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Neural-Symbolic AI (NeSy) [5] allows neural networks to exploit symbolic
background knowledge in the form of logic by combining the reasoning power
of logical representations with the learning capabilities of neural networks. Its
advantages are many; learning converges more rapidly and performs better in
the limited data regime. Additionally, NeSy models are robust and facilitate
inference on out-of-distribution data [11, 15, 8]. One of the challenges of NeSy lies
in combining logical symbols with continuous and differentiable neural represen-
tations. Such a combination has only been realised for discrete random variables
by interpreting the outputs of neural networks as the weights of these variables.
These weights can then be given either a fuzzy semantics [1, 7] or a probabilistic
semantics [9, 17]. The latter is also used in neural probabilistic logic programming
(NPLP), where neural networks parametrise probabilistic logic programs.

In contrast to existing probabilistic NeSy approaches, deep probabilistic pro-
gramming (DPP) [14, 4] can capture models integrating continuous random
variables. However, it is unclear whether DPP can be generalised to enable logical
and relational reasoning. Moreover, reasoning on hybrid domains is crucial for
safety-critical applications in robotics and reinforcement learning [16]. Hence,
an important gap exists between DPP and NeSy as reasoning is a fundamental
component of the latter. We contribute to closing this DPP-NeSy gap by intro-
ducing DeepSeaProbLog, an NPLP language with support for discrete-continuous
random variables that retains logical and relational reasoning capabilities.

Syntax

DeepSeaProbLog is based on two fundamental concepts; the neural distributional
fact (NDF) and the probabilistic comparison formula (PCF). NDFs allow the
definition of discrete-continuous random variables and comprise the interface
between neural networks and logical symbols. For example, the uncertain location
of an object X can be modelled as a normal distribution regressed by the network
regressor via the expression loc(X) ~ normal(regressor(X)). PCFs
then translate these random variables into Boolean statements usable in logical
formulae. These statements can take the form of certain safety constraints such
as distance(loc(car1), loc(car2)) > 10, expressing that car1 and
car2 should be at least 10 meters apart.
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Semantics, Inference and Learning

DeepSeaProbLog programs are used to compute the probability that a logical
statement is true. This probability follows from the semantics of the DeepSeaProbLog
program itself, which we base on the distribution semantics [13].

Inference in DeepSeaProbLog is based on weighted model integration (WMI) [3],
which intuitively integrates over all models of a satisfiability modulo theory
(SMT) formula [2] weighted by their probability. We formally prove that a
DeepSeaProbLog program can be mapped onto an SMT formula and that the
WMI of this formula yields the probability that the formula is true. As a result,
DeepSeaProbLog inference is given by an expression of the form∫ ∑∏

1(c(x)) pΛ(x) dx, (1)

where each c(x) corresponds to a constraint defined by a PCF and every pΛ(x)
is the probability density of a continuous random variable defined by a NDF. In
practice, the integration is approximated by sampling values, exploiting DPP.

Unfortunately, this approach to inference introduces two obstacles for learning;
the indicator functions in Equation (1) are not differentiable and sampling
blocks the flow of gradients. The former is resolved by applying relaxations [10]
and we formally prove that these relaxations lead to asymptotically unbiased
gradients. The latter can be dealt with by applying the reparametrisation trick [12].
Together, these solutions turn DeepSeaProbLog into an end-to-end differentiable
programming language. More details can be found in the original publication [6].

Experiments

The introduction of neurally parametrised continuous random variables allows
DeepSeaProbLog to tackle problems beyond the scope of existing methods. One
such problem is distant object detection, where objects need to be both located
and classified without explicit supervision on the location. An example task of
this nature is the detection of handwritten years from just the labels of the digit
classes (Figure 1). Our results clearly illustrate that DeepSeaProbLog outperforms
state-of-the-art DPP and non-probabilistic NeSy baselines.
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Fig. 1. Example of detecting a handwritten year from only its digit labels.
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