
Differentiable Sampling of Categorical Distributions
Using the CatLog-Derivative Trick

Lennert De Smet 1 Emanuele Sansone 1 Pedro Zuidberg Dos Martires 2

Abstract
Categorical random variables can faithfully repre-
sent the discrete and uncertain aspects of data as
part of a discrete latent variable model. Learning
in such models necessitates taking gradients with
respect to the parameters of the categorical prob-
ability distributions, which is often intractable
due to their combinatorial nature. A popular tech-
nique to estimate these otherwise intractable gradi-
ents is the Log-Derivative trick. This trick forms
the basis of the well-known REINFORCE gra-
dient estimator and its many extensions. While
the Log-Derivative trick allows us to differentiate
through samples drawn from categorical distribu-
tions, it does not take into account the discrete
nature of the distribution itself. Our first contribu-
tion addresses this shortcoming by introducing the
CatLog-Derivative trick– a variation of the Log-
Derivative trick tailored towards categorical distri-
butions. Secondly, we use the CatLog-Derivative
trick to introduce IndeCateR, a novel and unbi-
ased gradient estimator for the important case of
products of independent categorical distributions
with provably lower variance than REINFORCE.
Thirdly, we empirically show that the estimates
of IndeCateR outperform the state of the art for
the same number of samples.

1. Introduction
Categorical random variables naturally emerge in many do-
mains in AI, such as language modelling, reinforcement
learning and neural-symbolic AI (De Smet et al., 2023).
They are compelling because they can faithfully represent
the discrete concepts present in data in a sound probabilistic
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fashion. Unfortunately, inference in probabilistic models
with categorical latent variables is usually computation-
ally intractable due to its combinatorial nature. This in-
tractability often leads to the use of sampling-based approx-
imate inference techniques, which in turn poses problems
to gradient-based learning as sampling is an inherently non-
differentiable process.

In order to bypass this non-differentiability, two main
classes of gradient estimators have been developed. On the
one hand, there is a range of unbiased estimators based on
the Log-Derivative trick and the subsequent REINFORCE
gradient estimator (Williams, 1992). On the other hand, we
have biased estimators that use continuous relaxations to
which the reparametrisation trick (Ruiz et al., 2016) can
be applied, such as the Gumbel-Softmax trick (Jang et al.,
2017; Maddison et al., 2017).

A clear advantage of the REINFORCE estimator over
relaxation-based estimators is its unbiased nature. However,
REINFORCE tends to be sample-inefficient and its gradi-
ent estimates exhibit high variance in practice. To resolve
these issues, methods have been proposed that modify RE-
INFORCE by, for instance, adding control variates (Richter
et al., 2020; Titsias & Shi, 2022). These modified estimators
have been shown to deliver more robust gradient estimates
than standard REINFORCE.

Instead of modifying REINFORCE, we take a different ap-
proach and modify the Log-Derivative trick by explicitly
taking into account that we are working with multivariate
categorical distributions. We call this first contribution the
CatLog-Derivative trick. Interestingly, we show that the
CatLog-Derivative trick leads to Rao-Blackwellised estima-
tors (Casella & Robert, 1996), immediately giving us a guar-
anteed reduction in variance. A similar result was shown by
Tokui & Sato (2017) using the Gumbel-Max reparametrisa-
tion for categorical distributions, which we discuss further
in the related work (Section 5). As a second contribution, we
propose IndeCateR (read as ‘indicator’), a gradient estima-
tor for the special case of independent categorical random
variables. IndeCateR is a hyperparameter-free estimator that
can be implemented efficiently on modern AI accelerators.
Thirdly, we empirically show that IndeCateR is competitive
with comparable state-of-the-art gradient estimators.
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2. Notation and Preliminaries
Throughout this paper, we consider expectations with re-
spect to multivariate categorical probability distributions,
which we write as

EX∼p(X) [f(X)] =
∑

x∈Ω(X) p(x)f(x), (1)

where we assume this expectation to be finite. The symbol
X denotes a random vector (X1, . . . , XD) of D categorical
random variables while p(X) denotes a multivariate proba-
bility distribution. The expression X ∼ p(X) indicates that
the random vector X is distributed according to p(X). On
the right-hand side of Equation (1) we write the expectation
as an explicit sum over Ω(X), the finite sample space of the
random vector X, using x = (x1, . . . , xD) for the specific
assignments of the random vector (X1, . . . , XD).

Given an order of the random variables in X, we can induce
a factorisation of the joint probability distribution as follows

p(X) =
∏D

d=1 p(Xd | X<d). (2)

Here, X<d denotes the ordered set of random variables
(X1, . . . , Xd−1). Similarly, X>d will denote the ordered
set (Xd+1, . . . , XD) in subsequent sections.

When performing gradient-based learning, we are inter-
ested in partial derivatives of the expected value in 1, i.e.,
∂λEX∼p(X) [f(X)] . Here, we take the partial derivative of
the expectation with respect to the parameter λ and assume
that the distribution p(X) and the function f(X) depend on
a set of parameters Λ with λ ∈ Λ. For probability distribu-
tions to which the reparametrisation trick does not apply, we
can rewrite the partial derivative using the Log-Derivative
trick.

Theorem 2.1 (Log-Derivative Trick (Williams, 1992)). Let
p(X) be a probability distribution and f(X) such that its
expectation is finite, with both functions depending on a set
of parameters Λ. Then, it holds that

∂λEX∼p(X) [f(X)] = (3)
EX∼p(X) [∂λf(X)] + EX∼p(X) [f(X)∂λ log p(X)] .

In general, both expectations in Equation (3) are intractable
and often estimated with a Monte Carlo scheme. The most
immediate such estimation is provided by the REINFORCE
gradient estimator (Williams, 1992)

∂λEX∼p(X) [f(X)] ≈ (4)
1
N

∑N
n=1

(
∂λf(x

(n)) + f(x(n))∂λ log p(x
(n))

)
.

The superscript on x(n) denotes that it is the nth sample
vector drawn from p(X).

A well-known problem with the REINFORCE gradient esti-
mator is the high variance stemming from the second term

in Equation (4). A growing body of research has been
tackling this problem by proposing variance reduction tech-
niques (Grathwohl et al., 2018; Richter et al., 2020; Titsias
& Shi, 2022; Tucker et al., 2017). In what follows we will
focus on estimating this second term and drop the first term,
since it can be assumed to be unproblematic.

3. The CatLog-Derivative Trick
The standard log-derivative trick and its corresponding gradi-
ent estimators are applicable to both discrete and continuous
probability distributions. However, this generality limits
their usefulness when it comes to purely categorical ran-
dom variables. For example, the REINFORCE gradient
estimator suffers from high variance when applied to prob-
lems involving high-dimensional multivariate categorical
random variables. In such a setting there are exponentially
many possible states to be sampled, which makes it increas-
ingly unlikely that a specific state gets sampled. We now
introduce the CatLog-Derivative trick that reduces the expo-
nential number of states arising in a multivariate categorical
distribution by exploiting the distribution’s factorisation. All
subsequent statements are proven in the appendix.
Theorem 3.1 (CatLog-Derivative Trick). Let p(X) be a mul-
tivariate categorical probability distribution that depends on
a set of parameters Λ, then it holds that ∂λEX∼p(X) [f(X)]
is equal to

D∑
d=1

∑
xδ∈Ω(Xd)

EX<d∼p(X<d)[∂λp(xδ | X<d) (5)

EX>d∼p(X>d|xδ,X<d)[f(X ̸=d, xδ)]].

Intuitively, the CatLog-Derivative trick decomposes the
log-derivative trick into an explicit sum of multiple Log-
Derivative tricks, one for each of the categorical random
variables present in the multivariate distribution. We show
next that this decomposition is effectively equivalent to
Rao-Blackwellising (Casella & Robert, 1996) gradient esti-
mators.
Definition 3.2 (The CateR gradient estimator). We define
the Categorical REINFORCE (CateR) estimator via the
expression

∂λEX∼p(X) [f(X)] ≈ (6)
D∑

d=1

∑
xδ∈Ω(Xd)

1

N

N∑
nd=1

∂λp(xδ | x(nd)
<d )f(x

(nd)
<d , xδ,x

(nd)
>d ),

where the sample x
(nd)
>d is drawn while conditioning on

xδ and x
(nd)
<d . The subscript on nd indicates that different

samples are drawn for every d.

Proposition 3.3. The CateR estimator Rao-Blackwellises
REINFORCE.
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Corollary 3.4 (Bias and Variance). The CateR estimator
is unbiased and its variance is upper-bounded by REIN-
FORCE.

Proof. This follows trivially from Proposition 3.3, the law
of total expectation and the law of total variance (Blackwell,
1947; Radhakrishna Rao, 1945).

4. The IndeCateR Gradient Estimator
Using the CatLog-Derivative trick derived in the previous
section we are now going to study a prominent special case
of multivariate categorical distributions. That is, we will
assume that our probability distribution admits the indepen-
dent factorisation p(X) =

∏D
d=1 pd(Xd). Note that all D

different distributions still depend on the same set of learn-
able parameters Λ. Furthermore, we subscript the individual
distributions pd as they can no longer be distinguished by
their conditioning sets. Plugging in this factorisation into
Theorem 3.1 gives us the Independent Categorical REIN-
FORCE estimator, or IndeCateR for short.

Proposition 4.1 (IndeCateR). Let p(X) be a multivariate
categorical probability distribution that depends on a set
of parameters Λ and factorises as p(X) =

∏D
d=1 pd(Xd),

then the gradient of the expectation EX∼p(X) [f(X)] can
be estimated with

D∑
d=1

∑
xδ∈Ω(Xd)

∂λpd(xδ)
1

N

N∑
nd=1

f(x
(nd)
̸=d , xδ), (7)

where x
(nd)
̸=d are samples drawn from p(X̸=d).

Example 4.2 (Independent Factorisation). Let us consider a
multivariate distribution involving three binary, independent
categorical random variables. Concretely, this gives us

p(X1, X2, X3) = p1(X1)p2(X2)p3(X3), (8)

where X1, X2 and X3 can take values from the set Ω(X) =
{0, 1}. Taking this specific distribution and plugging it into
Equation (7) for the IndeCateR gradient estimator now gives
us∑3

d=1

∑
xδ∈{0,1} ∂λpd(xδ)

1
N

∑N
nd=1 f(x

(nd)
̸=i , xδ). (9)

In order to understand the difference between the Log-
Derivative trick and the CatLog-Derivative trick, we are
going to look at the term for d = 2 and consider the single-
sample estimate

∂λp2(0)f(x1, 0, x3) + ∂λp2(1)f(x1, 1, x3), (10)

where x1 and x3 are sampled values for the random vari-
ables X1 and X3. These samples would be different ones
for d ̸= 2. The corresponding complete single sample es-
timate using REINFORCE instead of IndeCateR would be

∂λp2(x2)f(x1, x2, x3). We see that for REINFORCE we
sample all the variables whereas for IndeCateR we perform
the explicit sum for each of the random variables in turn and
only sample the remaining variables.

Note how, in the case of D = 1, Equation (7) reduces
to the exact gradient. With this in mind, we can interpret
IndeCateR as computing exact gradients for each single
random variable Xd with respect to an approximation of the
function EX ̸=d∼p(X ̸=d) [f(X ̸=d, Xd)].

Computational Complexity Consider Equation (7) and
observe that none of the random variables has a sample
space larger than K = maxd(|Ω(Xd)|). Computing our
gradient estimate requires performing three nested sums
with lower bound 1 and upper bounds equal to D, K and
N , respectively. These summations result in a time com-
plexity of O(D ·K ·N). Leveraging modern AI accelera-
tors, they can be parallelised to obtain a time complexity of
O(logD+logK+logN), which allows for the deployment
of IndeCateR in modern deep architectures.

5. Related Work
The work closest related to ours is the RAM estimator intro-
duced by Tokui & Sato (2017). The general idea is to first
reparametrise the probability distributions such that they
no longer depend on any parameters and to then perform a
marginalization. We show in Section 3 that this reparametri-
sation step is unnecessary. Avoiding reparametrisation has
the major advantage that we explicitly retain the conditional
dependency structure in the CateR estimator, which allows
us to trivially build a special purpose estimator for (condi-
tionally) independent distributions (IndeCateR). Moreover,
Tokui & Sato (2017) did not study the setting of a shared
parameter space Λ between distributions, although this be-
ing the most common setting in modern deep-discrete and
neural-symbolic architectures. We rectify this omission and
show that efficiently implemented Rao-Blackwellised gradi-
ent estimators for categorical random variables are a viable
option in practice orthogonal to variance reduction schemes
based on control variates.

Such variance reduction methods for REINFORCE aim to
reduce the variance by subtracting a mean-zero term, called
the baseline, from the estimate (Bengio et al., 2013; Pais-
ley et al., 2012). Progress in this area is mainly driven by
multi-sample, i.e., sample-dependent baselines (Grathwohl
et al., 2018; Titsias & Shi, 2022; Tucker et al., 2017), and
leave-one-out baselines (Kool et al., 2019; 2020; Mnih &
Rezende, 2016; Richter et al., 2020). Variance can further
be reduced by coupling multiple samples and exploiting
their dependencies (Dimitriev & Zhou, 2021; Dong et al.,
2021; Yin et al., 2020). A general drawback of baseline vari-
ance reduction methods is that they often involve a certain
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Figure 1: Test set accuracy of predicting the correct sum value versus number of epochs for the MNIST addition. From left
to right, the plots show curves for 4, 8, 12, and 16 MNIST digits. The dashed, grey line at the top of each plot represents a
hypothetical sum-classifier that has access to a 99% accurate MNIST digit classifier. The x-axis is in log-scale.

amount of computational overhead, usually in the form of
learning optimal parameters or computing statistics. This
computational overhead can be justified by assuming that
the function in the expectation is costly to evaluate. In such
cases, it might pay off to perform extra computations if that
means the expensive function is evaluated fewer times.

Another popular, yet diametrically opposite, approach to low
variance gradient estimates for categorical random variables
is the concrete distribution (Maddison et al., 2017). The
concrete distribution is a continuous relaxation of the cate-
gorical distribution using the Gumbel-Softmax trick (Jang
et al., 2017). Its main drawback is that it results in biased
gradient estimates. Even though this bias can be controlled
by a temperature parameter, the tuning of this parameter is
a highly non-trivial matter in practice.

Both approaches can additionally benefit from Rao-
Blackwellisation, as illustrated by Liu et al. (2019) for RE-
INFORCE and Paulus et al. (2021) for relaxed methods.
However, these works still only focus on the univariate case.
In contrast, we perform Rao-Blackwellisation by exploiting
multivariate dependencies. In general, reducing variance by
exploiting dependencies is orthogonal to much of the exist-
ing literature. Hence, it might prove interesting to examine
whether it is possible to combine existing techniques with
our work for a further reduction in variance.

6. Experiments
We study the behaviour of IndeCateR on a problem from
the neural-symbolic literature, the addition of MNIST dig-
its (Manhaeve et al., 2018). Given a set of D MNIST digits,
the task is to predict the sum of the digits. The only pro-
vided supervision is the correct sum and no direct label of
any digit. The difficulty of the problem scales exponentially,
as there are 10D states in the sample space. There are only
10D+1 possible labels, resulting in very sparse supervision.

In the field of neural-symbolic AI such problems are either
solved exactly (Manhaeve et al., 2018) or by simplifying
the underlying combinatorial structure (Huang et al., 2021;
Manhaeve et al., 2021). Exact methods scale very poorly
while simplifying the combinatorics introduces problematic
biases. In contrast, we will study the MNIST addition prob-
lem using sampling and unbiased gradient estimators. The
general architecture is as follows. Each of the D different
MNIST images is passed through a neural classifier, which
gives probabilities for each class. These probabilities are
used to sample a number between 0 and 9 for each image.
The numbers are summed up and compared to the label
using a binary cross-entropy loss.

Using IndeCateR in a neural-symbolic setting we achieve
two things. On the one hand, we use the sampling in Inde-
CateR as an unbiased search, replacing the usual symbolic
search. On the other, we render this stochastic search differ-
entiable by estimating gradients instead of performing the
costly exact computation.

We compare IndeCateR to REINFORCE leave-one-out
(RLOO) (Kool et al., 2019; Salimans & Knowles, 2014)
as it is a strong representative of methods reducing variance
for REINFORCE (Figure 1). IndeCateR is given 10 samples
leading to D · 10 · 10 function evaluations. Two instances of
RLOO are used, RLOO-F and RLOO-S. The former uses
D · 10 · 10 samples and function evaluations while the latter
only uses 10. IndeCateR-D is an augmented version of In-
deCateR that takes 10 new samples for each of the D terms
in Equation (7), which would not be possible following the
work of Tokui & Sato (2017). We see that IndeCateR-D is
the only method capable of scaling and solving the MNIST
addition for 16 digits.
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A. Proofs of Theorems
A.1. Proof of Theorem 3.1

Theorem 3.1 (CatLog-Derivative Trick). Let p(X) be a multivariate categorical probability distribution that depends on a
set of parameters Λ, then it holds that ∂λEX∼p(X) [f(X)] is equal to

D∑
d=1

∑
xδ∈Ω(Xd)

EX<d∼p(X<d)[∂λp(xδ | X<d) (5)

EX>d∼p(X>d|xδ,X<d)[f(X ̸=d, xδ)]].

Proof. We start by applying the standard log-derivative trick and fill in the product form of the categorical distribution
followed by pulling this product out of the logarithm and the expectation

EX∼p(X) [f(X)∂λ log p(X)] = EX∼p(X)

[
f(X)∂λ log

∏D
d=1 p(Xd | X<d)

]
, (11)

=
∑D

d=1 EX∼p(X) [f(X)∂λ log p(Xd | X<d)] . (12)

To continue, we write out the expectation explicitly and write the sum for the random variable Xd separately, resulting in∑D
d=1

∑
x∈Ω(X ̸=d)

∑
xδ∈Ω(Xd)

p(x ̸=d, xδ)f(x̸=d, xδ)∂λ log p(xδ | x<d). (13)

Next, we factorize the joint probability p(x ̸=d, xδ) as p(x>d | xδ,x<d)p(xδ | x<d)p(x<d). Multiplying the second of
these factors with ∂λ log p(xδ | x<d) gives us ∂λp(xδ | x<d). Finally, plugging ∂λp(xδ | x<d) into Equation (13) gives the
statement for the theorem.

A.2. Proof of Proposition 3.3

Proposition A.1. The CateR estimator Rao-Blackwellises REINFORCE.

Proof. We start from Equation (4) for the REINFORCE estimator, where we ignore the first term and factorize the probability
distribution similar to Equation (12)

∂λEX∼p(X) [f(X)] ≈ 1

N

N∑
n=1

f(x(n))∂λ log p(x
(n)) ≈

D∑
d=1

1

N

N∑
n=1

f(x(n))∂λ log p(x
(n)
d ). (14)

For notational conciseness, we dropped the subscript on nd and simply use n to identify single samples. Now we compare
Equation (6) and Equation (14) term-wise for N → ∞

N∑
n=1

E
Xd∼p(Xd|x(n)

<d )

[
f(x

(n)
<d , Xd,x

(n)
>d )∂λ log p(Xd|x(n)

<d )
]
=

N∑
n=1

f(x
(n)
<d , x

(n)
d ,x

(n)
>d )∂λ log p(x

(n)
d ).

In the equation above, we see that for CateR we take the expected value for Xd (left-hand side) and compute it exactly using
an explicit sum over the space Ω(Xd), whereas for REINFORCE (right-hand side) we use sampled values. This means,
in turn, that on the left we have the Rao-Blackwellised version of the right-hand side. Doing this for every d gives us a
Rao-Blackwellised version for REINFORCE, i.e., the CateR estimator.

A.3. Proof of Proposition 4.1

Proposition A.2 (IndeCateR). Let p(X) be a multivariate categorical probability distribution that depends on a set of
parameters Λ and factorises as p(X) =

∏D
d=1 pd(Xd), then the gradient of the expectation EX∼p(X) [f(X)] can be

estimated with
D∑

d=1

∑
xδ∈Ω(Xd)

∂λpd(xδ)
1

N

N∑
nd=1

f(x
(nd)
̸=d , xδ), (7)

where x
(nd)
̸=d are samples drawn from p(X̸=d).
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Figure 2: We report the (empirical) bias and variance for the different estimators and distributions in comparison to the exact
gradient. Bias and variance were computed using sample means and averaging them over 1000 runs.

Proof. We start by looking at the expression in Equation (5). Using the fact that we have a set of independent random
variables, we can simplify p(xδ | X<d) to pd(xδ). As a result, the gradient of the expected value can be rewritten as

∂λEX∼p(X) [f(X)] =
D∑

d=1

∑
xδ∈Ω(Xd)

EX<d∼p(X<d)

[
∂λpd(xδ)EX>d∼p(X>d) [f(X̸=d, xδ)]

]
(15)

=

D∑
d=1

∑
xδ∈Ω(Xd)

∂λpd(xδ)EX ̸=d∼p(X ̸=d) [f(X ̸=d, xδ)] (16)

Drawing N samples for the D − 1 independent random variables X ̸=d and for each term in the sum over d then gives us the
estimate stated in the proposition.

B. Additional Experiments
Apart from the provided neural-symbolic experiment, we performed two more traditional experiments from the gradient
estimation literature. A synthetic study of the quality of the IndeCateR gradients and the optimisation of a discrete variational
auto-encoder (DVAE).

B.1. Synthetic: Exact Gradient Comparison

For small enough problems the gradient for multivariate categorical random variables can be computed exactly via explicit
enumeration. Inspired by Niepert et al. (2021), we compare the estimates of

∂θEX∼p(X)

[∑D
d=1 |Xd − bd|

]
(17)

to its exact value. Here, θ are the logits that directly parametrise a categorical distribution p(X) =
∏D

d=1 p(Xd) and bd
denotes an arbitrarily chosen element of Ω(Xd). We compare the gradient estimates from IndeCateR, REINFORCE, RLOO,
and Gumbel-Softmax (GS) by varying the number of distributions D and the cardinality of the distributions.

In Figure 2 we show the (empirical) bias and variance for the different estimators. Each estimator was given 1000 samples,
while IndeCateR was only given a single one. Hence, IndeCateR has the fewest function evaluations as D ·K is smaller
than 1000 for each configuration. IndeCateR offers gradient estimates close to the exact ones with orders of magnitude
lower variance for all three settings. RLOO exhibits the smallest difference in bias, yet it can not compete in terms of
variance. Furthermore, the computation times were of the same order of magnitude for all methods. This is in stark contrast
to the estimator presented by Tokui & Sato (2017), where a two-fold increase in computation time of RAM with respect to
REINFORCE is reported.

B.2. Synthetic: Optimisation

We now study an optimization setting (Titsias & Shi, 2022), where the goal is to maximise the expected value

EX∼p(X)

[
1
D

∑D
i=1(Xi − 0.499)2

]
, (18)
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Figure 3: We plot the function value for different estimators against iterations (left) and time (middle). On the right, we plot
the variance of the gradients against iterations. Statistics were obtained by taking the average and standard error over 10
runs. IndeCateR and RLOO-S both use 2 samples, while RLOO-F and Gumbel-Softmax (GS) use 800 samples. The number
of function evaluations is equal for IndeCateR, RLOO-F, and GS-F. We performed a hyperparameter search for the learning
rate and the temperature of GS-F. Parameters were optimised using RMSProp.

where p(X) factorizes into D independent binary random variables. The true maximum is given by p(Xd = 1) = 1 for
all d. This task is challenging because of the small impact of the individual values for each Xd on the expected value
for higher values of D. We set D to 200 and report the results in Figure 3, where we compare IndeCateR to RLOO and
Gumbel-SoftMax.

In Figure 3 and subsequent figures we use the notation RLOO-F and RLOO-S, which we define as follows. If IndeCateR
takes N samples, then it performs D ·K ·N functional evaluations with K = maxd |Ω(Xd)|. As such, we define RLOO-S
as drawing the same number of samples as IndeCateR, which translates to N function evaluations. For RLOO-F we match
the number of function evaluations, which means that it takes D ·K ·N samples. We give an analogous meaning to GS-S
and GS-F for the Gumbel-SoftMax gradient estimator.

IndeCateR distinguishes itself by having both the lowest variance and quickest convergence across all methods, even
compared to RLOO-F. Additionally, the time to compute all gradient estimates does not differ significantly for the different
methods and leads to the same conclusions. It is striking to see that the Gumbel-Softmax estimator struggles in this task,
which is likely due to its bias in combination with the sensitive loss function.

B.3. Discrete Variational Auto-Encoder

As a third experiment we analyse the ELBO optimisation behaviour of a discrete variational auto-encoder (DVAE) (Rolfe,
2017). We optimise the DVAE on the three main datasets from the literature, being MNIST (LeCun, 1998), F-MNIST (Xiao
et al., 2017) and Omniglot (Lake et al., 2015). The encoder component of the network has three dense hidden layers of
sizes 384 and 256 ending in a latent 200-dimensional Bernoulli variable. The decoder takes samples from this variable
followed by hidden layers of size 256, 384 and 784. IndeCateR again uses two samples, hence we can compare to the same
configurations of RLOO and Gumbel-Softmax as in Section B.2, i.e., equal samples (GS-S and RLOO-S) and equal function
evaluations (GS-F and RLOO-F).

As evaluation metrics, we show the negated training and test set ELBO in combination with the variance of the gradients
throughout training. We opted to report all metrics in terms of computation time (Figure 4), but similar results in terms of
iterations are given in the appendix.

A first observation is that IndeCateR performs remarkably well in terms of convergence speed. It beats all other methods on
both MNIST and F-MNIST in terms of training ELBO, only having to yield to the Gumbel-Softmax trick with equal function
evaluations on Omniglot. However, we can observe a disadvantage of the quick convergence in terms of generalisation
performance when looking at the test set ELBO. RLOO-F and IndeCateR exhibit overfitting on the training data for MNIST,
resulting in an overall higher negative test set ELBO. We speculate that the relaxation for the Gumbel-Softmax or the higher
variance (Wu et al., 2020) of other methods act as a regulariser for the network. As one would ideally like to separate
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Figure 4: The top row shows training ELBO, test ELBO and gradient variance for the DVAE on MNIST – each plotted
against time. Rows 2 and 3 show the same plots for F-MNIST (middle) and Omniglot (bottom).

discrete sampling layers from network regularisation, we see this overfitting as a feature and not a drawback of IndeCateR.

IndeCateR additionally is competitive in terms of gradient variance, especially considering the number of samples that are
drawn. Across all datasets, the gradient variance of IndeCateR is comparable to that of RLOO-F, even though IndeCateR
takes only 2 samples compared to the 800 of RLOO-F. The only method with consistently lower gradient variance is the
Gumbel-Softmax trick, but only for equal function evaluations. However, in that case the Gumbel-Softmax trick takes ≈ 1.6
times longer than IndeCateR to compute a its gradient estimates.
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