unlocking doors or moving obstacles. Task difficulty
varies with rooms, obstacles, and distractor objects. The
agent’s actions include high-level commands like pickup
and drop which are composed of atomic actions: “left”,
“right”, “forward”, “pick”, and “drop” (see Figure 1)

• VirtualHome (Puig et al. 2018) is an interactive platform
to simulate complex household activities via interactions
with the environment, such as picking up objects, and
switching on/off appliances. We utilize the VirtualHome-
Env dataset (Liao et al. 2019), comprising daily household
activities from 7 scenes gathered via crowdsourcing. We
only use the goal as the input (see Table 2).

Setup Say Model Greedy-Token Greedy-Action Beam-Action
Say SayCan SayCanPay Say SayCan SayCanPay

Ravens
(tower of hanoi)

Vicuna 12 24 55 58 20 47 52
Flan-T5 34 34 46 47 38 54 56

Ravens
(put blocks in bowls)

Vicuna 16 36 40 48 38 42 56
Flan-T5 63 65 71 74 67 74 74

BabyAI
(pickup)

Vicuna 48 50 53 54 56 56 62
Flan-T5 0 0 26 28 1 30 34

VirtualHome
Vicuna 0 14 23 29 20 26 30
Flan-T5 0 0 6 15 4 19 26

Table 4: Table shows the cost-effectiveness (i.e. the number of plans out of 100 that reached the goal within limited steps and
also had the same plan length as the expert plan) on the test split across different environments using Vicuna, Flan-T5 models.
It can be observed that the best decoding strategy is Beam-Action and the best decoding score is SayCanPay.

Setup Say Model Greedy-Token Greedy-Action Beam-Action
Say SayCan SayCanPay Say SayCan SayCanPay

Ravens
(tower of hanoi)

Vicuna 32 30 18 18 27 34 34
Flan-T5 24 22 18 16 26 26 26

Ravens
(put blocks in bowls)

Vicuna 8 30 10 6 30 10 6
Flan-T5 94 94 26 18 96 22 24

BabyAI
(pickup)

Vicuna 0 1 4 12 9 12 10
Flan-T5 0 1 28 28 1 15 28

VirtualHome
Vicuna 0/20 2/20 3/20 3/20 5/20 5/20 5/20
Flan-T5 0/20 0/20 0/20 3/20 1/20 3/20 5/20

Table 5: Table shows the generalization results (i.e. the number of plans out of 100 that reached the goal) on test-generalize
split across different environments using Vicuna and Flan-T5 models. It can be observed that Beam-Action outperforms other
decoding strategies.

Data Splits and Evaluation. We aim to assess the suc-
cess, cost-effectiveness, and out-of-distribution (OOD) gen-
eralization of the generated plans. We created three data
splits for each environment using expert trajectories. (i)
train split for Can, Pay model training and few-shot prompt-
ing of the Say Model; (ii) test split assesses the LM plan-
ners’ ability to generate successful plans (i.e. reach the goal
within limited steps), and also the planners’ ability to gen-
erate cost-effective plans (i.e. plans that succeed and also
have the same plan length as the expert plan6). (iii) test-
generalize split focuses on the generalization capabilities
like handling novel initial observations (e.g., unseen col-
ors of blocks and bowls, distractors in BabyAI), longer se-
quence lengths (e.g., more blocks or disks in Ravens, more
rooms in BabyAI), and unseen tasks in VirtualHome. All test
splits have # total episodes = 100 unless specified otherwise.
Moreover, all splits are disjoint (i.e. no overlap).

Baselines. At the action level, we evaluate our decoding
scores (Say, SayCan, SayCanPay) using various decoding
strategies (Greedy and Beam-Action). Therefore, our base-
lines employ a mix of these strategies and scores. For tokens,
we use the Greedy-Token decoding strategy as a reference.
Notably, Greedy-Action SayCan is the offline planning ver-
sion of the original SayCan paper (Ahn et al. 2022).

6We split test into two parts of 100 samples to evaluate success,
cost-effectiveness. For VirtualHome, we use the annotated plans
from its dataset.

Training and Inference Details. We use 800 expert train
trajectories for each Ravens task and 400 for BabyAI. For
VirtualHome, we retained ≈ 800 compatible trajectories
for the current simulator. An additional 100 expert trajec-
tories were collected for each test split (20 for VirtualHome
test-generalize). The Can and Pay models were trained on
7 NVIDIA-DGX V-100 GPUs using the Distributed Data-
Parallel framework across 20 epochs. Training parameters
included a 1e-4 learning rate, AdamW optimizer with 1e-
5 weight decay, a batch size of 50, a train-validation split of
80-20. For inference, the Say model was loaded using Model
Parallel on the same GPUs. Inference hyperparameters are
listed in Table 6. Parameters like beam groups and diversity
penalty encourage diversity among the beams, mitigating is-
sues like returning multiple similar sequences. We used 8-bit
precision for GPU-efficient model loading (Dettmers et al.
2022).

7.3 Results

We analyze the results along the following axes: decoding
strategies, decoding scores, and transformer architectures.
We assessed planning success and generalization by execut-
ing the generated plans in simulators such as Ravens and
BabyAI, which have built-in validation checks to determine
goal achievement. For the more open-ended VirtualHome
environment, we manually reviewed fully executed plans
to ensure they met the intended task objectives. For cost-
effectiveness, we acquired expert trajectories for each test
sample using an oracle planner.

Figure 3: [Best viewed in color] From left to right: Planning success, cost-effectiveness, generalization for different beam sizes.
Note, that generalization on the test-generalize split for VirtualHome is reported as a percentage.

Comparing decoding scores. From Tables 3, 4, the perfor-
mance across various decoding scores can be summarized
as Say < SayCan ≤ SayCanPay. (i) planning success: The
SayCanPay and SayCan scores lead to comparable perfor-
mances, often outperforming Say. The Pay model’s minor
performance edge could be due to its focus on selecting ac-
tions based on long-term relevance, potentially avoiding ir-
reversible (breaking an egg) or even absorbing states (dis-
charged cellphone) from where it is impossible to reach the
goal (i.e. planning is non-ergodic). (ii) cost-effectiveness:
SayCanPay leads to a significant improvement over both Say
(≈ 11−97% for Beam-Action) and SayCan (≈ 0−33% for
Beam-Action and ≈ 1−150% for Greedy-Action). (iii) gen-
eralization: From Table 5, while the overall performance
for SayCan and SayCanPay improves over Say, a noticeable
drop in performance was observed for Ravens. This led to
the hypothesis that the learned domain models (Can, Pay)
are not generalizing to OOD data in certain environments
(see § 7.5 for potential solutions).

Comparing decoding strategies. From Tables 3, 4, 5,
the overall performance across decoding strategies fol-
lows the pattern: Greedy-Token < Greedy-Action < Beam-
Action across all splits. The Beam-Action Say, SayCan,
and SayCanPay versions show improvement over their cor-
responding Greedy-Action counterparts. (i) planning suc-
cess: Beam-Action SayCanPay beats Greedy-Action Say-
CanPay by ≈ 1 − 40%. Similar gains are also observed
with other decoding scores. (ii) cost-effectiveness: Beam-
Action SayCanPay improves over Greedy-Action SayCan-
Pay by ≈ 0− 73%. (iii) generalization: Beam-Action Say-
CanPay beats Greedy-Action SayCanPay by ≈ 0− 89%.

Comparing Transformer Architectures. We did not ob-
serve a consistent performance gain for any particular archi-
tecture, suggesting that either is apt for planning. We lack
a definitive explanation, and further research is required to
understand how each LM component impacts reasoning.

7.4 Ablation Details
• Effect of beam-size k: As seen in Figure 3, in general,

both plan success and cost-effectiveness increases with
increase in beam size with k = 1 (Greedy-Action), 2, 3

(Beam-Action). All experiments used the SayCanPay de-
coding score. However, no clear patterns were observed
for generalization results.

• Impact of Say Model: Planning failures may arise be-
cause the Say model fails to propose a right action
amongst the candidates, making Can and Pay ineffective.
We studied the Say model’s impact on overall perfor-
mance using a Perfect Say that always recommends the
correct action along with random distractors. From Ta-
ble 7, we observed 16-84% improvements in SayCan and
SayCanPay performance across various environments,
indicating the potential of an improved Say model. Thus,
using a larger model trained on more data could poten-
tially enhance performance.

• Plan length comparison: We compute a relative length=
oracle plan length / generated plan length, which com-
pares the generated and oracle plan lengths. A value = 1
indicates equal lengths and a value = 0 that the plan
length is infinity (i.e. an unsuccessful plan). As shown in
Figure 4, Beam-Action slightly improves over Greedy-
Action. Furthermore, SayCanPay scoring achieves the
best relative length (≈ 1) for both Greedy and Beam-
Action strategies signifying the cost-efficiency of the
generated plans.

• Impact of problem size on planning time. Effect of ac-
tion space: Planning time remains unaffected since the
Say model generates rather than discriminates between
actions. Effect of plan length: Greedy-Token run time
increases by ∼2s for each action step. Effect of decod-
ing strategy: ∼9s for Greedy-Token, ∼17s for Greedy-
Action, ∼35s for Beam-Action. Effect of decoding score:
Planning time is unaffected since the Can and Pay are
small LMs with negligible overheads. Quantization tech-
niques and advanced hardware can further reduce run
time and is an active research area (Dettmers et al. 2023;
Frantar et al. 2023).

• Qualitative Analysis: The Can model effectively selects
feasible actions (Figure 1). The Pay model prioritizes ac-
tions that lead to quicker goal achievement. While Pay
gives a high probability to the “done task” action link-
ing it to plan completion, the Can score negates it due to
unsatisfied “done task” preconditions.

Figure 4: [Best viewed in color] The error plot represents the variance in relative length over models Vicuna and Flan-T5. Due
to the open-ended nature of VirtualHome, the crowdsourced trajectories are not optimal, which explains why certain cases have
a relative length > 1.0. Note that Greedy-Token decoding in VirtualHome has a relative length = 0 since no generated plans
were executed successfully for both Vicuna and Flan-T5.

Parameter Value Exceptions

max new tokens 10 11 Vicuna (Ravens-Blocks),
3 (VirtualHome)

beam groups 3 4 for Flan-T5 (BabyAI)
diversity penalty 2.0
candidates (m) 6 8 for Flan-T5 (Baby-AI)
beam-size (k) 3

Table 6: Inference hyperparameters. Here the candidates (m)
and the beam-size (k) parameter are over actions. The rest of
the beam search parameters are over tokens.

Score LM Perfect

Ravens-Hanoi SayCan 48 88
SayCanPay 50 92

Ravens-Blocks SayCan 52 70
SayCanPay 54 75

BabyAI SayCan 81 90
SayCanPay 88 92

VirtualHome SayCan 49 60
SayCanPay 52 64

Table 7: The table depicts the impact of the Say model on
planning success performance. In this context, both “LM”
and “Perfect” represent Say models. “LM” corresponds to
the Vicuna model, while “Perfect Say” is an oracle Say
model that consistently proposes the correct action along
with two other distractor actions as next candidates. For all
experiments, we used the Greedy-Action decoding strategy.

7.5 Limitations and Future Work
The main limitations are (i) the need for expert trajectories
to train domain models, and (ii) the domain models’ lim-
ited adaptability to OOD data. These challenges are inher-
ent to deep learning models. However, recent advances in
LLMs offer promising solutions. For example, newer stud-
ies have leveraged LLMs for reward design due to their abil-
ity to infer intentions from minimal prompts (Kwon et al.

2023). Notably, LLMs outperform smaller counterparts like
Bert in generalization. Since both Can and Pay scores resem-
ble rewards, future studies could use LLMs to mitigate train-
ing and improve generalization. Another potential direction
could be to experiment with symbolic methods and non-
parameterized heuristics like comparing the current gener-
ated plan with the successful/expert trajectories in the buffer.

8 Conclusion
We proposed to combine the world knowledge and genera-
tive capabilities of LLMs with the systematicity of classical
planning by formulating a heuristic search-based planning
framework for LLMs. We demonstrated how to generate
plans that are both feasible and cost-effective. While LLMs
still cannot generate long-horizon plans on par with classi-
cal planners, our method overcomes issues inherent to LLM-
based planning and extends traditional planning with the ad-
vantages of language models, marking significant progress
for planning research with LLMs.

Acknowledgements
This work was supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, and is
also part of the EU H2020 ICT48 project “TAILOR” un-
der contract 952215, and the KU Leuven Research Fund
(C14/18/062).

References
Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Fu, C.; Gopalakrishnan, K.; Hausman,
K.; Herzog, A.; Ho, D.; Hsu, J.; Ibarz, J.; Ichter, B.; Irpan,
A.; Jang, E.; Ruano, R. J.; Jeffrey, K.; Jesmonth, S.; Joshi,
N. J.; Julian, R.; Kalashnikov, D.; Kuang, Y.; Lee, K.-H.;
Levine, S.; Lu, Y.; Luu, L.; Parada, C.; Pastor, P.; Quiambao,
J.; Rao, K.; Rettinghouse, J.; Reyes, D.; Sermanet, P.; Siev-
ers, N.; Tan, C.; Toshev, A.; Vanhoucke, V.; Xia, F.; Xiao, T.;
Xu, P.; Xu, S.; Yan, M.; and Zeng, A. 2022. Do As I Can,

Not As I Say: Grounding Language in Robotic Affordances.
arXiv:2204.01691.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.

Brohan, A.; Brown, N.; Carbajal, J.; Chebotar, Y.; Chen,
X.; Choromanski, K.; Ding, T.; Driess, D.; Dubey, A.; Finn,
C.; Florence, P.; Fu, C.; Arenas, M. G.; Gopalakrishnan, K.;
Han, K.; Hausman, K.; Herzog, A.; Hsu, J.; Ichter, B.; Irpan,
A.; Joshi, N.; Julian, R.; Kalashnikov, D.; Kuang, Y.; Leal, I.;
Lee, L.; Lee, T.-W. E.; Levine, S.; Lu, Y.; Michalewski, H.;
Mordatch, I.; Pertsch, K.; Rao, K.; Reymann, K.; Ryoo, M.;
Salazar, G.; Sanketi, P.; Sermanet, P.; Singh, J.; Singh, A.;
Soricut, R.; Tran, H.; Vanhoucke, V.; Vuong, Q.; Wahid, A.;
Welker, S.; Wohlhart, P.; Wu, J.; Xia, F.; Xiao, T.; Xu, P.; Xu,
S.; Yu, T.; and Zitkovich, B. 2023. RT-2: Vision-Language-
Action Models Transfer Web Knowledge to Robotic Con-
trol. arXiv:2307.15818.

Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems,
L.; Saharia, C.; Nguyen, T. H.; and Bengio, Y. 2019.
BabyAI: First Steps Towards Grounded Language Learning
With a Human In the Loop. In International Conference on
Learning Representations, volume 105.

Chiang, W.-L.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.;
Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J. E.; Stoica,
I.; and Xing, E. P. 2023. Vicuna: An Open-Source Chatbot
Impressing GPT-4 with 90%* ChatGPT Quality.

Chung, H. W.; Hou, L.; Longpre, S.; Zoph, B.; Tay, Y.; Fe-
dus, W.; Li, Y.; Wang, X.; Dehghani, M.; Brahma, S.; Web-
son, A.; Gu, S. S.; Dai, Z.; Suzgun, M.; Chen, X.; Chowd-
hery, A.; Castro-Ros, A.; Pellat, M.; Robinson, K.; Val-
ter, D.; Narang, S.; Mishra, G.; Yu, A.; Zhao, V.; Huang,
Y.; Dai, A.; Yu, H.; Petrov, S.; Chi, E. H.; Dean, J.; De-
vlin, J.; Roberts, A.; Zhou, D.; Le, Q. V.; and Wei, J.
2022. Scaling Instruction-Finetuned Language Models.
arXiv:2210.11416.

Dettmers, T.; Lewis, M.; Belkada, Y.; and Zettlemoyer, L.
2022. LLM.int8(): 8-bit Matrix Multiplication for Trans-
formers at Scale. arXiv:2208.07339.

Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer,
L. 2023. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv:2305.14314.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171–4186. Min-
neapolis, Minnesota: Association for Computational Lin-
guistics.

Ding, Y.; Zhang, X.; Amiri, S.; Cao, N.; Yang, H.; Kamin-
ski, A.; Esselink, C.; and Zhang, S. 2023. Integrating action
knowledge and LLMs for task planning and situation han-
dling in open worlds. Autonomous Robots, 47(8): 981–997.

Du, Y.; Liu, Z.; Li, J.; and Zhao, W. X. 2022. A Survey of
Vision-Language Pre-Trained Models. arXiv:2202.10936.

Frantar, E.; Ashkboos, S.; Hoefler, T.; and Alistarh, D. 2023.
GPTQ: Accurate Post-Training Quantization for Generative
Pre-trained Transformers. arXiv:2210.17323.
Golowich, N.; Moitra, A.; and Rohatgi, D. 2022. Plan-
ning in Observable POMDPs in Quasipolynomial Time.
arXiv:2201.04735.
Hao, S.; Gu, Y.; Ma, H.; Hong, J. J.; Wang, Z.; Wang, D. Z.;
and Hu, Z. 2023. Reasoning with Language Model is Plan-
ning with World Model. arXiv:2305.14992.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, I. 2022a.
Language models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International Con-
ference on Machine Learning, 9118–9147. PMLR.
Huang, W.; Xia, F.; Shah, D.; Driess, D.; Zeng, A.; Lu,
Y.; Florence, P.; Mordatch, I.; Levine, S.; Hausman, K.;
and Ichter, B. 2023. Grounded Decoding: Guiding Text
Generation with Grounded Models for Embodied Agents.
arXiv:2303.00855.
Huang, W.; Xia, F.; Xiao, T.; Chan, H.; Liang, J.; Florence,
P.; Zeng, A.; Tompson, J.; Mordatch, I.; Chebotar, Y.; Ser-
manet, P.; Brown, N.; Jackson, T.; Luu, L.; Levine, S.; Haus-
man, K.; and Ichter, B. 2022b. Inner Monologue: Em-
bodied Reasoning through Planning with Language Models.
arXiv:2207.05608.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1-2): 99–134.
Kwon, M.; Xie, S. M.; Bullard, K.; and Sadigh, D. 2023.
Reward Design with Language Models. In The Eleventh
International Conference on Learning Representations.
Lakhotia, K.; Kharitonov, E.; Hsu, W.-N.; Adi, Y.; Polyak,
A.; Bolte, B.; Nguyen, T.-A.; Copet, J.; Baevski, A.; Mo-
hamed, A.; and Dupoux, E. 2021. On Generative Spoken
Language Modeling from Raw Audio. Transactions of the
Association for Computational Linguistics, 9: 1336–1354.
Liang, J.; Huang, W.; Xia, F.; Xu, P.; Hausman, K.; Ichter,
B.; Florence, P.; and Zeng, A. 2023. Code as Poli-
cies: Language Model Programs for Embodied Control.
arXiv:2209.07753.
Liao, Y.-H.; Puig, X.; Boben, M.; Torralba, A.; and Fidler, S.
2019. Synthesizing Environment-Aware Activities via Ac-
tivity Sketches. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 6284–6292.
Lin, K.; Agia, C.; Migimatsu, T.; Pavone, M.; and Bohg, J.
2023. Text2Motion: from natural language instructions to
feasible plans. Autonomous Robots, 47(8): 1345–1365.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas,
J.; and Stone, P. 2023. LLM+P: Empowering Large
Language Models with Optimal Planning Proficiency.
arXiv:2304.11477.
Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.;
Horesh, L.; Srivastava, B.; Fabiano, F.; and Loreggia, A.
2022. Plansformer: Generating Symbolic Plans using Trans-
formers. arXiv:2212.08681.

Puig, X.; Ra, K.; Boben, M.; Li, J.; Wang, T.; Fidler, S.;
and Torralba, A. 2018. Virtualhome: Simulating household
activities via programs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 8494–
8502.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1): 5485–5551.
Silver, T.; Hariprasad, V.; Shuttleworth, R. S.; Kumar, N.;
Lozano-Pérez, T.; and Kaelbling, L. P. 2022. PDDL Plan-
ning with Pretrained Large Language Models. In NeurIPS
2022 Foundation Models for Decision Making Workshop.
Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.;
Tremblay, J.; Fox, D.; Thomason, J.; and Garg, A. 2023.
ProgPrompt: Generating Situated Robot Task Plans using
Large Language Models. In International Conference on
Robotics and Automation (ICRA).
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; Rodriguez, A.; Joulin, A.; Grave, E.; and Lample,
G. 2023. LLaMA: Open and Efficient Foundation Language
Models. arXiv:2302.13971.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. Large Language Models Still Can’t Plan
(A Benchmark for LLMs on Planning and Reasoning about
Change). In NeurIPS 2022 Foundation Models for Decision
Making Workshop.
Valmeekam, K.; Sreedharan, S.; Marquez, M.; Olmo, A.;
and Kambhampati, S. 2023. On the Planning Abilities of
Large Language Models (A Critical Investigation with a Pro-
posed Benchmark). arXiv:2302.06706.
van den Oord, A.; Li, Y.; and Vinyals, O. 2019. Rep-
resentation Learning with Contrastive Predictive Coding.
arXiv:1807.03748.
Wang, Y.; Wang, W.; Joty, S.; and Hoi, S. C. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Mod-
els for Code Understanding and Generation. In Moens, M.-
F.; Huang, X.; Specia, L.; and Yih, S. W.-t., eds., Proceed-
ings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, 8696–8708. Online and Punta
Cana, Dominican Republic: Association for Computational
Linguistics.
Xie, Y.; Yu, C.; Zhu, T.; Bai, J.; Gong, Z.; and Soh, H. 2023.
Translating Natural Language to Planning Goals with Large-
Language Models. arXiv:2302.05128.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T. L.;
Cao, Y.; and Narasimhan, K. 2023. Tree of Thoughts:
Deliberate Problem Solving with Large Language Models.
arXiv:2305.10601.
Zeng, A.; Florence, P.; Tompson, J.; Welker, S.; Chien, J.;
Attarian, M.; Armstrong, T.; Krasin, I.; Duong, D.; Sind-
hwani, V.; and Lee, J. 2021. Transporter Networks: Rear-
ranging the Visual World for Robotic Manipulation. In Pro-
ceedings of the 2020 Conference on Robot Learning, volume

155 of Proceedings of Machine Learning Research, 726–
747. PMLR.
Ziegler, D. M.; Stiennon, N.; Wu, J.; Brown, T. B.; Rad-
ford, A.; Amodei, D.; Christiano, P.; and Irving, G. 2020.
Fine-Tuning Language Models from Human Preferences.
arXiv:1909.08593.

