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Abstract

Over the past three decades, the logic programming paradigm has been successfully
expanded to support probabilistic modeling, inference and learning. The resulting
paradigm of probabilistic logic programming (PLP) and its programming languages
owes much of its success to a declarative semantics, the so-called distribution seman-
tics. However, the distribution semantics is limited to discrete random variables only.
While PLP has been extended in various ways for supporting hybrid, that is, mixed
discrete and continuous random variables, we are still lacking a declarative seman-
tics for hybrid PLP that not only generalizes the distribution semantics and the mod-
eling language but also the standard inference algorithm that is based on knowledge
compilation. We contribute the hybrid distribution semantics together with the hybrid
PLP language DC-ProbLog and its inference engine infinitesimal algebraic likelihood
weighting (IALW). These have the original distribution semantics, standard PLP lan-
guages such as ProbLog, and standard inference engines for PLP based on knowledge
compilation as special cases. Thus, we generalize the state-of-the-art of PLP towards
hybrid PLP in three different aspects: semantics, language and inference. Furthermore,
IALW is the first inference algorithm for hybrid probabilistic programming based on
knowledge compilation.

Keywords: Probabilistic Programming, Declarative Semantics, Discrete-Continuous
Distributions, Likelihood Weighting, Logic Programming, Knowledge Compilation,
Algebraic Model Counting

1. Introduction

Probabilistic logic programming (PLP) is at the crossroads of two parallel devel-
opments in artificial intelligence and machine learning. On the one hand, there are
the probabilistic programming languages with built-in support for machine learning.
These languages can be used represent very expressive – Turing equivalent – proba-
bilistic models, and they provide primitives for inference and learning. On the other
hand, there is the longstanding open question for integrating the two main frameworks
for reasoning, that is logic and probability, within a common framework [Russell, 2015,
De Raedt et al., 2016]. Probabilistic logic programming [De Raedt and Kimmig, 2015,



Riguzzi, 2018] fits both paradigms and goes back to at least the early 90s with seminal
works by Sato [1995] and Poole [1993]. Poole introduced ICL, the Independent Choice
Logic, an elegant extension of the Prolog programming language, and Sato introduced
the distribution semantics for probabilistic logic programs in conjunction with a learn-
ing algorithm based on expectation maximization (EM). The PRISM language [Sato,
1995], which utilizes the distributions semantics and the EM learning algorithm con-
stitutes, to the best of the authors’ knowledge, the very first probabilistic programming
language with support for machine learning.

Today, there is a plethora of probabilistic logic programming languages, most of
which are based on extensions of the ideas by Sato and Poole [Sato and Kameya,
1997, Kersting and De Raedt, 2000, Vennekens et al., 2004, De Raedt et al., 2007].
However, the vast majority of them is restricted to discrete, and more precisely finite
categorical, random variables. When merging logic with probability, the restriction
to discrete random variables is natural and allowed Sato to elegantly extend the logic
program semantics into the celebrated distribution semantics. However, it is also an
important restriction, which raises the question of how to extend the semantics towards
hybrid, i.e. discrete-continuous, random variables.

Defining the semantics of probabilistic programming language with support for
random variables with infinite and possibly uncountable sample spaces is a much
harder task. This can be observed when looking at the development of important im-
perative and functional probabilistic programming languages [Goodman et al., 2008,
Mansinghka et al., 2014] that support continuous random variables. These works ini-
tially focused on inference, typically using a particular Monte Carlo approach, yielding
an operational or procedural semantics. It is only follow-up work that started to address
a declarative semantics for such hybrid probabilistic programming languages. [Staton
et al., 2016, Wu et al., 2018].

The PLP landscape has experienced similar struggles. First approaches for hybrid
PLP languages were achieved by restricting the language [Gutmann et al., 2010, 2011,
Islam et al., 2012] or via recourse to procedural semantics [Nitti et al., 2016]. The key
contributions of this paper are:

C1 We introduce the hybrid distribution semantics for mixed discrete-continuous
probabilistic logic programming. The hybrid distribution semantics extends Sato’s
distribution semantics and supports:

• a countably infinite number of random variables,

• a uniform treatment of discrete and continuous random variables,

• a clear separation between probabilistic dependencies and logical depen-
dencies by extending the ideas of Poole [2010] to the hybrid domain.

C2 We introduce DC-ProbLog, an expressive PLP language in the discrete-continuous
domain, which incorporates the hybrid distribution semantics. DC-ProbLog has
standard discrete PLP, e.g. ProbLog [Fierens et al., 2015], as a special case (un-
like other hybrid PLP languages [Gutmann et al., 2011, Nitti et al., 2016]).
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C3 We introduce a novel inference algorithm, infinitesimal algebraic likelihood weight-
ing (IALW), for hybrid PLPs, which extends the standard knowledge compila-
tion approach used in PLP towards mixed discrete continuous distributions, and
which provides an operational semantics for hybrid PLP.

In essence, our contributions C1 and C2 generalize both Sato’s distribution seman-
tics and discrete PLP such that in the absence of random variables with infinite sample
spaces we recover the ProbLog language and declarative semantics. It is noteworthy
that our approach of disentangling probabilistic dependencies and logical ones, allows
us to express more general distributions than state-of-the-art approaches such e.g. [Gut-
mann et al., 2011, Nitti et al., 2016, Azzolini et al., 2021]. Contribution C3 takes this
generalization to the inference level: in the exclusive presence of finite random vari-
ables our IALW algorithm reduces to ProbLog’s current inference algorithm [Fierens
et al., 2015].

2. A Panoramic Overview

Before diving into the technical details of the paper we first give a high-level
overview of the DC-ProbLog language. This will also serve us as roadmap to the
remainder of the paper. We will first introduce, by example, the DC-ProbLog language
(Section 2.1). The formal syntax and semantics of which are discussed in Section 3 and
Section 4. In Section 2.2 we demonstrate how to perform probabilistic inference in DC-
ProbLog by translating a queried DC-ProbLog program to an algebraic circuit [Zuid-
berg Dos Martires et al., 2019a]. Before giving the details of this transformation in
Section 6 and Section 7, we define conditional probability queries on DC-ProbLog
programs (Section 5). The paper ends with a discussion on related work (Section 8)
and concluding remarks in Section 9.

Throughout the paper, we assume that the reader is familiar with basic concepts
from logic programming and probability theory. We provide, however, a brief refresher
of basic logic programming concepts in Appendix A. In Appendix B we give a tabular
overview of notations used, and in the remaining sections of the appendix we give
proofs to propositions and theorems or discuss is in more detail some of the more
subtle technical details.

2.1. Panorama of the Syntax and Semantics

Example 2.1. A shop owner creates random bags of sweets with two independent
random binary properties (large and balanced). He first picks the number of red sweets
from a Poisson distribution whose parameter is 20 if the bag is large and 10 otherwise,
and then the number of yellow sweets from a Poisson whose parameter is the number
of red sweets if the bag is balanced and twice that number otherwise. His favorite type
of bag contains more than 15 red sweets and no less than 5 yellow ones. We model this
in DC-ProbLog as follows:

1 0.5::large.
2 0.5::balanced.
3
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4 red ~ poisson(20) :- large.
5 red ~ poisson(10) :- not large.
6

7 yellow ~ poisson(red) :- balanced.
8 yellow ~ poisson(2*red) :- not balanced.
9

10 favorite :- red > 15, not yellow < 5.

In the first two lines we encounter probabilistic facts, a well-known modelling construct
in discrete PLP languages (e.g. [De Raedt et al., 2007]). Probabilistic facts, written
as logical facts labeled with a probability, express Boolean random variables that are
true with the probability specified by the label. For instance, 0.5::large expresses
that large is true with probability 0.5 and false with probability 1-0.5.

In Lines 4 to 8, we use distributional clauses (DCs); introduced by Gutmann et al.
[2011] into the PLP literature. DCs are of the syntactical form v~d:-b and define
random variables v that are distributed according to the distribution d, given that b
is true. For example, Line 4 specifies that when large is true, red is distributed
according to a Poisson distribution. We call the left-hand argument of a ~/2 predicate
in infix notation a random term. The random terms in the program above are red and
yellow.

Note how random terms reappear in three distinct places in the DC-ProbLog pro-
gram. First, we can use them as parameters to other distributions, e.g. yellow ~
poisson(red). Second, we can use them within arithmetic expression, such as 2*red
in Line 8. Third, we can use them in comparison atoms (red>15) in Line 10. The com-
parison atoms appear in the bodies of logical rules that express logical consequences
of probabilistic event, for example having more than 15 red sweets and less than 5
yellow ones.

Probabilistic facts and distributional clauses are the main modelling constructs to
define random variables in probabilistic logic programs. As they are considered to be
fundamental building blocks of a PLP language, the semantics of a language are de-
fined in function of these syntactical constructs (cf.. [Fierens et al., 2015, Gutmann
et al., 2011]). We now make an important observation: probabilistic facts and distri-
butional clauses can be deconstructed into a much more fundamental concept, which
we call the distributional fact. Syntactically, a distributional fact is of the form v~d.
That is, a distributional clause with an empty body. As a consequence, probabilistic
facts and distributional clauses do not constitute fundamental concepts in PLP but are
merely special cases, i.e. while helpful for writing concise programs, they are only of
secondary importance when it comes to semantics.

Example 2.2. We now rewrite the program in Example 2.1 using distributional facts
only. Note how probabilistic facts are actually distributional facts in disguise. The
random variable is now distributed according to a Bernoulli distribution (flip) and
the atom of the probabilistic fact is the head of a rule with a probabilistic comparison
in its body (e.g. Lines 1 and 2 in the program below). Rewriting distributional facts is
more involved. The main idea is to introduce a distinct random term for each distri-
butional clause. Take for example, the random term red in Example 2.1. This random
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term encodes, in fact, two distinct random variables, which we denote in the program
below red_large and red_small. We now have to propagate this rewrite through
the program and replace every occurrence of red with red_large and red_small.
This is why we get instead of two distributional clauses for yellow, four distributional
facts. It explains also why we get instead of one rule for favorite in Example 2.1 four
rules now.

1 rv_large ~ flip(0.5).
2 large :- rv_large=:=1.
3 rv_balanced ~ flip(0.5).
4 balanced :- rv_balanced=:=1.
5

6 red_large ~ poisson(20).
7 red_small ~ poisson(10).
8

9 yellow_large_balanced ~ poisson(red_large).
10 yellow_large_unbalanced ~ poisson(2*red_large).
11 yellow_small_balanced ~ poisson(red_small).
12 yellow_small_unbalanced ~ poisson(2*red_small).
13

14 favorite :- large, red_large > 15,
15 balanced, not yellow_large_balanced < 5.
16 favorite :- large, red_large > 15,
17 not balanced, not yellow_large_unbalanced < 5.
18 favorite :- not large, red_small > 15,
19 balanced, not yellow_small_balanced < 5.
20 favorite :- not large, red_small > 15,
21 not balanced, not yellow_small_unbalanced < 5.

The advantage of using probabilistic facts and distributional clauses is clear. They
allow us to write much more compact and readable programs. However, as they do
not really constitute fundamental building blocks of PLP, defining the semantics of a
PLP language is much more intricate. For this reason we adapt a two-stage approach
to define the semantics of DC-ProbLog. We first define the semantics of DF-PLP,
a bare-bones language with no syntactic sugar only relying on distributional facts to
define random variables. This happens in Section 3. During the second stage we define
the program transformations to rewrite syntactic sugar (e.g. distributional clauses) as
distributional facts. The semantics of DF-PLP and the program transformations then
give us the semantics of the DC-ProbLog language (cf. Section 4).

2.2. Panorama of the Inference

The part of the paper concerning inference consists of three sections. First, we start
in Section 5 to define a query to a DC-ProbLog program. For instance, we might be
interested in the probability

P(favorite = ⊤, large = ⊥)
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In other words, the joint probability of favorite being true and large being false.
While the example query above is simply a joint probability, we generalize this in
Section 5 to conditional probabilities (possible with zero-probability events in the con-
ditioning set).

Second, we map the queried ground program to a labeled Boolean formula. Con-
trary to the approach taken by Fierens et al. [2015] the labels are not probabilities (as
usual in PLP) but indicator functions. This mapping to a labeled Boolean formula hap-
pens again in a series of program transformations, which we describe in Section 6. On
of these steps is obtaining the relevant ground program to a query. For example, for the
query above only the last two rules for favorite matter.

favorite :- not large, rs > 15, balanced, not ysb < 5.
favorite :- not large, rs > 15, not balanced, not ysu < 5.

Here, we abbreviated red_small as rs and yellow_small_balanced and yel-
low_small_unbalanced as ysb and ysu, respectively. We can further rewrite these
rules by replacing large and balanced with equivalent comparison atoms and push-
ing the negation into the comparisons:

favorite :- rvl=:=0, rs > 15, rvb=:=1, ysb >= 5.
favorite :- rvl=:=0, rs > 15, rvb=:=0, ysu >= 5.

Again using abbreviations: rvl for rv_large and rvb for rv_balanced.
In Section 7 we then show how to compute the expected value of the labeled propo-

sitional Boolean formula corresponding to these rules by compiling it into an algebraic
circuit, which is graphically depicted in Figure 2.1. In order to evaluate this circuit and
obtain the queried probability (expected value), we introduce the IALW algorithm.

The idea of IALW is the following: sample the random variables dangling at the
bottom of the circuit by sampling parents before children. For instance, we first sample
from poisson(10) (at the very bottom) before sampling from poisson(rs) using the
sampled value of the parent as the parameter of the child. Once we reach the compar-
ison atoms (e.g. ysb ≥ 5) we stick in the sampled values for the mentioned random
variables. This evaluates the comparisons to either 1 or 0, for which we then perform
the sums and products as prescribed by the circuit. We get a Monte Carlo estimate of
the queried probability by averaging over multiple such evaluations of the circuit.

The method, as sketched here, is in essence the probabilistic inference algorithm
Sampo presented in [Zuidberg Dos Martires et al., 2019b]. The key contribution of
IALW, which we discuss in Section 7, is to extend Sampo such that conditional infer-
ence with zero probability events is performed correctly.
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⊗

⊕

⊗

rvl = 0rs > 15

⊗ ⊗

rvb = 1ysb ≥ 5

flip(0.5)poisson(rs) poisson(2 × rs)

rvb = 0 ysu ≥ 5

flip(0.5)poisson(10)

Figure 2.1: Graphical representation of the computation graph (i.e. algebraic circuit) used to compute the
probability (favorite = ⊤, large = ⊥) using the IALW algorithm introduced in Section 7.
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3. DF-PLP

Sato’s distribution semantics [Sato, 1995] start from a probability measure over a
countable set of facts F , the so-called basic distribution, and extends this to a proba-
bility measure over the Herbrand interpretations of the full program. It is worth noting
that the basic distribution is defined independently of the logical rules and that the
random variables are mutually marginally independent.

In our case, the set F consists of ground Boolean comparison atoms over the
random variables, for which we drop the mutual marginal independence assumption.
These comparison atoms form an interface between the random variables (represented
as terms) and the logical layer (clauses) that reasons about truth values of atoms.
While Gutmann et al. [2011] used the same principle to define the distribution se-
mantics for Distributional Clauses, they did not support negation. [Nitti et al., 2016]
extended the fixed point semantics for hybrid probabilistic logic programs (also intro-
duced by Gutmann et al. [2011]) to stratified programs with negation . However, by
doing so Nitti et al. [2016] introduced a procedural element to the semantics.

In this section we introduce the syntax and declarative semantics of DF-PLP–
a probabilistic programming language with a minimal set of built-in predicates and
functors. We do this in three steps. Firstly, we discuss distributional facts and the
probability measure over random variables they define (Section 3.1). Secondly, we in-
troduce the Boolean comparison atoms that form the interface layer between random
variables and a logic program (Section 3.2). Thirdly, we add the logic program itself
(Section 3.3). An overview table of the notation related to semantics is provided in
Appendix B.

Definition 3.1 (Reserved Vocabulary). We use the following reserved vocabulary (built-
ins), whose intended meaning is fixed across programs:

• a finite set ∆ of distribution functors.

• a finite set Φ of arithmetic functors.

• A finite set Π of binary comparison predicates,

• the binary predicate ~/2 (in infix notation).

Examples of distribution functors that we have already seen in Section 2 are pois-
son/1 and flip/1 but may also include further functors such as normal/2 to denote
normal distributions. Possible arithmetic functors are */2 (cf. Example 2.1) but also
max/2, +/2, abs/1, etc.. Binary comparison predicates (in Prolog syntax and infix no-
tation) are </2, >/2, =</2, >=/2, =:=/2, =\=/2. The precise definitions of ∆, Φ and Π
are left to system designers implementing the language.

Definition 3.2 (Regular Vocabulary). We call an atom µ(ρ1, . . . , ρk) whose predicate
µ/k is not part of the reserved vocabulary a regular atom. The set of all regular atoms
constitutes the regular vocabulary.

Note that the arguments of a predicate µ/k can contain element of D and F . In
this case they will have a purely logical meaning. We discuss this in more detail in
Definition 4.19.
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As a brief comment on notation: in the remainder of the paper we will usually
denote logic program expressions in teletype font (e.g. 4>x) when giving examples.
When defining new concepts or stating theorems and propositions, we will use the
Greek alphabet.

3.1. Distributional Facts and Random Variables

Definition 3.3 (Distributional Fact). A distributional fact is of the form ν ∼ δ, with ν a
regular ground term, and δ a ground term whose functor is in ∆. The distributional fact
states that the ground term ν is interpreted as a random variable distributed according
to δ.

Definition 3.4 (Sample Space). Let ν be be a random variable distributed according
to δ. The set of possible samples (or values) for ν is the sample space denoted by Ων
and which is determined by δ. We denote a sample from Ων by ω(ν), where ω is the
sampling or value function.

Definition 3.5 (Distributional Database). A distributional database is a countable set
D = {ν1 ∼ δ1, ν2 ∼ δ2, . . .} of distributional facts, with distinct νi. We let V =
{ν1, ν2, . . . } denote the set of random variables.

Example 3.6. The following distributional database encodes a Bayesian network with
normally distributed random variables, two of which serve as parameters in the distri-
bution of another one. We thus haveV = {x, y, z}.

1 % distributional facts D
2 x ~ normal(5,2).
3 y ~ normal(x,7).
4 z ~ normal(y,1).

In order for a distributional databaseD to be meaningful, it has to encode a unique
joint distribution over the variables V. The key idea is to view the set of random
variables as the nodes of a Bayesian network, where each node’s distribution is param-
eterized by the node’s parents.

Definition 3.7 (Parent, Ancestor). Let D be a distributional database. For facts νp ∼

δp and νc ∼ δc in D. The random variable νp is a parent of the child random variable
νc if and only if νp appears in δc. We define ancestor to be the transitive closure of
parent. A node’s ancestor set is the set of all its ancestors.

Example 3.8 (Ancestor Set). We graphically depict the ancestor set of the distribu-
tional database in Example 3.6 in Figure 3.1.

x y z

Figure 3.1: Directed acyclic graph representing the ancestor relationship between the random variables in
Example 3.6. The ancestor set of x is the empty set, the one of y is {x} and the one of z is {x, y}.
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Definition 3.10 (Well-Defined Distributional Database). A distributional database D
is called well-defined if and only if it satisfies the following criteria:

W1 Each ν ∈ V has a finite set of ancestors.

W2 The ancestor relation on the variablesV is acyclic.

W3 If ν ∼ δ ∈ D and the parents of ν are {ν1, . . . , νm}, then replacing each occurrence
of νi in δ by a sample ω(νi) always results in a well-defined distribution for ν.

The distributional database in Example 3.6 is well-defined: the ancestor relation is
acyclic and finite, and as normally distributed random variables are real-valued, using
such a variable as the mean of another normal distribution is always well-defined. The
database would no longer be well-defined after adding w ~ poisson(x), as not all
real numbers can be used as a parameter of a Poisson distribution.

Definition 3.11. A value assignment ω(V) is a combined value assignment to all ran-
dom variablesV = {ν1, ν2, ...}, i.e., ω(V) = (ω(ν1), ω(ν2), . . .).

Proposition 3.12. A well-defined distributional databaseD defines a unique probabil-
ity measure PV on value assignments ω(V).

Proof. See Appendix C.1. □

3.2. Boolean Comparison Atoms over Random Variables

Starting from the distribution over random variables defined by a well-defined dis-
tributional database, we now introduce the corresponding distribution over Boolean
comparison atoms, which corresponds to the basic (discrete) distribution in Sato’s dis-
tribution semantics.

Definition 3.13 (Boolean Comparison Atoms). LetD be a well-defined distributional
database. A binary comparison atom γ1▷◁γ2 over D is a ground atom with predicate
▷◁∈ Π . The ground terms γ1 and γ2 are either random variables in V or terms whose
functor is in Φ. We denote by F the set of all Lebesgue-measurable Boolean compari-
son atoms overD.

Example 3.14. Examples of Boolean comparison atoms over the distributional data-
base of Example 3.6 include z>10, x<y, abs(x-y)=<1, and 7*x=:=y+5.

Proposition 3.15. The probability measure PV, defined by a well-defined distribu-
tional database D, induces a unique probability measure PF over value assignments
to the comparison atoms F .

Proof. See Appendix C.2. □
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3.3. Logical Consequences of Boolean Comparisons
We now define the semantics of a DF-PLP program, i.e., extend the basic distribu-

tion PF over the comparison atoms of a distributional database to a distribution over
the Herbrand interpretations of a logic program using said database.

Definition 3.16 (DF-PLP Program). A DF-PLP program PDF = D ∪ R consists of a
well-defined distributional database D (Definition 3.10), comparison atoms F (Defi-
nition 3.13), and a normal logic program R where clause heads belong to the regular
vocabulary (cf. Definition 3.2), and which can use comparison atoms from F in their
bodies.

Example 3.17. We further extend the running example.

1 % distributional facts D
2 x ~ normal(5,2).
3 y ~ normal(x,7).
4 z ~ normal(y,1).
5 % logic program R
6 a :- abs(x-y) =< 1.
7 b :- not a, z>10.

The logic program defines two logical consequences of Boolean comparisons over the
Bayesian network, where a is true if the absolute difference between random variables
x and y is at most one, and b is true if a is false, and the random variable z is greater
than 10.

In order to extend the basic distribution to logical consequences, i.e. logical rules,
we require the notion of a consistent comparisons database (CCD). The key idea is
that samples of the random variables in D jointly determine a truth value assignment
to the comparison atoms in F .

Definition 3.18 (Consistent Comparisons Database). LetD be a well-defined distribu-
tional database, F = {κ1, κ2, . . .} the corresponding set of measurable Boolean com-
parison atoms, and ω(V) a value assignment to all random variablesV = {ν1, ν2, ...}.
We define Iω(V)(κi) = ⊤ if κi is true after setting all random variables to their values
under ω(V), and Iω(V)(κi) = ⊥ otherwise. Iω(V) induces the consistent comparisons
database Fω(V) = {κi | Iω(V)(κi) = ⊤}.

To define the semantics of a DF-PLP program PDF , we now require that, given a
CCD Fω(V), the logical consequences in PDF are uniquely defined. As common in the
PLP literature, we achieve this by requiring the program to have a two-valued well-
founded model [Van Gelder et al., 1991] for each possible value assignment ω(V).

Definition 3.19 (Valid DF-PLP Program). A DF-PLP program PDF = D∪R is called
valid if and only if for each CCD Fω(V), the logic program Fω(V) ∪R has a two-valued
well-founded model.

We follow the common practice of defining the semantics with respect to ground
programs; the semantics of a program with non-ground R is defined as the semantics
of its grounding with respect to the Herbrand universe.
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Proposition 3.20. A valid DF-PLP program PDF induces a unique probability mea-
sure PPDF over Herbrand interpretations.

Proof. See Appendix C.3. □

Definition 3.21. We define the declarative semantics of a DF-PLP program PDF to be
the probability measure PPDF .

In contrast to the imperative semantics of Nitti et al. [2016], in DF-PLP the connec-
tion between comparison atoms and the logic program is purely declarative. That is,
logic program negation on comparison atoms negates the (interpreted) comparison. For
example, if we have a random variable n, then n>=2 is equivalent to not n<2. Such
equivalences do not hold in the stratified programs introduced by Nitti et al. [2016].
This then allows the programmer to refactor the logic part as one would expect.

4. DC-ProbLog

While the previous section has focused on the core elements of the DC-ProbLog
language, we now introduce syntactic sugar to ease modeling. We consider three kinds
of modeling patterns in DF-PLP, and introduce a more compact notation for each of
them. We focus on examples and intuitions first. Subsequently, we formally define the
semantics of DC-ProbLog (DF-PLP + syntactic sugar) in Section 4.2.

4.1. Syntactic Sugar: Syntax and Examples
4.1.1. Boolean Random Variables

The first modelling pattern concerns Boolean random variables, which we already
encountered in Section 2.1 as probabilistic facts (in DC-ProbLog) or as a combination
of a Bernoulli random variable, a comparison atom, and a logic rule (in DF-PLP).
Below we give a more concise example.

Example 4.1. We model, in DF-PLP, an alarm that goes off for different reasons.

1 issue1 ~ flip(0.1).
2 issue2 ~ flip(0.6).
3 issue3 ~ flip(0.3).
4

5 alarm :- issue1=:=1, not issue2=:=1.
6 alarm :- issue3=:=1, issue1=:=0.
7 alarm :- issue2=:=1.

To make such programs more readable, we borrow the well-known notion of prob-
abilistic fact from discrete PLP, which directly introduces a logical atom as alias for
the comparison of a random variable with the value 1, together with the probability of
that value being taken.

Definition 4.2 (Probabilistic Fact). A probabilistic fact is of the form p :: µ, where p
is an arithmetic term that evaluates to a real number in the interval [0, 1] and µ is a
regular ground atom.
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Example 4.3. We use probabilistic facts to rewrite the previous example.

1 0.1::problem1.
2 0.6::problem2.
3 0.3::problem3.
4

5 alarm :- problem1, not problem2.
6 alarm :- problem3, not problem1.
7 alarm :- problem2.

4.1.2. Probabilistically Selected Logical Consequences
The second pattern concerns situations where a random variable with a finite do-

main is used to model a choice between several logical consequences:

Example 4.4. We use a random variable to model a choice between whom to call upon
hearing the alarm.

1 call ~ finite([0.6:1,0.2:2,0.1:3]).
2 alarm.
3 call(mary) :- call=:=1, alarm.
4 call(john) :- call=:=2, alarm.
5 call(police) :- call=:=3, alarm.

To more compactly specify such situations, we borrow the concept of an annotated
disjunction from discrete PLP [Vennekens et al., 2004].

Definition 4.5 (Annotated Disjunction). An annotated disjunction (AD) is a rule of the
form

p1 :: µ1; . . . ; pn :: µn :– β.

where the pi’s are arithmetic terms each evaluating to a number in [0, 1] with a total
sum of at most 1. The µ)i’s are regular gorund atoms, and β is a (possibly empty)
conjunction of literals.

The informal meaning of such an AD is "if β is true, it probabilistically causes one
of the µi (or none of them, if the probabilities sum to less than one) to be true as well".

Example 4.6. We now use an AD for the previous example.

alarm.
0.6::call(mary); 0.2::call(john); 0.1::call(police) :- alarm.

It is worth noting that the same head atom may appear in multiple ADs, whose
bodies may be non-exclusive, i.e., be true at the same time. That is, while a single
AD can be used to model a multi-valued random variable, not all ADs encode such
variables.

Example 4.7. The following program models the effect of two kids throwing stones at
a window.
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0.5::throws(suzy).
throws(billy).

0.8::effect(broken); 0.2::effect(none) :- throws(suzy).
0.6::effect(broken); 0.4::effect(none) :- throws(billy).

Here, we have P(effect(broken)) = 0.76 and P(effect(none)) = 0.46, as there
are worlds where both effect(broken) and effect(none) hold. The two ADs do
hence not encode a categorical distribution. This is explicit in the DF-PLP program,
which contains two random variables (x1 and x2):

x0 ~ flip(0.5).
throws(suzy) :- x0=:=1.
throws(billy).

x1 ~ finite([0.8:1,0.2:2]).
effect(broken) :- x1=:=1, throws(suzy).
effect(none) :- x1=:=2, throws(suzy).
x2 ~ finite([0.6:1,0.4:2]).
effect(broken) :- x2=:=1, throws(billy).
effect(none) :- x2=:=2, throws(billy).

4.1.3. Context-Dependent Distributions
The third pattern is concerned with situations where the same conclusion is based

on random variables with different distributions depending on specific properties of the
situation, as illustrated by the following example.

Example 4.8. We use two separate random variables to model that whether a machine
works depends on the temperature being below or above a threshold. The temperature
follows different distributions based on whether it is a hot day or not, but the threshold
is independent of the type of day.

1 0.2::hot.
2

3 temp_hot ~ normal(27,5).
4 temp_not_hot ~ normal(20,5).
5

6 works :- hot, temp_hot<25.0.
7 works :- not hot, temp_not_hot<25.0.

To more compactly specify such situations, we borrow the syntax of distributional
clauses from the DC language [Gutmann et al., 2011], which we already encountered
in Section 2.1.

Definition 4.9 (Distributional Clause). A distributional clause (DC) is a rule of the
form

τ ∼ δ :– β.

where τ is a regular ground expression, the functor of δ is in ∆, and β is a conjunction
of literals.
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We call the left-hand side of the ∼/2 prediate in a distributional clause a random
term and the right-hand side a distribution term. Note that random terms cannot always
be interpreted as random variables, which we discuss now.

The informal meaning of a distributional clause is "if β is true, then the random
term τ refers to a random variable that follows a distribution given by the distribution
term δ". Here, the distinction between refers to a random variable and is a random
variable becomes crucial, as we will often have several distributional clauses for the
same random term. This is also the case in the following example.

Example 4.10. Using distributional clauses, we can rewrite the previous example with
a single random term temp as

1 0.2::hot.
2

3 temp ~ normal(27,5) :- hot.
4 temp ~ normal(20,5) :- not hot.
5

6 works :- temp < 25.0.

The idea is that we still have two underlying random variables, one for each distribu-
tion, but the logic program uses the same term to refer to both of them depending on the
logical context. The actual comparison facts are on the level of these implicit random
variables, and temp<0.25 refers to one of them depending on context, just as in the
original example.

4.2. Syntactic Sugar: Semantics
We now formalize the declarative semantics of DC-ProbLog, i.e. DF-PLP extended

with probabilistic facts, annotated disjunctions and distributional clauses, The idea is
to define program transformations that eliminate these three modelling constructs from
a DC-ProbLog program, resulting in a DF-PLP program for which we have defined the
semantics in Section 3.

Throughout this section, we will treat distributional facts as distributional clauses
with empty bodies, and we will only consider ground programs for ease of notation.
As usual, a non-ground program is shorthand for its Herbrand grounding.

Definition 4.11 (Statement). A DC-ProbLog statement is either a probabilistic fact, an
annotated disjunction, a distributional clause, or a normal clause.

Definition 4.12 (DC-ProbLog program). A DC-ProbLog program P is a countable set
of ground DC-ProbLog statements.

4.2.1. Eliminating Probabilistic Facts and Annotated Disjunctions
Example 4.13. We use the following DC-ProbLog program as running example.

1 p ~ beta(1,1).
2 p::a.
3 b ~ normal(3,1) :- a.
4 b ~ normal(10,1) :- not a.
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5 c ~ normal(b,5).
6 0.2::d; 0.5::e; 0.3::f :- not b<5, b < 10.
7 g :- a, not f, b+c<15.

Definition 4.14 (Eliminating Probabilistic Facts and ADs). Let P be a DC-ProbLog
program. We define the following transformation rules to eliminate probabilistic facts
and annotated disjunctions.

• Replace each probabilistic fact p :: µ in P by

ν ∼ f lip(p).
µ :– ν =:= 1.

with a fresh random variable ν for each probabilstic fact.

• Replace each AD p1 :: µ1; . . . ; pn :: µn :– β in P by

ν ∼ f inite([p1 : 1, . . . , pn : n])
µ1 :– ν =:= 1, β.
. . .

µn :– ν =:= n, β.

with a fresh random variable ν for each AD.

Note that if the probability label(s) of a fact or AD include random terms, as in
the case of p::a in the Example 4.13, then these are parents of the newly introduced
random variable. However, the new random variable will not be a parent of other
random variables, as they are only used locally within the new fragments. They thus
introduce neither cycles nor infinite ancestor sets into the program.

Definition 4.15 (AD-Free Program). An AD-free DC-ProbLog program P∗ is a DC-
ProbLog program that contains neither probabilistic facts nor annotated disjunctions.
We denote byHP∗ the set of atoms τ ∼ δ that appear as head of a distributional clause
in P∗, and by TP∗ the set of random terms inHP∗ .

Example 4.16. Applying Definition 4.14 to Example 4.13 results in

1 p ~ beta(1,1).
2 x ~ flip(p).
3 a :- x =:= 1.
4 b ~ normal(3,1) :- a.
5 b ~ normal(10,1) :- not a.
6 c ~ normal(b,5).
7 y ~ finite([0.2:1,0.5:2,0.3:3]).
8 d :- y =:= 1, not b<5, b < 10.
9 e :- y =:= 2, not b<5, b < 10.

10 f :- y =:= 3, not b<5, b < 10.
11 g :- a, not f, b+c<15.

We have HP∗ = { p~beta(1,1), x~flip(p), b~normal(3,1), b~normal(10,1),
c~normal(b,5), y~finite[0.2:1,0.5:2.0.3:3]) }. Furthermore, we also have
TP∗ = {p, x, b, c, y}.
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4.2.2. Eliminating Distributional Clauses
While eliminating probabilistic facts and annotated disjunctions is a rather straight-

forward local transformation, eliminating distributional clauses is more involved. The
reason is that a distributional clause has a global effect in the program, as it defines a
condition under which a random term has to be interpreted as a specific random vari-
able when mentioned in a distributional clause or comparison atom. Therefore, elim-
inating a distributional clause involves both introducing the relevant random variable
explicitly to the program and pushing the condition from the body of the distributional
clause to all the places in the logic program that interpret the original random term.

Before delving into the mapping from an AD-free DC-ProbLog to a DF-PLP pro-
gram, we introduce some relevant terminology.

Definition 4.17 (Parent, Ancestor). Given an AD-free program P∗ with τp and τc in
TP∗ . We call τp a parent of τc if and only if τp appears in the distribution term δc
associated with τc in HP∗ (τc ∼ δc ∈ HP∗ ). We define ancestor to be the transitive
closure of parent.

p

x

b

c

y

Figure 4.1: Directed acyclic graph representing the ancestor relationship between the random variables in
Example 4.15. The random terms p, b and y have the empty set as their ancestor set. The ancestor set of x is
{p} and c is {b}.

For random terms, we distinguish interpreted occurrences of the term that need to
be resolved to the correct random variable from other occurrences where the random
term is treated as any other term in a logic program, e.g., as an argument of a logical
atom.

Definition 4.19 (Interpreted Occurrence). An interpreted occurrence of a random term
τ in an AD-free program P∗ is one of the following:

• the use of τ as parameter of a distribution term in the head of a distributional
clause in P∗

• the use of τ in a comparison literal in the body of a (distributional or normal)
clause in P∗

We say that a clause interprets τ if there is at least one interpreted occurrence of τ in
the clause.

Definition 4.20 (Well-Defined AD-free Program). Given an AD-free program P∗ with
CP∗ the set of distributional clauses in P∗, we call CP∗ well-defined if the following
conditions hold:
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DC1 For each random term τ ∈ TP∗ , the number of distributional clauses τ ∼ δ :– β
in P∗ is finite, and these clauses all have mutually exclusive bodies. This means
that only a single rule can be true at once.

DC2 All distribution terms in CP∗ are well-defined for all possible values of the ran-
dom terms they interpret.

DC3 Each random term has a finite set of ancestors.

DC4 The ancestor relation is acyclic.

We now discuss how to reduce a (valid) DC-ProbLog program to a DF-PLP pro-
gram. This happens in two steps. First, we eliminate distributional clauses and intro-
duce appropriate distributional facts instead (see Definition 4.21). Second, we contex-
tualize interpreted occurrences of random terms in clause bodies (see Definition 4.22).

The first step introduces a new built-in predicate rv/2 that associates random terms
in a well-defined AD-free program with explicit random variables in the DF-PLP pro-
gram it is transformed into. This predicate is used in the bodies of clauses that interpret
random terms (cf. Definition 4.19) to appropriately contextualize those.

The idea behind the built-in rv/2 predicate is to restrict the applicability of a clause
to contexts where all the random terms can be interpreted, i.e. to contexts where the
random terms are random variables. This implies that in contexts where such a random
term cannot be interpreted, the entire body evaluates to false.

Definition 4.21 (Eliminating Distributional Clauses). Let CP∗ be a well-defined set of
distributional clauses. We denote by δρ1,...,ρk a distribution term that involves exactly k
different random terms ρ1, . . . , ρk. For each ground random term τ ∈ TP∗ we simulta-
neously define the following sets:

• the set of distributional facts for τ

D(τ) = {τβν1,...,νk ∼ δ
β
ν1,...,νk

| (τ ∼ δρ1,...,ρk :– β ∈ CP∗ , v1 ∈ V(ρ1), . . . , vk ∈ V(ρk)}

• the set of (fresh) random variables for τ

V(τ) = {ν | ν ∼ δ ∈ D(τ)}

• the set of context clauses for τ

Rc(τ) ={
rv(τ, τβν1,...,νk ) :– rv(ρ1, ν1), . . . , rv(ρk, νk), β∣∣∣ τ ∼ δρ1,...,ρk :– β ∈ CP∗ , ν1 ∈ V(ρ1), . . . , νk ∈ V(ρk)

}
At first glance, Definition 4.21 seems to contain a mutual recursion involving D(·)

and V(·). However, if we recall that for a well-defined set of distributional clauses
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CP∗ the ancestor relationship between random terms constitutes an acyclic directed
graph, the apparent mutual recursion evaporates. We can now define the distributional
facts encoding of the distributional clauses, which will give rise to a DF-PLP program
instead of DC-ProbLog program.

Definition 4.22 (Distributional Facts Encoding). Let P∗ be an AD-free DC-ProbLog
program and CP∗ its set of distributional clauses. We define the distributional facts
encoding of CP∗ as CDF

P∗
B D∪ Rc, with

D =
⋃
τ∈TP∗

D(τ) Rc =
⋃
τ∈TP∗

Rc(τ)

usingD(·) and Rc(·) from Definition 4.21.

Example 4.23 (Eliminating Distributional Clauses). We demonstrate the elimination
of distributional clauses using the DCs in Example 4.16, i.e.

1 p ~ beta(1,1).
2 x ~ flip(p).
3 b ~ normal(3,1) :- a.
4 b ~ normal(10,1) :- not a.
5 c ~ normal(b,5).
6 y ~ finite([0.2:1,0.5:2,0.3:3]).

Here, the distribution terms in Line 2 and Line 5 (flip(p) and normal(b,5)) con-
tain one parent random term each (p and b, respectively), whereas all others have no
parents. As b is defined by two clauses, we get fresh random variables for each of them,
which in turn introduces different fresh random variables for the child c. This gives us:

1 v1 ~ beta(1,1).
2 rv(p,v1).
3 v2 ~ flip(v1).
4 rv(x,v2) :- rv(p,v1).
5 v3 ~ normal(3,1).
6 rv(b,v3) :- a.
7 v4 ~ normal(10,1).
8 rv(b,v4) :- not a.
9 v5 ~ normal(v3,5).

10 rv(c,v5) :- rv(b,v3).
11 v6 ~ normal(v4,5).
12 rv(c,v6) :- rv(b,v4).
13 v7 ~ finite([0.2:1,0.5:2,0.3:3]).
14 rv(y,v7).

Eliminating distributional clauses (following Definition 4.21) introduces the distri-
butional facts and context rules necessary to encode the original distributional clauses.
To complete the transformation to a DF-PLP program, we further transform the logical
rules. Prior to that, however, we need to define the contextualization function.
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Definition 4.24 (Contextualization Function). Let β be a conjunction of atoms and let
its comparison literals interpret the random terms τ1, . . . , τn. Furthermore, let Λi be a
special logical variable associated to a random term τi ∈ TP∗ for each τi. We define
K(β) to be the conjunction of literals obtained by replacing the interpreted occurrences
of the τi in β by their corresponding Λi and conjoining to this modified conjunction
rv(τi, Λi) for each τi. We call K(·) the contextualization function.

Definition 4.25 (Contextualized Rules). Let P∗ be an AD-free program with logical
rules RP

∗

and distributional clauses CP∗ , and let CDF
P∗
= D ∪ Rc be the distributional

facts encoding of CP∗ . We define the contextualization of the bodies of the rules RP
∗

∪

RDF as a two-step process:

a. Apply the contextualization function K to all bodies in RP
∗

∪ Rc and obtain:

RΛ = {η :– K(β) | η :– β ∈ RP
∗

∪ Rc}

b. Obtain the set of ground logical rules R by grounding each logical variable Λi

in RΛ with random variables νi ∈ V(τi) in all possible ways.

We call R the contextualized logic program of P∗.

The contextualization function K(·) creates non-ground comparison atoms, e.g.
L>5. Contrary to (ground) random terms, non-ground logical variables in such a com-
parison atom are not interpreted occurrences (cf. Definition 4.19) and the comparison
itself only has a logical meaning. By grounding out the freshly introduced logical vari-
ables we obtain a purely logical program where the comparison atoms contain either
arithmetic expressions or random variables (instead of random terms).

Example 4.26 (Contextualizing Random Terms). Let us now study the effect of the sec-
ond transformation step. Consider again the AD-free program in Example 4.16 and the
set of rules and distributional clauses obtained in Example 4.23. The contextualization
step T2a rewrites the logical rules in the AD-free input program to

1 a :- rv(x,Lx), Lx =:= 1.
2 d :- rv(y,Ly), rv(b,Lb), Ly =:= 1, not Lb<5, Lb < 10.
3 e :- rv(y,Ly), rv(b,Lb), Ly =:= 2, not Lb<5, Lb < 10.
4 f :- rv(y,Ly), rv(b,Lb), Ly =:= 3, not Lb<5, Lb < 10.
5 g :- rv(b,Lb), rv(c,Lc), a, not f, Lb+Lc < 15.

These rules then get instantiated (step T2b) to

1 a :- rv(x, v2), v2 =:= 1.
2 d :- rv(y,v7), rv(b,v3), v7 =:= 1, not v3<5, v3 < 10.
3 e :- rv(y,v7), rv(b,v3), v7 =:= 2, not v3<5, v3 < 10.
4 f :- rv(y,v7), rv(b,v3), v7 =:= 3, not v3<5, v3 < 10.
5 d :- rv(y,v7), rv(b,v4), v7 =:= 1, not v4<5, v4 < 10.
6 e :- rv(y,v7), rv(b,v4), v7 =:= 2, not v4<5, v4 < 10.
7 f :- rv(y,v7), rv(b,v4), v7 =:= 3, not v4<5, v4 < 10.
8 g :- rv(b,v3), rv(c,v5), a, not f, v3+v5<15.
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9 g :- rv(b,v3), rv(c,v6), a, not f, v3+v6<15.
10 g :- rv(b,v4), rv(c,v5), a, not f, v4+v5<15.
11 g :- rv(b,v4), rv(c,v6), a, not f, v4+v6<15.

Together with the distributional facts and rules obtained in Example 4.23, this last
block of rules forms the DC-PLP program that specifies the semantics of the AD-free
DC-ProbLog program, and thus the semantics of the DC-ProbLog program in Exam-
ple 4.13.

We note that the mapping from an AD-free program to a set of distributional facts
and contextualized rules as defined here is purely syntactical, and written to avoid case
distinctions. Therefore, it usually produces overly verbose programs. For instance, for
random terms introduced by a distributional fact, the indirection via rv is only needed
if there is a parent term in the distribution that has context-specific interpretations. The
grounding step may introduce rule instances whose conjunction of rv-atoms is incon-
sistent. This is for example the case for the last three rules for g in the Example 4.26,
which we illustrate in the example below.

Example 4.27. The following is a (manually) simplified version of the DF-PLP pro-
gram for the running example, where we propagated definitions of rv-atoms:

1 v1 ~ beta(1,1).
2 v2 ~ flip(v1).
3 v3 ~ normal(3,1).
4 v4 ~ normal(10,1).
5 v5 ~ normal(v3,5).
6 v6 ~ normal(v4,5).
7 v7 ~ finite([0.2:1,0.5:2,0.3:3]).
8

9 a :- v2 =:= 1.
10 d :- a, v7 =:= 1, not v3<5, v3 < 10.
11 e :- a, v7 =:= 2, not v3<5, v3 < 10.
12 f :- a, v7 =:= 3, not v3<5, v3 < 10.
13 d :- not a, v7 =:= 1, not v4<5, v4 < 10.
14 e :- not a, v7 =:= 2, not v4<5, v4 < 10.
15 f :- not a, v7 =:= 3, not v4<5, v4 < 10.
16 g :- a, a, a, not f, v3+v5<15.
17 g :- a, not a, a, not f, v3+v6<15. % inconsistent
18 g :- not a, a, a, not f, v4+v5<15. % inconsistent
19 g :- not a, not a, a, not f, v4+v6<15. % inconsistent

In the bodies of the last three rules we have, inter alia, conjunctions of a and not a.
This can never be satisfied and renders the bodies of these rules inconsistent.

Definition 4.28 (Semantics of AD-free DC-ProbLog Programs). The semantics of an
AD-free DC-ProbLog program P∗ is the semantics of the DF-PLP program PDF,∗ =

D∪ R. We call P∗ valid if and only if PDF,∗ is valid.
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Definition 4.29 (Semantics of DC − ProbLog Programs). The semantics of a DC −
ProbLog program P is the semantics of the AD-free DC-ProbLog program P∗. We call
P valid if and only if P∗ is valid.

Programs with distributional clauses can make programs with combinatorial struc-
tures more readable by grouping random variables with the same role under the same
random term. However, the programmer needs to be aware of the fact that distribu-
tional clauses have non-local effects on the program, as they affect the interpretation
of their random terms also outside the distributional clause itself. This can be rather
subtle, especially if the bodies of the distributional clauses with the same random term
are not exhaustive. We discuss this issue in more detail in Appendix D.

4.3. Syntactic Sugar: Validity
As stated above, a DC-ProbLog program P is syntactic sugar for an AD-free pro-

gram P∗ (Definition 4.14), and is valid if PDF,∗ as specified in Definition 4.28 is a
valid DF-PLP program, i.e. the distributional database is well-defined, the compari-
son literals are measurable, and each consistent fact database results in a two-valued
well-founded model if added to the logic program (Definition 3.19). For the distribu-
tional database to be well-defined (Definition 3.10), it suffices to have CP∗ well-defined
(Definition 4.20), as can be verified by comparing the relevant definitions. Indeed, a
well-defined CP∗ is a precondition for the transformation as stated in the definition.

The transformation changes neither distribution terms nor comparison literals, and
thus maintains measurability of the latter. As far as the logic program structure is con-
cerned, the transformation to a DF-PLP adds rules for rv based on the bodies of all
distributional clauses, and uses positive rv atoms in the bodies of all clauses that inter-
pret random terms to ensure that all interpretations of random variables are anchored
in the appropriate parts of the distributional database. This level of indirection does not
affect the logical reasoning for programs that only interpret random terms in appropri-
ate contexts. It is the responsibility of the programmer to ensure that this is the case
and indeed results in appropriately defined models.

4.4. Syntactic Sugar: Additional Constructs
4.4.1. User-Defined Sample Spaces

The semantics of DC-ProbLog as presented in the previous sections only alllows
for random variables with numerical sample spaces, e.g. normal distributions, or Pois-
son distributions. For categorical random variables, however, one might like to give a
specific meaning to the elements in the sample space instead of a numerical value.

Example 4.30. Consider the following program:

1 color ~ uniform([r,g,b]).
2 red:- color=:=r.

Here we discribe a categorical random variable (uniformaly distributed) whose sample
space is the set of expressions {r, b, g}. By simply associating a natural number to
each element of the sample space we can map the program back to a program whose
semantics we already defined:
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1 color ~ uniform([1,2,3]).
2 r:- color=:=1,
3 red:- r.

Swapping out the sample space of discrete random variables with natural numbers
is always possible as the cardinality of such a sample space is either smaller (finite
categorical) or equal (infinite) to the cardinality of the natural numbers.

4.4.2. Multivariate Distributions
Until now we have restricted the syntax and semantics of DC-ProbLog to univariate

distributions, e.g. the univariate normal distribution. At first this might seem to severely
limit the expressivity of DC-ProbLog, as probabilistic modelling with multivariate ran-
dom variables is a common task in modern statistics and probabilistic programming.
However, this concern is voided by realizing that multivariate random variables can be
decomposed into combinations of independent univariate random variables. We will
illustrate this on the case of the bivariate normal distribution.

Example 4.31 (Constructing the Bivariate Normal Distribution). Assume we would
like to construct a random variable distributed according to a bivariate normal distri-
bution: (

ν1
ν2

)
∼ N

((
µ1
µ2

)
,

(
σ11 σ12
σ21 σ22

))
The equation above can be rewritten as:(

ν1
ν2

)
∼

(
µ1
µ2

)
+

(
η11 η12
η21 η22

) (
N(0, λ1)
N(0, λ2)

)
where it holds that (

σ11 σ12
σ21 σ22

)
=

(
η11 η12
η21 η22

) (
λ1 0
0 λ2

) (
η11 η21
η12 η22

)
It can now be shown that the bivariate distributions can be expressed as:(

ν1
ν2

)
∼

(
N(µν1 , σν1 )
N(µν2 , σν2 )

)
where µν1 , µν2 , σν1 and σν2 can be expressed as:

µν1 = µ1 σν1 =
√
η11λ

2
1 + η12λ

2
2

µν2 = µ2 σν2 =
√
η21λ

2
1 + η22λ

2
2

We conclude from this that a bivariate normal distribution can be modeled using two
univariate normal distributions that have a shared set of parameters and is thereby
semantically defined in DC-ProbLog.
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Expressing multivariate random variables in a user-friendly fashion in a probabilis-
tic programming language is simply a matter of adding syntactic sugar for combina-
tions of univariate random variables once the semantics are defined for the latter.

Example 4.32 (Bivariate Normal Distribution). Possible syntactic sugar to declare a
bivariate normal distribution in DC-ProbLog, where the mean of the distribution in the

two dimensions is 0.5 and 2, and the covariance matrix is
[

2 0.5
0.5 1

]
.

1 (x1,x2) ~ normal2D([0.5,2], [[2, 0.5],[0.5,1]])
2 q:- x1<0.4, x2>1.9.

On the inference side, the special syntax might then additionally be used to deploy
dedicated inference algorithms. This is usually done in probabilistic programming lan-
guages that cater towards inference with multivariate (and often continuous) random
variables [Carpenter et al., 2017, Bingham et al., 2019]. Note that probability distri-
butions are usually constructed by applying transformations to a set of independent
uniform distribution. From this viewpoint the builtin-in normal/2, denoting the uni-
variate normal distribution, is syntactic sugar for such a transformation as well.

5. Probabilistic Inference Tasks

In Section 3.3 we defined the probability distribution induced by a DF-PLP pro-
gram by extending the basic distribution to logical consequences (expressed as logical
rules). The joint distribution is then simply the joint distribution over all (ground) log-
ical consequences. We obtain marginal probability distributions by marginalizing out
specific logical consequences.1 This means that marginal and joint probabilities of
atoms in DF-PLP programs are well-defined. Defining the semantics of probabilistic
logic programs using an extension of Sato’s distribution semantics gives us the se-
mantics of probabilistic queries: the probability of an atom of interest is given by the
probability induced by the joint probability of the program and marginalizing out all
atoms one is not interested in.

The situation is more involved with regard to conditional probability queries. In
contrast to unconditional queries, not all conditional queries are well-defined under
the distribution semantics. We will now give the formal definition of the PROB task,
which lets us compute the (conditional) marginal probability of probabilistic events and
which has so far not yet been defined in the PLP literature for hybrid domains under a
declarative semantics (e.g. [Azzolini et al., 2021]).

After defining the task of computing conditional marginal probabilities, we will
study how to compute these probabilities in the hybrid domain. Before defining the
PROB task, we will first need to formally introduce the notion of a conditional proba-
bility with respect to a DC-ProbLog program.

1This is possible as the compatibility condition is satisfied by construction in the distribution semantics.
See also the proof of Proposition 3.15 in Section C.2.
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Definition 5.1 (Conditional Probability). Let A be the set of all ground atoms in a
given DC-ProbLog program P. Let E = {η1, . . . , ηn} ⊂ A be a set of observed atoms,
and e = ⟨e1, . . . , en⟩ a vector of corresponding observed truth values, with ei ∈ {⊥,⊤}.
We refer to (η1 = e1)∧ . . .∧ (ηn = en) as the evidence and write more compactly E = e.
Let µ ∈ A be an atom of interest called the query. If the probability of E = e is greater
than zero, then the conditional probability of µ = ⊤ given E = e is defined as:

PP(µ = ⊤ | E = e) =
PP(µ = ⊤,E = e)

PP(E = e)
(5.1)

Definition 5.2 (PROB Task). Let A be the set of all ground atoms of a given DC-
ProbLog programP. We are given the (potentially empty) evidence E = e (with E ⊂ A)
and a set Q ⊂ A of atoms of interest, called query atoms. The PROB task consists of
computing the conditional probability of the truth value of every atom in Q given the
evidence, i.e. compute the conditional probability PP(µ=⊤ | E=e) for each µ ∈ Q.

Example 5.3 (Valid Conditioning Set). Assume two random variables ν1 and ν2, where
ν1 is distributed according to a normal distribution and ν2 is distributed according to
a Poisson distribution. Furthermore, assume the following conditioning set E = {η1 =

⊤, η2 = ⊤}, where η1 ↔ (ν1 > 0) and η2 ↔ (ν2 = 5). This is a valid conditioning set as
none of the events has a zero probability of occurring, and we can safely perform the
division in Equation 5.1.

5.1. Conditioning on Zero-Probability Events
A prominent class of conditional queries, which are not captured by Definition 5.1,

are so-called zero probability conditional queries. For such queries the probability of
the observed event happening is actually zero but the event is still possible. Using
Equation 5.1 does not work anymore as a division by zero would now occur.

Example 5.4 (Zero-Probability Conditioning Set). Assume that we have a random
variable ν distributed according to a normal distribution and that we have the condi-
tioning set E = {η = 1}, with η ↔ (ν = 20). In other words, we condition the query
on the observation that the random variable ν takes the value 20 – for instance in a
distance measuring experiment. This is problematic as the probability of any specific
value for a random variable with uncountably many outcomes is in fact zero and apply-
ing Equation 5.1 leads to a division-by-zero. Consequently, an ill-defined conditional
probability arises.

In order to sidestep divisions by zero when conditioning on zero-probability (but
possible) events, we modify Definition 5.1. Analogously to Nitti et al. [2016], we
follow the approach taken in [Kadane, 2011].

Definition 5.5 (Conditional Probability with Zero-Probability Events). Let ν be a con-
tinuous random variable in the DC-ProbLog program P with ground atoms A. Fur-
thermore, let us assume that the evidence consists of E = {η0 = ⊤} with η0 ↔ (ν = w)
and w ∈ Ων. The conditional probability of an atom of interest µ ∈ A is now defined
as:

PP(µ = ⊤ | η0 = ⊤) = lim
∆w→0

PP(µ = ⊤, ν ∈ [w − ∆w/2,w + ∆w/2])
PP(ν ∈ [w − ∆w/2,w + ∆w/2])

(5.2)
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To write this limit more compactly, we introduce an infinitesimally small constant
δw and two new comparison atoms η1 ↔ (w − δw/2 ≤ ν) and η2 ↔ (ν ≤ w + δw/2) that
together encode the limit interval. Using these, we rewrite Equation 5.2 as

PP(µ = ⊤ | η0 = ⊤) =
PP(µ = ⊤, η1 = ⊤, η2 = ⊤)

PP(η1 = ⊤, η2 = ⊤)
(5.3)

Applying the definition recursively, allows us to have multiple zero probability
conditioning events. More specifically, let us assume an additional continuous random
variable ν′ that takes the value w′ for which we define: η′1 ↔ (w′ − δw′/2 ≤ ν′) and
η′2 ↔ (ν′ ≤ w′ + δw′/2). This then leads to the following conditional probability:

PP(µ = ⊤ | ν = w, ν′ = w′) =
PP(µ = ⊤, η1 = ⊤, η2 = ⊤ | ν

′ = w′)
PP(η1 = ⊤, η2 = ⊤ | ν′ = w′)

=

PP(µ=⊤,η1=⊤,η2=⊤,η
′
1=⊤,η

′
2=⊤)

(((((PP(η′1=⊤,η
′
2=⊤)

PP(η1=⊤,η2=⊤,η
′
1=⊤,η

′
2=⊤)

(((((PP(η′1=⊤,η
′
2=⊤)

=
PP(µ = ⊤, η1 = ⊤, η2 = ⊤, η

′
1 = ⊤, η

′
2 = ⊤)

PP(η1 = ⊤, η2 = ⊤, η
′
1 = ⊤, η

′
2 = ⊤)

(5.4)

Here we first applied the definition of the conditional probability for the observation of
the random variable ν and then for the observation of the random variable ν′. Finally,
we simplified the expression.

Proposition 5.6. The conditional probability as defined in Definition 5.5 exists.

Proof. See [Nitti et al., 2016, Equation 6]. □

In order to express zero-probability events in DC-ProbLog we add a new built-in
comparison predicate to the finite set of comparison predicates Π = {<, >, =<, >=, =:=,
=\=} (cf. Definition 3.1).

Definition 5.7 (Delta Interval Comparison). For a random variable v and a rational
number w, we define delta_interval(v,w) (with delta_interval/2 ∈ Π) as fol-
lows. If v has a countable sample space, then delta_interval(v,w) is equivalent to
v=:=w. Otherwise, delta_interval(v,w) is equivalent to the conjunction of the two
comparison atoms w-δw=<v and v=<w+δw, where δw is an infinitesimally small number.

The delta interval predicate lets us express conditional probabilities with zero prob-
ability conditioning events as defined in Definition 5.5.

Zero probability conditioning events are often abbreviated as PP(µ = ⊤ | ν = w).
This can be confusing as it does not convey the intent of conditioning on an infinitesi-
mally small interval. To this end, we introduce the symbol ‘�’ (equal sign with a dot on
top). We use this symbol to explicitly point out an infinitesimally small conditioning
set. For instance, we abbreviate the limit

lim
∆w→0

PP(µ = ⊤, ν ∈ [w − ∆w/2,w + ∆w/2])
PP(ν ∈ [w − ∆w/2,w + ∆w/2])
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in Definition 5.5 as:

PP(µ = ⊤ | ν � w) (5.5)

More concretely, if we measure the height h of a person to be 180cm we denote
this by h � 180. This means that we measured the height of the person to be in an
infinitesimally small interval around 180cm. Note that the � sign has slightly different
semantics for random variables with a countable support. For discrete random variables
the � is equivalent to the equal sign.

Example 5.8. Assume that we have a random variable ν distributed according to a
normal distribution and that we have the evidence set E = {η = ⊤}, with η↔ (ν � 20).
This is a valid conditional probability defined through Definition 5.5.

Example 5.9. Assume that we have a random variable ν distributed according to a
normal distribution and that we have the conditioning set E = {η = ⊤, η′ = ⊤}, with
η1 ↔ (ν � 20) and η′ ↔ (ν � 30). This does not encode a conditional probability
as the conditioning event is not a possible event: one and the same random variable
cannot be observed to have two different outcomes.

The notation used to condition on zero probability events (even when using ‘�’)
hides away the limiting process that is used to define the conditional probability. This
can lead to situations where seemingly equivalent conditional probabilities have dia-
metrically opposed meanings.

Example 5.10. Let us consider the conditioning set E = {η = ⊤, η′ = ⊤}, with η ↔
(ν ≤ 20) and η′ ↔ (20 ≤ ν), which we use again to condition a continuous random
variable ν. In contrast to Example 5.8, where we directly observed ν � 20, here,
Definition 5.1 applies, which states that the conditional probability is undefined as
P(ν ≤ 20, 20 ≤ ν) = 0.

5.2. Discussion on the Well-Definedness of a Query
The probability of an unconditional query to a valid DC-ProbLog program is al-

ways well-defined, as it is simply a marginal of the distribution represented by the
program. This stands in stark contrast to conditional probabilities: an obvious issue are
divisions by zero occurring when the conditioning event does not belong to the set of
possible outcomes of the conditioned random variable. Similarly to Wu et al. [2018]
we will assume for the remainder of the paper that conditioning events are always pos-
sible events, i.e. events that have a non-zero probability but possibly an infinitesimally
small probability of occurring. This allows us to bypass potential issues caused by
zero-divisions.2

Even when discarding impossible conditioning events, conditioning a probabilistic
event on a zero probability (but possible) event remains inherently ambiguous [Jaynes,

2In general, deciding whether a conditioning event is possible or not is undecidable. This follows from
the undecidability of general logic programs under the well-founded semantics [Cherchago et al., 2007]. A
similar discussion is also presented in the thesis of Brian Milch [Milch, 2006, Proposition 4.8] for the BLOG
language, which also discusses decidable language fragments [Milch, 2006, Section 4.5].
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2003] and might lead to the Borel-Kolmogorov paradox. Problems arise when the lim-
iting process used to define the conditional probability with zero probability events (cf.
Definition 5.5) does not produce a unique limit. For instance, a conditional probabil-
ity P(µ = ⊤ | 2ν � ν′), where ν and ν′ are two random variables, depends on the
parametrization used. We refer the reader to [Shan and Ramsey, 2017] and [Jacobs,
2021] for a more detailed discussion on ambiguities arising with zero probability con-
ditioning events in the context of probabilistic programming. We will sidestep such
ambiguities completely by limiting observations of zero probability events to direct
comparisons between random variables and numbers. This makes also sense from an
epistemological perspective: we interpret a conditioning event as the outcome of an
experiment, which produces a number, for instance the reading of a tape measure.

5.3. Conditional Probabilities by Example
Example 5.11. The following ProbLog program models the conditions under which
machines work. There are two machines (Line 1), and three (binary) random terms,
which we interpret as random variables as the bodies of the probabilistic facts are
empty. The random variables are: the outside temperature (Line 3) and whether the
cooling of each machine works (Lines 4 and 5). Each machine works if its cooling
works or if the temperature is low (Lines 7 and 8).

1 machine(1). machine(2).
2

3 0.8::temperature(low).
4 0.99::cooling(1).
5 0.95::cooling(2).
6

7 works(N):- machine(N), cooling(N).
8 works(N):- machine(N), temperature(low).

We can query this program for the probability of works(1) given that we have as
evidence that works(2) is true:

P(works(1)=1 | works(2)=1) ≈ 0.998

Example 5.12. In the previous example there are only Boolean random variables (en-
coded as probabilistic facts) and the DC-ProbLog program is equivalent to an identi-
cal ProbLog program. An advantage of DC-ProbLog is that we can now use an almost
identical program to model the temperature as a continuous random variable.

1 machine(1). machine(2).
2

3 temperature ~ normal(20,5).
4 0.99::cooling(1).
5 0.95::cooling(2).
6

7 works(N):- machine(N), cooling(N).
8 works(N):- machine(N), temperature<25.0.
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We can again ask for the probability of works(1) given that we have as evidence that
works(2) is true but now the program also involves a continuous random variable:

P(works(1)=⊤ | works(2)=⊤) ≈ 0.998

In the two previous examples we were interested in a conditional probability where
the conditioning event has a non-zero probability of occurring. However, DC-ProbLog
programs can also encode conditional probabilities where the conditioning event has a
zero probability of happening, while still being possible.

Example 5.13. We model the size of a ball as a mixture of different beta distributions,
depending on whether the ball is made out of wood or metal (Line 1). We would now
like to know the probability of the ball being made out of wood given that we have a
measurement of the size of the ball.

1 3/10::material(wood);7/10::material(metal).
2

3 size~beta(2,3):- material(metal).
4 size~beta(4,2):- material(wood).

Assume that we measure the size of the ball and we find that it is 0.4cm, which means
that we have a measurement (or observation) infinitesimally close to 0.4. Using the ‘�’
notation, we write this conditional probability as:

P
(
material(wood)=⊤ | (size�4/10)=⊤

)
(5.6)

The Indian GPA problem was initially proposed by Stuart Russell as an example
problem to showcase the intricacies of mixed random variables. Below we express the
Indian GPA problem in DC-ProbLog.

Example 5.14. The Indian GPA problem models US-American and Indian students
and their GPAs. Both receive scores on the continuous domain, namely from 0 to 4
(American) and from 0 to 10 (Indian), cf. Line 9 and 13. With non-zero probabilities
both student groups can also obtain marks at the extremes of the respective scales
(Lines 10, 11, 14, 15).

1 1/4::american;3/4::indian.
2

3 19/20::isdensity(a).
4 99/100::isdensity(i).
5

6 17/20::perfect_gpa(a).
7 1/10::perfect_gpa(i).
8

9 gpa(a)~uniform(0,4):- isdensity(a).
10 gpa(a)~delta(4.0):- not isdensity(a), perfect_gpa(a).
11 gpa(a)~delta(0.0):- not isdensity(a), not perfect_gpa(a).
12
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13 gpa(i)~uniform(0,10):- isdensity(i).
14 gpa(i)~delta(10.0):- not isdensity(i), perfect_gpa(i).
15 gpa(i)~delta(0.0):- not isdensity(i), not perfect_gpa(i).
16

17 gpa(student)~delta(gpa(a)):- american.
18 gpa(student)~delta(gpa(i)):- indian.

Note that in order to write the probability distribution of gpa(a) and gpa(i) we used
uniform and Dirac delta distributions. This allowed us to distribute the random vari-
ables gpa(a) and gpa(i) according to a discrete-continuous mixture distribution. We
then observe that a student has a GPA of 4 and we would like to know the probability
of this student being American or Indian.

P
(
american=⊤ | (gpa(student) � 4) = ⊤

)
= 1

P
(
indian=⊤ | (gpa(student) � 4) = ⊤

)
= 0

6. Inference via Computing Expectations of Labeled Logic Formulas

In the previous sections we have delineated the semantics of DC-ProbLog pro-
grams and described the PROB task that defines conditional probability queries on
DC-ProbLog programs. The obvious next step is to actually perform the inference.
We will follow an approach often found in implementations of PLP languages in the
discrete domain: reducing inference in probabilistic programs to performing inference
on labeled Boolean formulas that encode relevant parts of the logic program. Contrary
to languages in the discrete domain that follow this approach [Fierens et al., 2015,
Riguzzi and Swift, 2011], we will face the additional complication of handling random
variables with infinite sample spaces. We refer the reader to [Riguzzi, 2018, Section 5]
for a broader overview of this approach.

Specifically, we are going to define a reduction from DC-ProbLog inference to
the task of computing the expected label of a propositional formula. The formula is
a propositional encoding of the relevant part of the logic program (relevant with re-
spect to a query), where atoms become propositional variables, and the labels of the
basic facts in the distribution database are derived from the probabilistic part of the
program. At a high level, we extend ProbLog’s inference algorithm such that Boolean
comparison atoms over (potentially correlated) random variables are correctly being
kept track of. The major complication, with regard to ProbLog and other systems such
as PITA [Riguzzi and Swift, 2011], is the presence of context-dependent random vari-
ables, which are denoted by the same ground random term. For instance, the random
term size in the program in Example 5.13 denotes two different random variables but
is being referred to by one and the same term in the program.

Inference algorithms for PLP languages often consider only a fragment of the lan-
guage for which the semantics have been defined. A common restriction for inference
algorithms is to only consider range-restricted programs3. Furthermore, we consider,

3We call a DC-ProbLog program range-restricted if it holds that for every statement all logic variables
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without loss of generality only AD-free programs, cf. Definition 4.15, as annotated
disjunctions or probabilistic facts can be eliminated up front by means of local trans-
formations that solely affect the annotated disjunctions (or probabilistic facts).4

The high level steps for converting a DC-ProbLog program to a labeled propo-
sitional formula closely follow the corresponding conversion for ProbLog programs
provided by Fierens et al. [2015, Section 5], i.e., given a DC-ProbLog program P,
evidence E = e and a set of query atoms Q, the conversion algorithm performs the
following steps:

1. Determine the relevant ground program Pg with respect to the atoms in Q ∪ E
and obtain the corresponing DF-PLP program.

2. Convert Pg to an equivalent propositional formula ϕg and E = e to a proposi-
tional conjunction ϕe.

3. Define the labeling function for all atoms in ϕg.

Step 1 exploits the fact that ground clauses that have no influence on the truth values
of query or evidence atoms are irrelevant for inference and can thus be omitted from
the ground program. Step 2 performs the conversion from logic program semantics
to propositional logic, generating a formula that encodes all models of the relevant
ground program as well as a formula that serves to assert the evidence by conjoining
both formulas. Step 3 completes the conversion by defining the labeling function. In
the following, we discuss the three steps in more detail and prove correctness of our
approach (cf. Theorem 6.10).

6.1. The Relevant Ground Program

The first step in the conversion of a non-ground DC-ProbLog program to a labeled
Boolean formula consists of grounding the program with respect to a query set Q and
the evidence E = e. For each ground atom in Q and E we construct its dependency
set. That is, we collect the set of ground atoms and ground rules that occur in any of
the proofs of an atom in Q ∪ E. The union of all dependency sets for all the ground
atoms in Q ∪ E is the dependency set of the DC-ProbLog with respect to the sets Q
and E. This dependency set, consisting of ground rules and ground atoms, is called the
relevant ground program (with respect to a set of queries and evidence).

Example 6.1. Consider the non-ground (AD-free) DC-ProbLog program below.

1 rv_hot ~ flip(0.2).
2 hot:- rv_hot=:=1.

occurring in the head also occur in the body. This guarantees that all terms will become ground during back-
ward chaining. Note that range-restrictedness implies that all facts (including probabilistic and distributional
ones) are ground.

4For non-ground ADs, we adapt Definition 4.14 to include all logical variables as arguments of the new
random variable. As this introduces non-ground distributional facts, which are not range-restricted, we also
move the comparison atom to the end of the rule bodies of the AD encoding to ensure those local random
variables are ground when reached in backward chaining.
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3 rv_cool(1) ~ flip(0.99).
4 cool(1):- rv_cool(1)=:=1.
5

6 temp(1) ~ normal(27,5):- hot.
7 temp(1) ~ normal(20,5):- not hot.
8

9 works(N):- cool(N).
10 works(N):- temp(N)<25.0.

If we ground it with respect to the query works(1) and subsequently apply the rewrite
rules from Section 4.2.2 we obtain:

1 rv_hot ~ flip(0.2).
2 hot:- rv_hot=:=1.
3 rv_cool(1) ~ flip(0.99).
4 cool(1):- rv_cool(1)=:=1.
5

6 temp(hot) ~ normal(27,5).
7 temp(not_hot) ~ normal(20,5).
8

9 works(1):- cool(1).
10 works(1):- hot, temp(hot)<25.0,
11 works(1):- not hot, temp(not_hot)<25.0.

A possible way, as hinted at in Example 6.1 of obtaining a ground DF-PLP program
from a non-ground DC-ProbLog program is to first ground out all the logical variables.
Subsequently, one can apply Definition 4.14 to eliminate annotated disjunctions and
probabilistic facts, Definition 4.14 and Definition 4.25 in order to obtain a DF-PLP
program with no distributional clauses. A possible drawback of such a two-step ap-
proach (grounding logical variables followed by obtaining a DC-ProbLog program) is
that it might introduce spurious atoms to the relevant ground program. A more elegant
but also more challenging approach is to interleave the grounding of logical variables
and distributional clause elimination. We leave this for future research.

Theorem 6.2 (Label Equivalence). Let P be a DC-ProbLog program and let Pg be
the relevant ground program for P with respect to a query µ and the evidence E = e
obtained by first grounding out logical variables and subsequently applying transfor-
mation rules from Section 4. The programs P and Pg specify the same probability:

PP(µ = ⊤ | E = e) = PPg (µ = ⊤ | E = e) (6.1)

Proof. See Appendix F.1. □

6.2. The Boolean Formula for the Relevant Ground Program

Converting a ground logic program, i.e. a set of ground rules, into an equivalent
Boolean formula is a purely logical problem and well-studied in the non-probabilistic
logic programming literature. We refer the reader to Janhunen [2004] for an account
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of the transformation to Boolean formula in the non-probabilistic setting and to Man-
tadelis and Janssens [2010] and Fierens et al. [2015] in the probabilistic setting, in-
cluding correctness proofs. We will only illustrate the most basic case with an example
here.

Example 6.3 (Mapping DC-ProbLog to Boolean Formula). Consider the ground pro-
gram in Example 6.1. To highlight the move from logic programming to propositional
logic, we introduce for every atom a in the program a corresponding propositional
variable ϕa. As the program does not contain cycles, we can use Clark’s completion
for the transformation, i.e., a derived atom is true if and only if the disjunction of the
bodies of its defining rules is true. The propositional formula ϕg corresponding to the
program is then the conjunction of the following three formulas:

ϕworks(1) ↔
(
ϕcool(1) ∨ ϕhot ∧ ϕtemp(hot)<25.0 ∨ ¬ϕhot ∧ ϕtemp(not_hot)<25.0

)
ϕcool(1) ↔ ϕrv_cool(1)=:=1

ϕhot ↔ ϕrv_hot=:=1

Note that the formula obtained by converting the relevant ground program still ad-
mits any model of that program, including ones that are inconsistent with the evidence.
In order to use that formula to compute conditional probabilities, we still need to assert
the evidence into the formula by conjoining the corresponding propositional literals.
The following theorem then directly applies to our case as well.

Theorem 6.4 (Model Equivalence [Fierens et al., 2015] (Theorem 2, part 1)). Let Pg

be the relevant ground program for a DC-ProbLog program P with respect to query
set Q and evidence E = e. Let MODE=e(Pg) be those models in MOD(Pg) that are
consistent with the evidence. Let ϕg denote the propositional formula derived from Pg,
and set ϕ ↔ ϕg ∧ ϕe, where ϕe is the conjunction of literals that corresponds to the
observed truth values of the atoms in E. We then have model equivalence, i.e.,

MODE=e(Pg) = ENUM(ϕ) (6.2)

where ENUM(ϕ) denotes the set of models of ϕ.

6.3. Obtaining a Labeled Boolean Formula
In contrast to a ProbLog program, a DC-ProbLog program does not explicitly pro-

vide independent probability labels for the basic facts in the distribution semantics,
and we thus need to suitably adapt the last step of the conversion. We will first define
the labeling function on propositional atoms and will then show that the probability
of the label of a propositional formula is the same as the probability of the relevant
ground program under the distribution semantics from Section 3. We call this label
equivalence and prove it in Theorem 6.9.

Definition 6.5 (Label of Literal). The label α(ϕρ) of a propositional atom ϕρ (or its
negation) is given by:

α(ϕρ) =

⟦c(vars(ρ)⟧, if ρ is a comparison atom
1, otherwise

(6.3)
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and for the negated atom:

α(¬ϕρ) =

⟦¬c(vars(ρ))⟧, if ρ is a comparison atom
1, otherwise

(6.4)

We use Iverson brackets ⟦·⟧ [Iverson, 1962] to denote an indicator function. Further-
more, vars(ρ) denotes the random variables that are present in the arguments of the
atom ρ and c(·) encodes the constraint given by ρ.

Example 6.6 (Labeling function). Continuing Example 6.3, we obtain, inter alia, the
following labels:

α(ϕrv_hot=:=1) = ⟦rv_hot = 1⟧
α(¬ϕrv_hot=:=1) = ⟦¬(rv_hot = 1)⟧ = ⟦rv_hot = 0⟧
α(ϕhot) = 1
α(¬ϕhot) = 1

Definition 6.7 (Label of Boolean Formula). Let ϕ be a Boolean formula and α(·) the
labeling function for the variables in ϕ as given by Definition 6.5. We define the label
of ϕ as

α(ϕ) =
∑

φ∈ENUM(ϕ)

∏
ℓ∈φ

α(ℓ)

i.e. as the sum of the labels of all its models, which are in turn defined as the product
of the labels of their literals.

Example 6.8 (Labeled Boolean Formula). The label of the conjunction

¬ϕhot ∧ ¬ϕrv_hot=:=1 ∧ ϕtemp(not_hot)<25.0 ∧ ¬ϕcool(1) ∧ ¬ϕrv_cool(1)=:=1 ∧ ϕworks(1)

which describes one model of the example formula, is computed as follows:

α(¬ϕhot ∧ ¬ϕrv_hot=:=1 ∧ ϕtemp(not_hot)<25.0
∧ ¬ϕcool(1) ∧ ¬ϕrv_cool(1)=:=1 ∧ ϕworks(1))

= α(¬ϕhot) × α(¬ϕrv_hot=:=1) × α(ϕtemp(not_hot)<25.0)
× α(¬ϕcool(1)) × α(¬ϕrv_cool(1)=:=1 × α(ϕworks(1)))

= 1 × ⟦rv_hot = 0⟧ × ⟦temp(not_hot) < 25⟧ × 1 × ⟦rv_cool(1) = 0⟧ × 1
= ⟦rv_hot = 0⟧ × ⟦temp(not_hot) < 25⟧ × ⟦rv_cool(1) = 0⟧

Theorem 6.9 (Label Equivalence). Let Pg be the relevant ground program for a DC-
ProbLog program P with respect to a query µ and the evidence E = e. Let ϕg denote
the propositional formula derived from Pg and let α be the labeling function as defined
in Definition 6.5. We then have label equivalence, i.e.

∀φ ∈ ENUM(ϕg) : E
V∼Pg

[α(φ)] = PPg (φ) (6.5)

In other words, for all models φ of ϕg, the expected value (E·[·]) of the label of φ is
equal to the probability of φ according to the probability measure of relevant ground
program Pg.
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Proof. See Appendix F.2. □

Theorem 6.9 states that we can reduce inference in hybrid probabilistic logic pro-
grams to computing the expected value of labeled Boolean formulas, as summarized in
the following theorem.

Theorem 6.10. Given a DC-ProbLog program P, a set Q of queries, and evidence
E = e, for every µ ∈ Q, we obtain the conditional probability of µ = q (q ∈ {⊥,⊤})
given E = e as

P(µ = q | E = e) =
Evars(ϕ)∼Pg [α(ϕ ∧ ϕq)]
Evars(ϕ)∼Pg [α(ϕ)]

where ϕ is the formula encoding the relevant ground program Pg with the evidence
asserted (cf. Theorem 6.4), and ϕq the propositional atom for µ.

Proof. This directly follows from model and label equivalence together with the defi-
nition of conditional probabilities. □

We have shown that the probability of a query to a DC-ProbLog program can be
expressed as the expected label of a propositional logic formula.

7. Computing Expected Labels via Algebraic Model Counting

In this section we will adapt the approach taken by Zuidberg Dos Martires et al.
[2019b], dubbed Sampo to compute the expected value of labeled propositional Boolean
formulas. The method approximates intractable integrals that appear when computing
expected labels using Monte Carlo estimation. The main difference between Sampo
and our approach, which we dub infinitesimal algebraic likelihood weighting (IALW)
is that IALW can also handle infinitesimally small intervals, which arise when condi-
tioning on zero probability events.

7.1. Monte Carlo Estimate of Conditional Query

In Definition 5.1 we defined the conditional probability as:

PP(µ = ⊤ | E = e) =
PP(µ = ⊤,E = e)

PP(E = e)
(7.1)

and we also saw in Definition 5.5 that using infinitesimal intervals allows us to consider
zero probability events, as well. Computing the probabilities in the numerator and
denominator in the equation above is, in general, computationally hard. We resolve
this using a Monte Carlo approximation.

Proposition 7.1 (Monte Carlo Approximation of a Conditional Query). Let the set

S =
{(

s(1)
1 , . . . , s

(1)
M

)
, . . . ,

(
s(|S|)

1 , . . . , s
(|S|)
M

)}
(7.2)
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denote |S| i.i.d. samples for each random variable in Pg. A conditional probability
query to a DC-ProbLog program P can be approximated as:

PP(µ = q | E = e) ≈

∑|S|
i=1

∑
φ∈ENUM(ϕ∧ϕq) α

(i)(φ)∑|S|
i=1

∑
φ∈ENUM(ϕ) α

(i)(φ)
, N < ∞ (7.3)

The index (i) on α(i)(φ) indicates that the label of φ is evaluated at the i-th ordered set
of samples

(
s(i)

1 , . . . , s
(i)
M

)
.

Proof. See Appendix F.3. □

In the limit |S| → ∞ this sampling approximation scheme is perfectly valid. How-
ever, in practice, with only limited resources available, such a rejection sampling strat-
egy will perform poorly (in the best case) or even give completely erroneous results.
After all, the probability of sampling a value from the prior distribution that falls ex-
actly into an infinitesimally small interval given in the evidence tends to zero. To make
the computation of a conditional probability, using Monte Carlo estimates, feasible, we
are going to introduce infinitesimal algebraic likelihood weighting. But first, we will
need to introduce the concept of infinitesimal numbers.

7.2. Infinitesimal Numbers
Remember that infinitesimal intervals arise in zero probability conditioning events

and describe an infinitesimally small interval around a specific observed value, e.g.
ν ∈ [w − ∆w/2,w + ∆w/2] for a continuous random variable ν that was observed to take
the value w (cf. Definition 5.5). We will describe these infinitesimally small intervals
using so-called infinitesimal numbers, which were first introduced by Nitti et al. [2016]
and further formalized in Wu et al. [2018], [Zuidberg Dos Martires, 2020] and [Jacobs,
2021]. The latter work also coined the term ‘infinitesimal number’.

Definition 7.2 (Infinitesimal Numbers). An infinitesimal number is a pair (r, n) ∈ R×Z,
also written as rϵn, and which corresponds to a real number when n = 0. We denote
the set of all infinitesimal numbers by I.

Definition 7.3 (Operations in I). Let (r, n) and (t,m) be two numbers in I. We define
the addition and multiplication as binary operators:

(r, n) ⊕ (t,m) B


(r + t, n) if n = m
(r, n) if n < m
(t,m) if n > m

(7.4)

(r, n) ⊗ (t,m) B (r × t, n + m) (7.5)

The operations + and × on the right hand side denote the usual addition and multipli-
cation operations for real and integer numbers.

Definition 7.4 (Neutral Elements). The neutral elements of the addition and multipli-
cations in I are, respectively, defined as:

e⊕ B (0, 0) e⊗ B (1, 0) (7.6)
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Probabilistic inference and generalization thereof can often be cast as performing
computations using commutative semirings [Kimmig et al., 2017]. We will follow a
similar strategy.

Definition 7.5. A commutative semiring is an algebraic structure (A,⊕,⊗, e⊕, e⊗)
equipping a set of elementsA with addition and multiplication such that

1. addition ⊕ and multiplication ⊗ are binary operationsA×A → A

2. addition ⊕ and multiplication ⊗ are associative and commutative binary opera-
tions over the setA

3. ⊗ distributes over ⊕

4. e⊕ ∈ A is the neutral element of ⊕

5. e⊗ ∈ A is the neutral element of ⊗

6. e⊕ ∈ A is an annihilator for ⊗

Lemma 7.6. The structure (I,⊕,⊗, e⊕, e⊗) is a commutative semiring.

Proof. This follows trivially from the operations defined in Definition 7.3 and the neu-
tral elements in Definition 7.4. □

We will also need to perform subtractions and divisions in I, for which we first need
to define inverse elements.

Definition 7.7 (Inverse Elements). Let (r, n) be a number in I. We define its inverse
with respect to the addition −(r, n), also called negation, as:

−(r, n) B (−r, n) (7.7)

Moreover, we define its inverse with respect to the multiplication (r, n)−1, also called
the reciprocal, as:

(r, n)−1 B

(r−1,−n) if r , 0
undefined if r = 0

(7.8)

Definition 7.8 (Subtraction and Division in I). Let (r, n) and (s,m) be two numbers in
I. We define the subtraction and division as:

(r, n) ⊖ (t,m) B (r, n) ⊕ (−(t,m)) = (r, n) ⊕ (−t,m) (7.9)

(r, n) ⊘ (s,m) B

(r, n) ⊗ (t,m)−1 = (r, n) ⊗ (t−1,−m) if t , 0
undefined if t = 0

(7.10)
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7.3. Infinitesimal Algebraic Likelihood Weighting
The idea behind IALW is that we do not sample random variables that fall within

an infinitesimal small interval, encoded as a delta interval (cf. Definition 5.7), but that
we force, without sampling, the random variable to lie inside the infinitesimal interval.
To this end, assume again that we have N i.i.d. samples for each random variable. That
means that we have again a set of ordered sets of samples:

S =
{(

s(1)
1 , . . . , s

(1)
M

)
, . . . ,

(
s(|S|)

1 , . . . , s
(|S|)
M

)}
(7.11)

This time the samples are drawn with the infinitesimal delta intervals taken into
account. For example, assume we have a random variable ν1 distributed according
to a normal distribution N(5, 2) and we have an atom delta_interval(ν1,4) in
the propositional formula ϕ. Each sampled value of s(i)

1 will then equal 4 ( 1 ≤ i ≤
N). Furthermore, when sampling, we sample the parents of a random variable prior
to sampling the random variable itself. For instance, take the random variable ν2 ∼
N(ν3 = w, 2), where ν3 is itself a random variable. We first sample ν3 and once we have
a value for ν3 we plug that into the distribution for ν2, which we sample subsequently.
In other words, we sample according to the ancestor relationship between the random
variables. We call the ordered set of samples s(i) ∈ S an ancestral sample.

Definition 7.9 (IALW Label). Given is an ancestral sample s(i) = (s(i)
1 , . . . , s

(i)
M) for

the random variables V = (ν1, . . . , νM). We, furthermore, denote the probability dis-
tribution of a random variable νk by δk and δk(s(i)) evaluates the distribution for the
i-th ancestral sample. The IALW label of a positive literal ℓ is an infinitesimal number
given by:

α(i)
IALW (ℓ)

=


(δk(s(i)), 1), if ℓ is a delta_interval whose first argument

is a continuous random variable
(ℓ(s(i)), 0), if ℓ is any comparison atom
(1, 0), otherwise

The expression ℓ(s(i)) denotes the indicator function, which corresponds to the literal ℓ,
being evaluated using the samples s(i), and implies that ℓ(s(i)) ∈ {0, 1}.

For the negated literals we have the following labeling function:

α(i)
IALW (¬ℓ)

=


(1, 0), if ℓ is a delta_interval whose first argument

is a continuous random variable
(1−ℓ(x(i)), 0), if ℓ is any other comparison atom
(1, 0), otherwise

Intuitively speaking and in the context of probabilistic inference, the first part of an
infinitesimal number accumulates (unnormalized) likelihood weights, while the sec-
ond part counts the number of times we encounter a delta_interval atom. This
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counting happens with ⊕ operation of the infinitesimal numbers (Equation 7.4). The
⊕ operation tells us that for two infinitesimal number (r, n) and (t,m) with n > m,
the event corresponding to the first of the two infinitesimal numbers is infinitely more
probable to happen and that we drop the likelihood weight of the second infinitesimal
number (Equation 7.4). In other words, an event with fewer delta_interval-atoms
is infinitely more probable than an event with more such intervals.

Example 7.10 (IALW Label of delta_interval with Continuous Random Vari-
able). Let us consider a random variable x, which is normally distributed: p(x|µ, σ) =
1/(σ

√
2π) exp

(
−(x−µ)2/2σ2

)
), where µ and σ > 0 are real valued parameters that we can

choose freely. The atom delta_interval(x,3) gets the label(
1

(σ
√

2π)
exp

(
−(3−µ)2/2σ2

)
, 1

)
The first element of the infinitesimal number is the probability distribution evaluated at
the observation, in this case 3. As this is a zero probability event, the label also picks
up a non-zero second element.

The label of ¬delta_interval(x,3) is (1, 0). The intuition here being that the
complement of an event with zero probability of happening will happen with probability
1. As the complement event is not a zero probability event the second element of the
label is 0 instead of 1.

Example 7.11 (IALW Label of delta_interval with Discrete Random Variable).
Let us consider a discrete random variable k, which is Poisson distributed:

p(k|λ) = λke−λ/k!

where λ > 0 is a real-valued parameter that we can freely choose.
As a delta_interval with a discrete random variable is equivalent to a =:= com-

parison (cf. Definition 5.7), we get for the label of the atom delta_interval(k,3):
(⟦s(i)

x = 3⟧, 0), where s(i)
k is the i-th sample for k.

Definition 7.12 (Infinitesimal Algebraic Likelihood Weighting). Let S be a set of an-
cestral samples and let DI(φ) denote the subset of literals in φ that are delta intervals.
We then define IALW as expressing the expected value of the label of a propositional
formula (given a set of ancestral samples) in terms of a fraction of two infinitesimal
numbers:

E
 ∑
φ∈ENUM(ϕ)

∏
ℓ∈φ

α (ℓ)
∣∣∣∣∣S

 , 0
 ≈

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈φ

α(i)
IALW (ℓ)

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈DI(φ)

α(i)
IALW (ℓ)

(7.12)

The left hand side expresses the expected value as an infinitesimal number.
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Proposition 7.13 (Consistency of IALW). Infinitesimal algebraic likelihood weighting
is consistent, that is, the approximate equality in Equation 7.12 is almost surely an
equality for |S| → ∞.

Proof. See Appendix F.4. □

Likelihood weighting, the core idea behind IALW, is a well known technique for
inference in Bayesian networks [Fung and Chang, 1990] and probabilistic program-
ming [Milch et al., 2005b, Nitti et al., 2016], and falls within the broader class of
self-normalized importance sampling [Kahn, 1950, Kloek and Van Dijk, 1978, Casella
and Robert, 1998]. Just like IALW, the inference approaches proposed by Nitti et al.
[2016], Wu et al. [2018], and Jacobs [2021] generalize the idea of likelihood weighting
to the setting with infinitesimally small intervals. What sets IALW apart from these
methods is its semiring formulation. The semiring formulation will allow us to seam-
lessly combine IALW with knowledge compilation [Darwiche and Marquis, 2002], a
technique underlying state-of-the art probabilistic inference algorithms in the discrete
setting. We examine this next.

Having proven the consistency of IALW, we can now express the probability of
a conditional query to a DC-ProbLog program in terms of semiring operations for
infinitesimal numbers I.

Proposition 7.14. A conditional probability query to a DC-ProbLog program P can
be approximated as:

PP(µ = q|E = e) ≈

⊕|S|

i=1

⊕
φ∈ENUM(ϕ∧ϕq)

⊗
ℓ∈φ α

(i)
IALW (ℓ)⊕|S|

i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈φ α

(i)
IALW (ℓ)

(7.13)

Proof. See Appendix F.5. □

7.4. Infinitesimal Algebraic Likelihood Weighting via Knowledge Compilation
Inspecting Equation 7.13 we see that we have to evaluate expressions of the follow-

ing form in order to compute the probability of a conditional query to a DC-ProbLog
program.

|S|⊕
i=1

⊕
ω∈ENUM(φ)

⊗
ℓ∈φ

α(i)
IALW (ℓ)︸                         ︷︷                         ︸

=algebraic model count

(7.14)

In other words, we need to compute |S| times a sum over products – each time with a
different ancestral sample. Such a sum over products is also called the algebraic model
count of a formula ϕ [Kimmig et al., 2017]. Subsequently, we then add up the |S|
results from the different algebraic model counts giving us the final answer.

Unfortunately, computing the algebraic model count is in general a computation-
ally hard problem [Kimmig et al., 2017] – #P-hard to be precise [Valiant, 1979]. A
popular technique to mitigate this hardness is to use a technique called knowledge
compilation [Darwiche and Marquis, 2002], which splits up the computation into a
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hard step and a subsequent easy step. The idea is to take the propositional Boolean
formula underlying an algebraic model counting problem (cf. ϕ in Equation 7.14) and
compile it into a logically equivalent formula that allows for the tractable computation
of algebraic model counts. The compilation constitutes the computationally hard part
(#P-hard). Afterwards, the algebraic model count is performed on the compiled struc-
ture, also called algebraic circuit [Zuidberg Dos Martires et al., 2019a]. Intuitively
speaking, knowledge compilation takes the sum of products and maps it to recursively
nested sums and products. Effectively, finding a dynamic programming scheme [Bell-
man, 1957] to compute the initial sum of products.

Different circuit classes have been identified as valid knowledge compilation tar-
gets [Darwiche and Marquis, 2002] – all satisfying different properties. Computing
the algebraic model count on an algebraic circuit belonging to a specific target class is
only correct if the properties of the circuit class match the properties of the deployed
semiring. The following three lemmas will help us determining which class of circuits
we need to knowledge-compile our propositional formula ϕ into.

Lemma 7.15. The operator ⊕ (c. Definition 7.3) is not idempotent. That is, it does not
hold for every a ∈ I that a ⊕ a = a.

Lemma 7.16. The pair (⊕, αIALW ) is not neutral. That is, it does not hold that αIALW (ℓ)⊕
αIALW (¬ℓ) = e⊗ for arbitrary ℓ.

Lemma 7.17. The pair (⊗, αIALW ) is not consistency-preserving. That is, it does not
hold that αIALW (ℓ) ⊗ αIALW (¬ℓ) = e⊕ for arbitrary ℓ.

From [Kimmig et al., 2017, Theorem 2 and Theorem 7] and the three lemmas
above, we can conclude that we need to compile our propositional logic formulas into
so-called smooth, deterministic and decomposable negation normal form (sd-DNNF)
formulas [Darwiche, 2001].5

Proposition 7.18 (ALW on d-DNNF). We are given the propositional formulas ϕ and
ϕq and a set S of ancestral samples, we can use Algorithm 7.19 to compute the condi-
tional probability PP(µ = q|E = e).

Proof. See Appendix F.6. □

Algorithm 7.19 takes as input a two propositional logic formulas ϕ and ϕq, and
a set of ancestral samples. It then knowledge-compiles the formulas ϕ ∧ ϕq and ϕ
into circuits Γq and Γ. These circuits are then evaluated using Algorithm 7.20. The
variables ialwq and ialw hold infinitesimal numbers. The returned result is the ration
of these two number, which corresponds to ration in Equation 7.13.

Algorithm 7.19

5Note that we only require smoothness over derived atoms (otherwise case in Definition 7.12), as for the
other cases the neutral sum property holds. Certain encodings of logic programs eliminate derived atoms.
For such encodings the smoothness property can be dropped [Vlasselaer et al., 2014]. A more detailed
discussion on the smoothness requirement of circuits in a PLP context can be found in [Fierens et al., 2015,
Appendix C].
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Algorithm 7.19: Conditional Probability via IALW and KC

1 function ProbALW(ϕ, ϕq, S)
2 Γq ← KC(ϕ ∧ ϕq)
3 Γ← KC(ϕ)
4 ialwq ← IALW(Γq,S) // cf. Algorithm 7.20

5 ialw← IALW(Γ,S) // cf. Algorithm 7.20

6 return ialwq ⊘ ialw

Algorithm 7.20: Computing the IALW

1 function IALW(Γ, S)
2 ialw← (0,0)
3 for s(i) ∈ S do
4 ialw← ialw ⊕ Eval(Γ, s(i)) // cf. Algorithm 7.21

5 return ialw

Algorithm 7.20 compute the IALW given as input a circuit Γ and a set of ancestral
samples. The loop evaluates the circuit (using Algorithm 7.21) for each ancestral sam-
ple s(i) and accumulates the result, which is then returned once the loop terminates. The
accumulation inside the loop corresponds to the

⊕|S|

i=1 summation in Equation 7.14. Al-
gorithm 7.21 evaluates a circuit Γ for a single ancestral sample s(i) and is a variation of
the circuit evaluation algorithm presented by Kimmig et al. [2017].

Algorithm 7.21: Evaluating an sd-DNNF circuit Γ for labeling function α(i)

(Definition 7.9) and semiring operations ⊕ and ⊗ (Definition 7.3)

1 function Eval(Γ,s(i))
2 if Γ is a literal node l then
3 return α(i)(l)

4 else if Γ is a disjunction
∨m

j=1 Γ j then
5 return

⊕m
j=1 Eval(Γ j, s(i))

6 else // Γ is a conjunction
∧m

j=1 Γ j

7 return
⊗m

i= j Eval(Γ j, s(i))

Example 7.22 (IALW on Algebraic Circuit). Consider a version of the program in
Example 5.13 where the annotated disjunction has been eliminated and been replaced
with a binary random variable m and a flip distribution.

1 m~flip(0.3).
2
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3 size~beta(2,3):- m=:=0.
4 size~beta(4,2):- m=:=1.

We query the program for the conditional probability P((m=:=1) = ⊤ | size � 4/10).
Following the program transformations introduced in Section 6 and then compiling
the labeled propositional formula, we obtain a circuit representation of the queried
program. Evaluating this circuit yields the probability of the query. To be precise, we
actually obtain two circuits, one representing the probability of relevant program with
the evidence enforced and with additionally having the value of the query atom set. In
Figure 7.4 we show the circuit where only the evidence is enforced.

⊕

⊗ ⊗

e⊗ ⊖ ⊕

⊗

6

5

2

4

3

1

m = 1 m = 0size1(1) � 0.4size0(1) � 0.4

beta(2,3) beta(4,2) flip(0.3)

Figure 7.4: At the bottom of the circuit we see the distributions feeding in. The flip distribution feeds
into its two possible (non-zero probability) outcomes. The two beta distributions feed into an observation
statement each. We use the ‘�’ symbol to denote such an observation. Note how we identify each of the two
random variables for the size by a unique identifier in their respective subscripts. The circled numbers next
to the internal nodes, i.e. the sum and product nodes, will allow us to reference the nodes later on and do not
form a part of the algebraic circuit.

The probability of the query (given the evidence) can now be obtained by evalu-
ating recursively the internal nodes in the algebraic circuit using Algorithm 7.21. We
perform the evaluation of the circuit in Figure 7.4 for a single iteration of the loop
in Algorithm 7.20, and we assume that we have sampled the value m = 0 from the
flip(0.3) distribution.
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Eval( 1 )
= e⊗ ⊖ αIALW

(
size0(1) � 0.4

)
= (1, 0) ⊖ (1.728, 1)
= (1, 0)

Eval( 2 )
= αIALW

(
size1(1) � 0.4) ⊗ αIALW

(
0 = 1

)
= (0.768, 1) ⊗ (0, 0)
= (0, 1)

Eval( 3 )
= Eval( 1 ) ⊗ Eval( 2 )
= (1, 0) ⊗ (0, 1)
= (0, 1)

Eval( 4 )
= Eval( 2 ) ⊕ αIALW

(
0 = 0

)
= (0, 1) ⊕ (1, 0)
= (1, 0)

Eval( 5 )
= αIALW

(
1 = 1

)
⊗ Eval( 2 )

= (1.728, 1) ⊗ (1, 0)
= (1.728, 1)

Eval( 6 )
= Eval( 3 ) ⊕ Eval( 5 )
= (0, 1) ⊕ (1.728, 1)
= (1.728, 1)

If we evalute the circuit for a sample m = 1 we obtain in a similar fashion the result
Eval( 6 ) = (0.768, 1). Moreover, if we evaluate the circuit multiple times we obtain
(in the limit) 70% of the time the outcome (1.728, 1) and 30% of the time the value
(0.768, 1). This yields an average of (0.7× 1.728, 1)⊕ (0.3× 0.768, 1) = (1.440, 1) and
represents the unnormalized infinitesimal algebraic likelihood weight of the evidence.
The unnormalized infinitesimal algebraic likelihood weight of the query conjoined with
the evidence is obtain again in a similar fashion but with the samples for m = 0 being
discarded. This then yields the result (0.3 × 1.728, 1). Dividing these two (unnormal-
ized) infinitesimal algebraic likelihood weights by each other gives the probability of
the query.

P((m=:=1) = ⊤ | size � 4/10)

= (0.3 × 1.728, 1) ⊘
(
(0.7 × 0.768, 1) ⊕ (0.3 × 1.728, 1)

)
= (0.2304/1.440, 1−1)
= (0.16, 0)

7.5. Partial Symbolic Inference

Evaluating circuits using binary random variables is quite wasteful: on average
half of the samples are unused for one of the two possible outcomes (0 or 1). We can
remedy this by performing (exact) symbolic inference on binary random variables and
replace the comparisons where they appear with their expectation. For instance, we
replace m=:=1 by the infinitesimal number (0.3, 0) instead of sampling a value for m
and testing whether the sample satisfies the constraint. This technique is also used by
other probabilistic programming languages such as DC-ProbLog [Fierens et al., 2015]
and Dice [Holtzen et al., 2020]. The main difference to DC-ProbLog is that those
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languages only support binary random variables (and by extension discrete random
variables with finite support), while DC-ProbLog interleaves discrete and continuous
random variables.

In a sense, the expectation gets pushed from the root of the algebraic circuit repre-
senting a probability to its leaves. This is, however, only possible if the circuit respects
specific properties. Namely, the ones respected by d-DNNF formulas (cf. Section 7.4),
which we use as our representation language for the probability.

Definition 7.24 (Symbolic IALW Label of a Literal). Given is an ancestral sample
s(i) = (s(i)

1 , . . . , s
(i)
M) for the random variables V = (ν1, . . . , νM). The Symbolic IALW

(SIALW) label of a positive literal ℓ is an infinitesimal number given by:

α(i)
S IALW (ℓ) =

(pℓ, 0), if ℓ encodes a probabilistic fact
α(i)

IALW (ℓ), otherwise

For the negated literals we have the following labeling function:

α(i)
S IALW (¬ℓ) =

(1−pℓ, 0), if ℓ encodes a probabilistic fact
α(i)

IALW (¬ℓ), otherwise

The number pℓ is the label of the probabilistic fact in a DC-ProbLog program.

In the definition above we replace the label of a comparison that corresponds to a
probabilistic fact with the probability of that fact being satisfied. This has already been
shown to be beneficial when performing inference, both in terms of inference time and
accuracy of Monte Carlo estimates [Zuidberg Dos Martires et al., 2019b]. Following
the work of [Kolb et al., 2019] one could also develop more sophisticated methods to
detect which comparison in the leaves can be replaced with their expectation. We leave
this for future work.

Example 7.25 (Symbolic IALW on Algebraic Circuit). Symbolic inference for the ran-
dom variable m from the circuit in Example 7.22 results in annotating the leaf nodes for
the different outcomes of the random variable m with the probabilities of the respective
outcomes. This can be seen in the red dashed box in the bottom right of Figure 7.5.

Evaluating the marginalized circuit now returns immediately the unnormalized al-
gebraic model count for the evidence without the need to draw samples and conse-
quently without the need to sum over the samples.

45



⊕

⊗ ⊗

e⊗ ⊖ ⊕

⊗

6

5

2

4

3

1

3/10 7/10size1(1) � 0.4size0(1) � 0.4

beta(2,3) beta(4,2)

Figure 7.5: Circuit representation of the SIALW algorithm for the probability P(size � 4/10).

Eval( 1 )
= e⊗ ⊖ αS IALW

(
size0(1) � 0.4

)
= (1, 0) ⊖ (1.728, 1)
= (1, 0)

Eval( 2 )
= αS IALW

(
size1(1) � 0.4) ⊗ αS IALW

(
0.3

)
= (0.768, 1) ⊗ (0.3, 0)
= (0.2304, 1)

Eval( 3 )
= Eval( 1 ) ⊗ Eval( 2 )
= (1, 0) ⊗ (0.2304, 1)
= (0.2304, 1)

Eval( 4 )
= Eval( 2 ) ⊕ αS IALW

(
1 = 1

)
= (0.2304, 1) ⊕ (0.7, 0)
= (0.7, 0)

Eval( 5 )
= αS IALW

(
1 = 1

)
⊗ Eval( 2 )

= (1.728, 1) ⊗ (0.7, 0)
= (1.2096, 1)

Eval( 6 )
= Eval( 3 ) ⊕ Eval( 5 )
= (0.2304, 1 ⊕ (1.2096, 1)
= (1.440, 1)
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8. DC-ProbLog and the Probabilistic Programming Landscape

In recent years a plethora of different probabilistic programming languages have
been developed. We discuss these by pointing key features present in DC-ProbLog
(lsited bellow), which are missing in specific related works. We organize these features
along the three key contributions stated in Section 1. Our first key contribution is the
introduction of the hybrid distribution semantics with the following features:

C1.1 random variables with (possibly) infinite sample spaces

C1.2 functional dependencies between random variables

C1.3 uniform treatment of discrete and continuous random variables

C1.4 negation

Our second contribution is the introduction of the DC-ProbLog language, which

C2.1 has purely discrete PLPs and their semantics as a special case,

C2.2 supports a rich set of comparison predicates, and

C2.3 is a Turing complete language (DC-PLP)

Our last contributions concern inference, which includes

C3.1 a formal definition of the hybrid probabilistic inference task inference task,

C3.2 an inference algorithm called IALW,

C3.3 that uses standard knowledge compilation in the hybrid domain.

8.1. ProbLog and Distributional Clauses

The DC-ProbLog language is a generalization of ProbLog, both in terms of syntax
and semantics. A DC-ProbLog program that does not use distributional clauses (or
distributional facts) is also a ProbLog program, and both views define the same distri-
bution over the logical vocabulary of the program. DC-ProbLog properly generalizes
ProbLog to include random variables with infinite sample spaces (C1.1).

On a syntactical level, DC-ProbLog is closely related to the Distributional Clauses
(DC) language, with which it shares the ~/2 predicate used in infix notation. In Ap-
pendix E we discuss in more detail the relationship between DC-ProbLog and the Dis-
tributional Clauses language. Concretely, we point out that DC-ProbLog generalizes
the original and negation-free version of DC [Gutmann et al., 2011] (C1.4). However,
DC-ProbLog differs in its declarative interpretation of negation from the procedural
interpretation as introduced to DC by Nitti et al. [2016]. As a consequence, the seman-
tics of DC and ProbLog differ in the absence of continuous random variables, while
DC-ProbLog is a strict generalization of ProbLog (C2.1).
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8.2. Extended PRISM
An early attempt of equipping a probabilistic logic programming language with

continuous random variables can be found in [Islam et al., 2012], which was dubbed
Extended PRISM. Similar to DC-ProbLog, Extended PRISM’s semantics are based
again on Sato’s distribution semantics. However, Extended PRISM assumes, just like
Distributional Clauses, pairwise mutually exclusive proofs (we refer again to Appendix E
for details on this). On the expressivity side, Extended PRISM only supports linear
equalities – in contrast to DC-ProbLog, where also inequalities are included in the se-
mantics of the language (C2.2). An advantage of restricting possible constraints to
equalities is the possibility of performing exact symbolic inference. In this regard,
Extended PRISM, together with its symbolic inference algorithm, can be viewed as a
logic programming language that has access to a computer algebra system. Swapping
out the approximate Sampo-inspired inference algorithm in DC-ProbLog by an exact
inference algorithm using symbolic expression manipulations would result in an infer-
ence approach closely related to that of Extended PRISM. One possibility would be
to use the Symbo algorithm presented in [Zuidberg Dos Martires et al., 2019b], which
uses the PSI-language [Gehr et al., 2016] as its (probabilistic) computer algebra system.

8.3. Probabilistic Constraint Logic Programming
Impressive work on extending probabilistic logic programs with continuous ran-

dom variables was presented by Michels et al. [2015] with the introduction of Prob-
abilistic Constraint Logic Programming (PCLP). The semantics of PCLP are again
based on Sato’s distribution semantics and the authors also presented an approximate
inference algorithm for hybrid probabilistic logic programs. Interestingly, the algo-
rithm presented in [Michels et al., 2015] to perform (conditional) probabilistic infer-
ence extends weighted model counting to continuous random variables using imprecise
probabilities, and more specifically credal sets.

A shortcoming of PCLP’s semantics is the lack of direct support for generative
definitions of random variables, i.e., random variables can only be interpreted within
constraints, but not within distributions of other random variables as is possible in DC-
ProbLog (C1.2). Azzolini et al. [2021] define a non-credal version of this semantics
using a product measure over a space that explicitly separates discrete and continuous
random variables, assuming that a measure over the latter is given as part of the input
without further discussion of how this part of the measure is specified in a program.
Furthermore, they do not define any inference tasks (C3.1), e.g. computing conditional
probabilities (cf. Section 5), nor do they provide an inference algorithm (C3.2).

A later proposal for the syntax of such programs [Azzolini and Riguzzi, 2021]
combines two classes of terms (logical and continuous ones) with typed predicates and
functors, and defines mixture variables as well as arithmetic expressions over random
variables through logical clauses. In other words, user-defined predicates define fam-
ilies of random variables through the use of typed arguments of the predicate identi-
fying a specific random variable, arguments providing parameters for the distribution,
and one argument representing the random variable itself. In contrast, the syntax of
DC-ProbLog clearly identifies all random variables through explicit terms introduced
through distributional facts or distributional clauses, explicitly exposes the probabilis-
tic dependency structure by using random variable terms inside distribution terms, and
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avoids typing through argument positions. Moreover, DC-ProbLog takes a uniform
view on all random variables in terms of semantics, thereby avoiding treating discrete
and continuous random variables separately (C1.3).

8.4. BLOG

Notable in the domain of probabilistic logic programming is also the BLOG lan-
guage [Milch et al., 2005a, Wu et al., 2018]. Contrary to the aforementioned proba-
bilistic logic programming languages, BLOG’s semantics are not specified using Sato’s
distribution semantics but via so-called measure-theoretic Bayesian networks (MTBN),
which were introduced in [Wu et al., 2018]. MTBNs can be regarded as the assembly
language for BLOG: every BLOG program is translated or compiled to an MTBN.
With DC-ProbLog we follow a similar pattern: every DC-ProbLog program with syn-
tactic sugar (e.g. annotated disjunctions) is transformed into DF-PLP program. The
semantics are defined on the bare-bones program. Note that the assembly language for
DC-ProbLog (DF-PLP) is Turing complete. This is not the case for MTBNs (C2.3).

8.5. Non-logical Probabilistic Programming

As first pointed out by Russell [2015] and later on elaborated upon by Kimmig and
De Raedt [2017], probabilistic programs fall either into the possible worlds semantics
category or the probabilistic execution traces semantics category. The former is usually
found in logic based languages, while the latter is the prevailing view in imperative and
functional probabilistic languages.

While, the probabilistic programming languages discussed so far follow the possi-
ble worlds paradigm, many languages follow the execution traces paradigm, either as
a probabilistic functional language [Goodman et al., 2008, Wood et al., 2014] or as a
imperative probabilistic language [Gehr et al., 2016, Salvatier et al., 2016, Carpenter
et al., 2017, Bingham et al., 2019, Ge et al., 2018]. Generally speaking, functional and
imperative probabilistic programming languages target first and foremost continuous
random variables, and discrete random variables are only added as an afterthought. A
notable exception is the functional probabilistic programming language Dice [Holtzen
et al., 2020], which targets discrete random variables exclusively.

Concerning inference in probabilistic programming, we can observe general trends
in logical and non-logical probabilistic languages. While the latter are interested in
adapting and speeding up approximate inference algorithms, such as Markov chain
Monte Carlo sampling schemes or variational inference, the former type of languages
are more invested in exploiting independences in the probabilistic programs, mainly
by means of knowledge compilation. Clearly, these trends are not strict. For instance,
Obermeyer et al. [2019] proposed so-called funsors to express and exploit indepen-
dences in Pyro [Bingham et al., 2019], an imperative probabilistic programming lan-
guage, and Gehr et al. [2016] developed a computer algebra system to perform exact
symbolic probabilistic inference.

8.6. Representation of Probabilistic Programs at Inference Time

Lastly, we would like to point out a key feature of the IALW inference algorithm
that sets it apart from any other inference scheme for probabilistic programming in
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the hybrid domain. But first, let us briefly talk about computing probabilities in prob-
abilistic programming. Roughly speaking, probabilities are computed summing and
multiplying weights. These can for example be represented as floating point numbers
or symbolic expressions. The collection of all operations that were performed to ob-
tain the probability of a query to a program is called the computation graph. Now, the
big difference between IALW and other inference algorithms lies in the structure of the
computation graph. IALW represents the computation graph as a directed acyclic graph
(DAG), while all other languages, except some purely discrete languages [Fierens et al.,
2015, Holtzen et al., 2020], use a tree representation. IALW is the first inference al-
gorithm in the discrete-continuous domain that uses DAGs (C3.3)! In cases where the
computation graph can be represented as a DAG the size of the representation might be
exponentially smaller compared to tree representations, which leads to faster inference
times.

Note that Gutmann et al. [2010] and more recently Saad et al. [2021] presented
implementations of hybrid languages where the inference algorithm leverages directed
acyclic graphs, as well. However, the constraints that may be imposed on random
variables are limited to univariate equalities and inequalities. In the weighted model
integration literature it was shown that such probability computations can be mapped to
probability computations of discrete random variables only [Zeng and Van den Broeck,
2020].

9. Conclusions

We introduced DC-ProbLog, a hybrid PLP language for the discrete-continuous
domain and its accompanying hybrid distribution semantics. DC-ProbLog strictly ex-
tends the discrete ProbLog language [De Raedt et al., 2007, Fierens et al., 2015] and
the negation-free Distributional Clauses [Gutmann et al., 2011] language. In designing
the language and its semantics we adapted Poole [2010]’s design principle of perco-
lating probabilistic logic programs into two separate layers: the random variables and
the logic program. Boolean comparison atoms then form the link between the two lay-
ers. It is this clear separation between the random variables and the logic program that
has allowed us to use simpler language constructs and to write programs using a more
concise and intuitive syntax than alternative hybrid PLP approaches [Gutmann et al.,
2010, Nitti et al., 2016, Speichert and Belle, 2019, Azzolini et al., 2021].

Separating random variables from the logic program also allowed us to develop
the IALW algorithm to perform inference in the hybrid domain. IALW is the first
algorithm based on knowledge compilation and algebraic model counting for hybrid
probabilistic programming languages and as such it generalizes the standard knowledge
compilation based approach for PLP. It is noteworthy that IALW correctly computes
conditional probabilities in the discrete-continuous domain using the newly introduced
infinitesimal numbers semiring.

Interesting future research directions include adapting ideas from functional proba-
bilistic programming (the other declarative programming style besides logic program-
ming) in the context of probabilistic logic programming. For instance, extending DC-
ProbLog with a type system [Schrijvers et al., 2008] or investigating more recent ad-
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vances, such as quasi-Borel spaces [Heunen et al., 2017] in the context of the distribu-
tion semantics.
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A. Logic Programming

We briefly summarize key concepts of the syntax and semantics of logic program-
ming; for a full introduction, we refer to [Lloyd, 2012].

A.1. Building Blocks

The basic building blocks of logic programs are variables (denoted by strings start-
ing with upper case letters), constants, functors and predicates (all denoted by strings
starting with lower case letters). A term is a variable, a constant, or a functor f of arity
n followed by n terms ti, i.e., f (t1, . . . , tn). An atom is a predicate p of arity n followed
by n terms ti, i.e., p(t1, . . . , tn). A predicate p of arity n is also written as p/n. A literal
is an atom or a negated atom not(p(t1, . . . , tn)).

A.2. Logic Programs

A definite clause is a universally quantified expression of the form h :– b1, . . . , bn

where h and the bi are atoms. h is called the head of the clause, and b1, . . . , bn its body.
Informally, the meaning of such a clause is that if all the bi are true, h has to be true as
well. A normal clause is a universally quantified expression of the form h :– l1, . . . , ln
where h is an atom and the li are literals. If n = 0, a clause is called fact and simply
written as h. A definite clause program or logic program for short is a finite set of
definite clauses. A normal logic program is a finite set of normal clauses.

A.3. Substitutions

A substitution θ is an expression of the form {V1/t1, . . . ,Vm/tm} where the Vi are
different variables and the ti are terms. Applying a substitution θ to an expression e
(term or clause) yields the instantiated expression eθ where all variables Vi in e have
been simultaneously replaced by their corresponding terms ti in θ. If an expression
does not contain variables it is ground. Two expressions e1 and e2 can be unified if and
only if there are substitutions θ1 and θ2 such that e1θ1 = e2θ2.

A.4. Herbrand Universe

The Herbrand universe of a logic program is the set of ground terms that can be
constructed using the functors and constants occurring in the program. The Herbrand
base of a logic program is the set of ground atoms that can be constructed from the
predicates in the program and the terms in its Herbrand universe. A truth value assign-
ment to all atoms in the Herbrand base is called Herbrand interpretation, and is also
represented as the set of atoms that are true according to the assignment. A Herbrand
interpretation is a model of a clause h :– b1, . . . , bn. if for every substitution θ such that
all biθ are in the interpretation, hθ is in the interpretation as well. It is a model of a logic
program if it is a model of all clauses in the program. The model-theoretic semantics
of a definite clause program is given by its smallest Herbrand model with respect to
set inclusion, the so-called least Herbrand model (which is unique). We say that a
logic program P entails an atom a, denoted P |= a, if and only if a is true in the least
Herbrand model of P.
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B. Table of Notations

symbol meaning for details, see
∆ set of distribution functors Definition 3.1
Φ set of arithmetic functors Definition 3.1
Π set of comparison predicates Definition 3.1
Ων sample space of random variable ν Definition 3.4
ω(·) value assignment function Definition 3.4
D distributional database Definition 3.5
V set of random variables Definition 3.5
PV probability measure overV defined byD Proposition 3.12
F set of Boolean comparison atoms Definition 3.13
PF probability measure over interpretations of

F induced by PV
Proposition 3.15

PDF = D∪ R DF-PLP program Definition 3.16
Fω(V) consistent comparison database induced by

ω on the random variables inV
Definition 3.18

PPDF probability measure over Herbrand inter-
pretations defined by PDF

Proposition 3.20

P DC-ProbLog program Definition 4.12
P∗ AD-free DC-ProbLog program Definition 4.15
HP∗ set of heads of distributional clauses in P∗ Definition 4.15
TP∗ random terms inHP∗ Definition 4.15
CP∗ set of distributional clauses in P∗ Definition 4.20
K(·) contextualization function Definition 4.24
PDF,∗ DF-PLP program providing the semantics

of P∗
Definition 4.25

MOD(P) models of a program P Theorem 6.4
ENUM(ϕ) models of a propositional formula ϕ Theorem 6.4
α(·) labeling function of a propositional literal Definition 6.5
⟦·⟧ Iverson bracket denoting an indicator func-

tion
Definition 6.5

E[·] expected value Theorem 6.9
I set of infinitesimal numbers Equation 7.2
S set of ancestral samples Equation 7.11

C. Proofs of Propositions in Section 3

C.1. Proof of Proposition 3.12

Proposition 3.12. A well-defined distributional databaseD defines a unique probabil-
ity measure PV on value assignments ω(V).

Proof. The proof is analogous to that for the semantics of well-defined Bayesian Logic
Programs (BLPs) [Kersting and De Raedt, 2000, Theorem 4.9]. They show that such
a probability measure exists over a non-empty set of random variables if the ancestor
structure of the random variables is acyclic and every random variable has a finite set of
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ancestors, which are exactly conditions W2 and W1 in Definition 3.10. The key idea is
that under these conditions, for each finite subset of random variables closed under the
ancestor relation, the joint distribution on that set has the form of a Bayesian network,
and factorizes into the product of the individual variables’ distributions. This family of
distributions forms the basis of the unique measure over the potentially infinite set V.
We refer to [Kersting and De Raedt, 2000, Theorem 4.9] for technical details. □

Note that while BLPs also use LP syntax to define the random variables and struc-
ture of a Bayesian network, the way they use that syntax is fundamentally different
from ours.

C.2. Proof of Proposition 3.15

Proposition 3.15. The probability measure PV, defined by a well-defined distribu-
tional database D, induces a unique probability measure PF over value assignments
to the comparison atoms F .

Proof. To show existence of the measure PF (i.e. the basic distribution), we fix an
arbitrary enumeration µ1, µ2, . . . , of the atoms in F . Each µi depends on a finite set
Vi ⊆ V of random variables, namely those mentioned in µi, as well as their ancestor
sets. We write V≤n =

⋃
1≤ j≤nV j for the union of random variables that the first n

atoms in the enumeration depend on. By PV≤n we denote the measure restricted to this
set.

By definition, all queries µi ∈ F are Lebesgue-measurable, and we thus get a family
of distributions

P(n)
F

(µ1 = b1, . . . , µn = bn) =
∫
Ω(V≤n)

1[µ1=b1∧...∧µn=bn](ω(V≤n)) dPV≤n (C.1)

where the bi belong to the set {⊥,⊤}, PV≤n factorizes over the random variables inV≤n,
Ω(V≤n) denotes the space of possible assignments for variables inV≤n, and 1[φ] is the
indicator function, i.e., equals 1 if φ is true and 0 otherwise. The definition in terms of
an indicator function and the measurability of the underlying Boolean queries ensures
that this family of distributions is of the form required for the distribution semantics, i.e.
they are well-defined probability distributions satisfying the compatibility condition:
P(n)
F

can be obtained from P(n+1)
F

by summing out µn+1. There thus exists a completely
additive probability measure PF over the space of truth value assignments to F such
that for any n, we have

PF (µ1 = b1, . . . , µn = bn) = P(n)
F

(µ1 = b1, . . . , µn = bn) (C.2)

□

C.3. Proof of Proposition 3.20

Proposition 3.20. A valid DF-PLP program PDF induces a unique probability mea-
sure PPDF over Herbrand interpretations.
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Proof. To show this, we consider two cases. If D is empty, i.e. PDF does not define
any random variables, the semantics of PDF is the well-founded model of R. Thus,
normal logic programs (with total well-founded models) are a special case of DF-PLP.

If D is not empty, we follow Sato’s construction to obtain the probability measure
PPDF over Herbrand interpretations from PF . To do so, we fix an enumeration µ1, µ2, . . .
of all atoms in the Herbrand base, which includes those in F . AsPDF is valid, for every
consistent comparison databaseFω(V) (cf. Definition 3.18), the logic programFω(V)∪R

has a total well-founded model Mω(V), and we can thus define

P(n)
PDF (µ1 = b1, . . . , µn = bn) := PF ({Fω | Mω(V) |= µ

b1
1 ∧ . . . ∧ µ

bn
n }) (C.3)

where, bi ∈ {⊥,⊤}, µ1
i = µi, and µ0

i = ¬µi. It follows again that there is a completely
additive probability measure PPDF over Herbrand interpretations. □

D. Beyond Mixtures

By definition, we impose on distributional clauses mutual exclusivity of their bod-
ies when they share a random term (cf. Definition 4.20). That is, if we have a set of
distributional clauses: {τ ∼ δi :– β1 . . . , τ ∼ δn :– βn} we impose that the conjunction of
two distinct bodies βi and β j (i , j) is false.

A further condition that we might impose, which is, however, not necessary to
define a valid distributional clause, is exhaustiveness. Let us consider again the set of
distributional clauses {τ ∼ δi :– β1 . . . , τ ∼ δn :– βn}. We call this set exhaustive if the
disjunction of all the βi’s is equivalent to true.

A set of exhaustive distributional clauses can be interpreted as a mixture models as
they assign a unique distribution to the random term in any possible context. When,
the bodies of such distributional clauses are not exhaustive, however, they may interact
with the logic program in rather subtle ways, especially if negation is involved. We
demonstrate this in the examples below.

Example D.1. Consider the following program fragments

q :- not (x=:=1).

and

aux :- x=:=1.
q :- not aux.

and now assume x follows a mixture distribution, e.g.,

0.2::b.
x~flip(0.5) :- b.
x~flip(0.9) :- not b.

With such a mixture model, as in the case of a distributional fact, "x has an associated
distribution" is always true, and both fragments agree on the truth value of q.
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In general, however, only the first of these two conditions is necessary, and it is thus
possible to associate a distribution with a random term in some contexts only.

Example D.2. Consider again the two program fragments above with the following
non-exhaustive definition of x:

0.2::b.
x~flip(0.5) :- b.

With this definition, "x has an associated distribution" is true if and only if b is true,
and the two fragments therefore no longer agree on the truth values of q, as we more
easily see after eliminating the distributional clause. We omit the transformation of the
probabilistic fact for brevity. The fragment defining x transforms to

v1~flip(0.5).
rv(x,v1) :- b.

The first program fragment maps to

q :- rv(x,v1), not (v1=:=1).

and the second one to

aux :- rv(x,v1), v1=:=1.
q :- not aux.

which clearly exposes the difference in how the negation is interpreted.

As this example illustrates, if random variables are defined through non-exhaustive
sets of DCs, we can no longer refactor the logic program independently of the defini-
tion of the random variables in general, as it interacts with the context structure. The
reason is that DC-ProbLog’s declarative semantics builds upon the principle that the
distributional database is declared independently of the logic program, and can thus
be combined modularly and declaratively with any logic program over its comparison
atoms. This is no longer the case with such arbitrary sets of DCs, which intertwine
the definition of the two parts of a DF-PLP program. We note that this differs from
the procedural view on the existence of random variables taken in the Distributional
Clauses language [Nitti et al., 2016], as we discuss in more detail in Appendix E.

E. Relation to the DC language

Distributional clauses were first introduced in the language of the same name by
Gutmann et al. [2011], which at that point did not support negation. For negation-free
programs, our interpretation of distributional clauses exactly corresponds to theirs, and
DC-ProbLog thus generalizes both ProbLog (with negation) and the original (definite)
distributional clause language.

In the following, we first discuss how the semantics of DC-ProbLog differs from
Nitti et al. [2016]’s procedural view on negated comparison atoms, and then how DC-
ProbLog’s acyclicity conditions imposed on valid programs differ from those of Gut-
mann et al. [2011].
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E.1. Non-exhaustive sets of DCs
Nitti et al. [2016] have extended the procedural view of the stochastic TP operator

to locally stratified programs with negation under the perfect models semantics.6 In
their view, a distributional clause x~d :- body is informally interpreted as "if body
is true, define a random variable x with distribution d". They then use the principle
that "any comparison involving a non-defined variable will fail; therefore, its negation
will succeed", i.e., they apply negation as failure to comparison atoms. In contrast,
as already illustrated in Section D, we take a purely declarative view here, where all
random variables are defined up front, independently of logical reasoning, and distri-
butional clauses serve as syntactic sugar to compactly talk about a group of random
variables. Then, truth values of comparison atoms are fully determined by their ex-
ternal interpretation, and do not involve reasoning about whether a random variable is
defined or not. That is, we apply classical negation to comparison atoms, and restrict
negation as failure to atoms defined by the logic program itself.

The following example adapted from Nitti et al. [2016] illustrates the difference.

Example E.1. Consider the following program about the color of certain objects,
where the number of objects is given by the random variable n:

n ~ uniform([1,2,3]).
color(1) ~ uniform([red,green,blue]) :- 1=<n .
color(2) ~ uniform([red,green,blue]) :- 2=<n .
color(3) ~ uniform([red,green,blue]) :- 3=<n .
not_red :- not color(2)=:=red .
not_red_either :- color(2)=\=red.

The DC-ProbLog semantics is given by the transformed program:

v0 ~ uniform([1,2,3]).
v1 ~ uniform([red,green,blue]).
v2 ~ uniform([red,green,blue]).
v3 ~ uniform([red,green,blue]).

rv(n,v0).
rv(color(1),v1) :- rv(n,v0), 1=<v0.
rv(color(2),v2) :- rv(n,v0), 2=<v0.
rv(color(3),v3) :- rv(n,v0), 3=<v0.

not_red :- rv(color(2),v2), not v2=:=red.
not_red_either :- rv(color(2),v2), v2=\=red.

If n = 1 (i.e., v0 = 1), neither color(2) nor color(3) are associated with a distribu-
tion. Thus, rv(color(2),v2) fails, and both not_red and not_red_either there-
fore fail as well, independently of the values of the comparison literals. In contrast, un-
der the procedural semantics of Nitti et al. [2016], color(2)=:=red fails in this case,

6Local stratification is a necessary condition for perfect models semantics, and a sufficient one for well-
founded semantics. On this class of programs, both semantics agree [Van Gelder et al., 1991]
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and not_red thus succeeds. Similarly, color(2)=\=red fails, and not_red_either
thus fails. Both views agree for n > 1.

This example again illustrates that DC-ProbLog’s semantics clearly follows the
spirit of the distribution semantics of defining a distribution over interpretations of basic
facts (comparison atoms in this case) independently of the logic program rules. We note
that the expressive power of logic programs allows the programmer to explicitly model
the procedural view of "failure through undefined variable" in the program if desired,
as illustrated in the following example.

Example E.2. The following DC-ProbLog program is equivalent to the procedural
interpretation of the program in Example E.1:

1 n ~ uniform([1,2,3]).
2 color(1) ~ uniform([red,green,blue]) :- 1=<n .
3 color(2) ~ uniform([red,green,blue]) :- 2=<n .
4 color(3) ~ uniform([red,green,blue]) :- 3=<n .
5 not_red :- not color(2)=:=red.
6 not_red :- not 2=<n.
7 not_red_either :- 2=<n, color(2)=\=red.

We explicitly model that not_red is true if either color(2) can be interpreted and
color(2)=:=red is false (line 5, which is how DC-ProbLog interprets the first clause),
or color(2) cannot be interpreted (line 6, negating the body of the DC in line 3).
Similarly, not_red_either is true if and only if color(2) can be resolved and
color(2)=\=red is true (line 7, repeating the body of the DC in line 3).

E.2. Program validity
To define valid programs, Gutmann et al. [2011] impose acyclicity criteria based

on the structure of the clauses in the program, whereas we use the ancestor relation
between random variables in DC-ProbLog. This means that DC-ProbLog accepts cer-
tain cycles in the logic program structure that are rejected by Distributional Clauses, as
illustrated in the following example.

Example E.3. We model a scenario where a property of a node in a network is either
initiated locally with probability 0.1, or propagated from a neighboring node that has
the property with probability 0.3. We consider a two node network with directed edges
from each of the nodes to the other one, and directly ground the program for this
situation.

local(n1) ~ flip(0.1).
local(n2) ~ flip(0.1).
transmit(n1,n2) ~ flip(0.3) :- active(n1).
transmit(n2,n1) ~ flip(0.3) :- active(n2).
active(n1) :- local(n1)=:=1.
active(n2) :- local(n2)=:=1.
active(n1) :- transmit(n2,n1)=:=1.
active(n2) :- transmit(n1,n2)=:=1.
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This program is not distribution-stratified based on [Gutmann et al., 2011], where in
order to avoid cyclic probabilistic dependencies 1) DC heads have to be of strictly
higher rank than any of their body atoms, 2) heads of regular clauses have to have at
least the same rank as each body atom, and 3) atoms involving random terms have to
have at least the same rank as the head of the DC introducing the random term. This is
impossible with our program due to the cyclic dependency between active-atoms and
transmit-random terms. The DC-ProbLog semantics, in contrast, is clearly specified
through the mapping:

x1 ~ flip(0.1).
x2 ~ flip(0.1).
x3 ~ flip(0.3).
x4 ~ flip(0.3).
rv(local(n1),x1).
rv(local(n2),x2).
rv(transmit(n1,n2),x3) :- active(n1).
rv(transmit(n2,n1),x4) :- active(n2).
active(n1) :- rv(local(n1),x1), x1=:=1.
active(n2) :- rv(local(n2),x2), x2=:=1.
active(n1) :- rv(transmit(n2,n1),x4), x4=:=1.
active(n2) :- rv(transmit(n1,n2),x3), x3=:=1.

We have four independent random variables, and a definite clause program whose
meaning is well-defined despite of the cyclic dependencies between derived atoms. We
can equivalently rewrite the logic program part to avoid deterministic auxiliaries:

x1 ~ flip(0.1).
x2 ~ flip(0.1).
x3 ~ flip(0.3).
x4 ~ flip(0.3).
active(n1) :- x1=:=1.
active(n2) :- x2=:=1.
active(n1) :- active(n2), x4=:=1.
active(n2) :- active(n1), x3=:=1.

Furthermore, DC-ProbLog agrees with the ProbLog formulation of the original pro-
gram, i.e.,

0.1::local_cause(n1).
0.1::local_cause(n2).
0.3::transmit_cause(n1,n2) :- active(n1).
0.3::transmit_cause(n2,n1) :- active(n2).
active(n1) :- local_cause(n1).
active(n2) :- local_cause(n2).
active(n1) :- transmit_cause(n2,n1).
active(n2) :- transmit_cause(n1,n2).

The AD-free program is

63



v1 ~ flip(0.1).
local_cause(n1) :- v1=:=1.
v2 ~ flip(0.1).
local_cause(n2) :- v2=:=1.
v3 ~ flip(0.3).
transmit_cause(n1,n2) :- v3=:=1, active(n1).
v4 ~ finite(0.3).
transmit_cause(n2,n1) :- v4=:=1, active(n2).
active(n1) :- local_cause(n1).
active(n2) :- local_cause(n2).
active(n1) :- transmit_cause(n2,n1).
active(n2) :- transmit_cause(n1,n2).

As this already is a DF-PLP program, we can skip the further rewrites. While the
definite clauses are factored differently compared to the earlier variants, their meaning
is the same.

F. Proofs of Theorems and Propositions in Section 6 and Section 7

F.1. Proof of Theorem 6.2

Theorem 6.2 (Label Equivalence). Let P be a DC-ProbLog program and let Pg be
the relevant ground program for P with respect to a query µ and the evidence E = e
obtained by first grounding out logical variables and subsequently applying transfor-
mation rules from Section 4. The programs P and Pg specify the same probability:

PP(µ = ⊤ | E = e) = PPg (µ = ⊤ | E = e) (6.1)

Proof. The semantics of P is given by the ground program that is obtained by first
grounding P with respect to its Herbrand base and reducing it to a DF-PLP program
as specified in Section 4. The resulting program consists of distributional facts and
ground normal clauses only, and includes clauses defining rv-atoms as well as calls to
those atoms in clause bodies. However, as the definitions of these atoms are acyclic,
and each ground instance is defined by a single rule (with the body of the DC that
introduced the new random variable), we can eliminate all references to such atoms by
recursively applying the well-known unfolding transformation, which replaces atoms
in clause bodies by their definition. The result is an equivalent ground program using
only predicates from P, but where rule bodies have been expanded with the contexts of
the random variables they interpret. We know from Theorem 1 in [Fierens et al., 2015]
that for given query and evidence, it is sufficient to use the part of this logic program
that is encountered during backward chaining from those atoms. We note that in our
case, this also includes the distributional facts providing the distributions for relevant
random variables, i.e., random variables in relevant comparison atoms as well as their
ancestors. □
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F.2. Proof of Theorem 6.9
Theorem 6.9 (Label Equivalence). Let Pg be the relevant ground program for a DC-
ProbLog program P with respect to a query µ and the evidence E = e. Let ϕg denote
the propositional formula derived from Pg and let α be the labeling function as defined
in Definition 6.5. We then have label equivalence, i.e.

∀φ ∈ ENUM(ϕg) : E
V∼Pg

[α(φ)] = PPg (φ) (6.5)

In other words, for all models φ of ϕg, the expected value (E·[·]) of the label of φ is
equal to the probability of φ according to the probability measure of relevant ground
program Pg.

Proof. The probability of a model φ of the relevant ground program Pg is, according
to the distribution semantics (cf. Appendix C.2), given by:

PPg (φ) =
∫

1[µ1=b1∧...∧µn=bn](ω(V)) dPV (F.1)

where the µi are the comparison atoms that appear (positively or negatively) in Pg and
the bi the truth values these atoms take in φ. We can manipulate the probability into:

PPg =

∫  n∏
i=1

1[µi=bi](ω(V))

 dPV (F.2)

=

∫  ∏
i:bi=⊥

1[µi=bi](ω(V))


 ∏

i:bi=⊤

1[µi=bi](ω(V))

 dPV (F.3)

=

∫  ∏
i:bi=⊥

⟦¬ci(vars(µi))⟧


 ∏

i:bi=⊤

⟦ci(vars(µi))⟧

 dPV (F.4)

Turning our attention now to the expected value of α(φ) we have:

E
V∼Pg

[α(φ)] =
∫
α

∧
ℓi∈φ

ℓi

 dPV =
∫ ∏

ℓi∈φ

α (ℓi)

 dPV (F.5)

The literals ℓi ∈ φ fall into four groups: atoms whose predicate is a comparison and that
are true in φ (denoted by CA+(φ)), non-comparison atoms that are true in φ (denoted
NA+(φ)), and similarly the atoms that are false in φ (denoted by CA−(φ) and NA−(φ)).
This yields:

E
V∼Pg

[α(φ)] (F.6)

=

∫  ∏
ℓi∈CA+(φ)

α(ℓi)


 ∏
ℓi∈CA−(φ)

α(¬ℓi)


 ∏
ℓi∈NA+(φ)

α(ℓi)


 ∏
ℓi∈NA−(φ)

α(¬ℓi)

 dPV

Plugging in the definition of the labeling function the last two products reduce to 1 and
we obtain for the remaining expression:

E
V∼Pg

[α(φ)] =
∫  ∏

i:ℓi∈CA+(φ)

⟦ci(vars(ℓi))⟧


 ∏

i:ℓi∈CA−(φ)

⟦¬ci(vars(ℓi))⟧

 dPV (F.7)
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Identifying now the set {i : ℓi ∈ CA+(φ)} with the set {i : µi = ⊤} and the set {i : ℓi ∈
CA−(φ)} with the set {i : µi = ⊥} proves the theorem, as this equates Equation F.4 and
Equation F.7 □

F.3. Proof of Proposition 7.1

Proposition 7.1 (Monte Carlo Approximation of a Conditional Query). Let the set

S =
{(

s(1)
1 , . . . , s

(1)
M

)
, . . . ,

(
s(|S|)

1 , . . . , s
(|S|)
M

)}
(7.2)

denote |S| i.i.d. samples for each random variable in Pg. A conditional probability
query to a DC-ProbLog program P can be approximated as:

PP(µ = q | E = e) ≈

∑|S|
i=1

∑
φ∈ENUM(ϕ∧ϕq) α

(i)(φ)∑|S|
i=1

∑
φ∈ENUM(ϕ) α

(i)(φ)
, N < ∞ (7.3)

The index (i) on α(i)(φ) indicates that the label of φ is evaluated at the i-th ordered set
of samples

(
s(i)

1 , . . . , s
(i)
M

)
.

Proof. First we write the conditional probability as a ratio of expected values invoking
Theorem 6.10, on which we then use Defintion 6.7:

PP(µ = q | E = e) =
EV∼Pg [α(ϕ ∧ ϕq)]
EV∼Pg [α(ϕ)]

(F.8)

=
EV∼Pg

[∑
φ∈ENUM(ϕ∧ϕq)

∏
ℓ∈φ α(ℓ)

]
EV∼Pg

[∑
φ∈ENUM(ϕ)

∏
ℓ∈φ α(ℓ)

] (F.9)

=
EV∼Pg

[∑
φ∈ENUM(ϕ∧ϕq) α(φ)

]
EV∼Pg

[∑
φ∈ENUM(ϕ) α(φ)

] (F.10)

We can now express the conditional probability in terms of the sampled values S:

PP(µ = q | E = e) =
lim→∞ 1/|S|

∑|S|
i=1

∑
φ∈ENUM(ϕ∧ϕq) α

(i)(φ)

limN→∞ 1/|S|
∑|S|

i=1
∑
φ∈ENUM(ϕ) α

(i)(φ)
(F.11)

≈

∑|S|
i=1

∑
φ∈ENUM(ϕ∧ϕq) α

(i)(φ)∑|S|
i=1

∑
φ∈ENUM(ϕ) α

(i)(φ)
, |S| < ∞ (F.12)

□

F.4. Proof of Proposition 7.13

Proposition 7.13 (Consistency of IALW). Infinitesimal algebraic likelihood weighting
is consistent, that is, the approximate equality in Equation 7.12 is almost surely an
equality for |S| → ∞.
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Proof. First we manipulate the expected value on the left hand side of Equation 7.12:

E

 ∑
φ∈ENUM(ϕ)

∏
ℓ∈φ

α (ℓ)
∣∣∣∣∣S

 (F.13)

= lim
|S|→∞

|S|∑
i=1

∑
φ∈ENUM(ϕ)

∏
ℓ∈φ

α(i) (ℓ) (F.14)

= lim
|S|→∞

|S|∑
i=1

∑
φ∈ENUM(ϕ)

 ∏
ℓ∈φ\DI(φ)

α(i) (ℓ)
∏
ℓ∈DI(φ)

α(i) (ℓ)

 (F.15)

As the samples are ancestral samples, they satisfy by construction the delta invervals
appearing in the second product. This means that

∏
ℓ∈DI(φ) α

(i) (ℓ) = 1 and that we can
write the expected value in function of non delta interval atoms only:

E

 ∑
φ∈ENUM(ϕ)

∏
ℓ∈φ

α (ℓ)
∣∣∣∣∣S

 = E


∑
φ∈ENUM(ϕ)

∏
ℓ∈φ\DI(φ)

α (ℓ)︸                       ︷︷                       ︸
B f (ϕ)

∣∣∣∣∣S


(F.16)

Let us now manipulate the expression in the numerator on the right hand side of Equa-
tion 7.12:

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈φ

α(i)
IALW (ℓ) (F.17)

=

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

 ⊗
ℓ∈φ\DI(φ)

α(i)
IALW (ℓ)

︸                  ︷︷                  ︸(
r(i)
φ ,0

)
⊗

 ⊗
ℓ∈DI(φ)

α(i)
IALW (ℓ)

︸                ︷︷                ︸(
t(i)
φ ,m

(i)
φ

)
(F.18)

The expressions
(
r(i)
φ , 0

)
and

(
t(i)
φ ,m

(i)
φ

)
denote infinitesimal numbers. Note how only the

latter of the two picks up a non-zero second part.
From the definition of the addition of two infinitesimal numbers we can see that

only those infinitesimal numbers with the smallest integer in the second part survive
the addition. This also means that in Equation F.18 only those terms that have the
smallest integer in their second part among all terms will contribute. We denote this
smallest integer by:

m∗ = min
i∈{1,...,|S|}
φ∈ENUM(ϕ)

m(i)
φ (F.19)

67



We rewrite Equation F.18 in function of m∗:

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

(
⟦m(i)
φ =m∗⟧, 0

)
⊗

(
r(i)
φ , 0

)
⊗

(
t(i)
φ ,m

∗
)

(F.20)

=

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

(
⟦m(i)
φ =m∗⟧r(i)

φ t(i)
φ , 0

)
⊗ (1,m∗) (F.21)

=

 |S|∑
i=1

∑
φ∈ENUM(ϕ)

⟦m(i)
φ =m∗⟧r(i)

φ t(i)
φ , 0

 ⊗ (1,m∗) (F.22)

Similarly we get for the denominator in Equation 7.12:

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈DI(φ)

α(i)
IALW (ℓ) (F.23)

=

 |S|∑
i=1

∑
φ∈ENUM(ϕ)

⟦m(i)
φ =m∗⟧t(i)

φ , 0

 ⊗ (1,m∗) (F.24)

We can now plug Equation F.16, Equation F.22 and Equation F.24 back into Equa-
tion 7.12 and obtain:

(
E

[
f (ϕ)|S

]
, 0

)
=

∑|S|i=1
∑
φ∈ENUM(ϕ)⟦m

(i)
φ =m∗⟧r(i)

φ t(i)
φ∑|S|

i=1
∑
φ∈ENUM(ϕ)⟦m

(i)
φ =m∗⟧t(i)

φ

, 0

 (|S| → ∞) (F.25)

⇔ E
[
f (ϕ)|S

]
=

∑|S|
i=1

∑
φ∈ENUM(ϕ)⟦m

(i)
φ =m∗⟧r(i)

φ t(i)
φ∑|S|

i=1
∑
φ∈ENUM(ϕ)⟦m

(i)
φ =m∗⟧t(i)

φ

(F.26)

We realize that r(i)
φ is actually f (ϕ) evaluated at the i-th sample at the instantiation φ

and evoke [Wu et al., 2018, Theorem 4.1] to prove Equation F.26, which also finishes
this proof. □

F.5. Proof of Proposition 7.14

Proposition 7.14. A conditional probability query to a DC-ProbLog program P can
be approximated as:

PP(µ = q|E = e) ≈

⊕|S|

i=1

⊕
φ∈ENUM(ϕ∧ϕq)

⊗
ℓ∈φ α

(i)
IALW (ℓ)⊕|S|

i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈φ α

(i)
IALW (ℓ)

(7.13)

Proof. We start the proof by invoking Theorem 6.10, which expresses the conditional
probability as a ratio of expectations. In the numerator and the denominator we then
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write the label of the propositional logic formulas as the sum of the labels of the re-
spective possible worlds.

PP(µ = q|E = e) =
EV∼Pg [α(ϕ ∧ ϕq)]
EV∼Pg [α(ϕ)]

(F.27)

=
EV∼Pg

[∑
φ∈ENUM(ϕ∧ϕqe) α(φ)

]
EV∼Pg

[∑
φ∈ENUM(ϕ) α(φ)

] (F.28)

Next, we approximate the expectation using a set of ancestral samples S, followed by
pulling out the query from the summation index in the numerator:

EV∼Pg

[∑
φ∈ENUM(ϕ∧ϕq) α(φ)

]
EV∼Pg

[∑
φ∈ENUM(ϕ) α(φ)

] (F.29)

≈
E

[∑
φ∈ENUM(ϕ∧ϕq) α(φ)|S

]
E

[∑
φ∈ENUM(ϕ) α(φ)|S

] (F.30)

≈
E

[∑
φ∈ENUM(ϕ)⟦φ |= ϕq⟧α(φ)|S

]
E

[∑
φ∈ENUM(ϕ) α(φ)|S

] (F.31)

We now rewrite the fraction of two real numbers in Equation F.31 as the fraction of two
infinitesimal numbers and plug in the definition of the infinitesimal algebraic likelihood
weight (cf. Definition 7.12):

E
[∑
φ∈ENUM(ϕ)⟦φ |= ϕq⟧α(φ)|S

]
E

[∑
φ∈ENUM(ϕ) α(φ)|S

] (F.32)

=

(
E

[∑
φ∈ENUM(ϕ)⟦φ |= ϕq⟧α(φ)|S

]
, 0

)(
E

[∑
φ∈ENUM(ϕ) α(φ)|S

]
, 0

) (F.33)

≈

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⟦φ |= ϕq⟧
⊗
ℓ∈φ

α(i)
IALW (ℓ)

�������������|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈DI(φ)

α(i)
IALW (ℓ)

⊗
�������������|S|⊕

i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈DI(φ)

α(i)
IALW (ℓ)

|S|⊕
i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈φ

α(i)
IALW (ℓ)

(F.34)

In the last line the first factor corresponds to the numerator of the previous equation
and the second factor corresponds to the reciprocal of the denominator. Note that
the consistency of the infinitesimal algebraic likelihood weight of the numerator (first
factor) is guaranteed by defining a new labeling function αq(φ) B ⟦φ |= ϕq⟧α(φ) and
evoking Proposition 7.13 with αq.

Finally, we push the expression ⟦φ |= ϕq⟧ in the numerator back into the index of
the summation (⊕), which yields the following expression:⊕|S|

i=1

⊕
φ∈ENUM(ϕ∧ϕq)

⊗
ℓ∈φ α

(i)
ALWI (ℓ)⊕|S|

i=1

⊕
φ∈ENUM(ϕ)

⊗
ℓ∈φ α

(i)
IALW (ℓ)

(F.35)
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which proves the proposition. □

F.6. Proof of Proposition 7.18

Proposition 7.18 (ALW on d-DNNF). We are given the propositional formulas ϕ and
ϕq and a set S of ancestral samples, we can use Algorithm 7.19 to compute the condi-
tional probability PP(µ = q|E = e).

Proof. Algorithm 7.19 first compiles both propositional formulas into equivalent d-
DNNF representations, cf. Lines 2 and 3. In Lines 4 and 5 it then computes the
(unnormalized) infinitesimal algebraic likelihood weight for both formulas by calling
Algorithm 7.20. In other words, we compute the numerator and denominator in Equa-
tion F.35. We observe that Algorithm 7.20 evaluates a given d-DNNF formula for each
conditioned topological sample using the Eval function, which evaluates a d-DDNF
formula given a labeling function, cf. Algorithm 7.21 [Kimmig et al., 2017]. The
correctness of Algorithm 7.19 now hinges on the correctness of the Eval function,
which was proven by Kimmig et al. [2017] for the evaluation of a d-DNNF formula
using a semiring and labeling function pair that adheres to the properties described in
Lemmas 7.15 to 7.17. Effectively, Algorithm 7.20 correctly computes the algebraic
model count for each ancestral sample, adds up the results, and returns the unnormal-
ized algebraic model count to Algorithm 7.19. Line 6 finally return the ratio of the
two unnormalized algebraic likelihood weights, which corresponds to the conditional
probability PP(µ = q|E = e), as proven in Equations F.27 to F.35. □
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