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Abstract

Propositional model counting (#SAT) can be solved efficiently when the input formula
is in deterministic decomposable negation normal form (d-DNNF). Translating an arbitrary
formula into a representation that allows inference tasks, such as counting, to be performed
efficiently, is called knowledge compilation. Top-down knowledge compilation is a state-of-
the-art technique for solving #SAT problems that leverages the traces of exhaustive DPLL
search to obtain d-DNNF representations. While knowledge compilation is well studied for
propositional approaches, knowledge compilation for the (quantifier free) counting modulo
theory setting (#SMT) has been studied to a much lesser degree. In this paper, we discuss
compilation strategies for #SMT. We specifically advocate for a top-down compiler based
on the traces of exhaustive DPLL(T ) search.

1 Introduction

The key motivation of knowledge compilation research is to compile a logical formula into a
target language whose properties allow for certain tasks to be performed in time polynomial
in the representation size [12]. For propositional model counting (#SAT) problems, this rep-
resentation is called deterministic decomposable negation normal form (d-DNNF) [8]. Huang
and Darwiche realised that d-DNNF compilation can be achieved through exhaustive DPLL
search by simply storing the search traces [9, 21]. Several state-of-the-art d-DNNF compilers
are based on this principle, e.g. c2d [9], dSharp [29], miniC2D [31], and D4 [25].

The advantage of compiling to a d-DNNF formula instead of directly computing the
(weighted) model count, arises with repeated inference. As the d-DNNF only depends on the
logical formula, any weight change does not require recompiling. This splits model counting
into a hard offline compilation step, the cost of which is amortized over (cheap) repeated online
steps. This has for example been exploited in probabilistic logic programming for parameter
learning and efficiently answering multiple queries [19, 27].

Top-down knowledge compilers, which are based on exhaustive DPLL, have so far mainly
focused on #SAT while ignoring the domain of modulo theories [3]. In this paper we consider
counting modulo theories (#SMT) and discuss compilation strategy choices for the quanti-
fier free setting (Section 4). Most importantly, we draw parallels with #SAT and identify a
DPLL(T ) [30] based approach as a promising direction for a future knowledge compiler.
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2 Background

DPLL traces & d-DNNF. The DPLL algorithm, introduced to solve the satisfiability prob-
lem (SAT), repeatedly branches on variables in order to find a satisfying assignment to all
propositional Boolean variables [13, 14]. It is clear that any ∨-node following from a branching
decision satisfies the determinism property: the children of an ∨-node do not share any models.
This is important for model counting and model enumeration as to avoid considering a model
more than once. The exhaustive version of the DPLL algorithm (#DPLL) is an extension that
does not stop when a model is found, instead continuing to find all models. This version, which
is used for model counting, enumeration and compilation problems, often includes component
decompositioning. This algorithmic improvement detects when there are sets of clauses that
do not share any variables, i.e., components, and solves those independently [1]. The process
results in an ∧-node that satisfies the decomposability property: the children of ∧-nodes do
not share any variables. This property is important for task decomposability, for example in
weighted model counting it ensures that each literal weight is considered at most once. Decom-
posability also avoids having ∧-branches that could disagree on literals, which is important to
avoid enumerating or considering logically inconsistent assignments. Additionally, the traces
are also in negation normal form (NNF) because negation only occurs on literals and no other
operations than ∨ and ∧ take place. Thus, the trace of an exhaustive DPLL algorithm naturally
yields a d-DNNF formula [9, 21].

Counting Modulo Theories. The satisfiability modulo theory (SMT) problem extends
propositional satisfiability (SAT) with respect to a certain decidable background theory T [4].
Notable examples of theories T include linear real (LRA) or integer (LIA) arithmetic and
fixed-size bit vectors (BV). In SMT-LRA, formulas include propositional and LRA atoms of
the form

∑
i cixi ./ c with ci, c ∈ Q, xi a real variable, and ./ ∈ {<,>,≤,≥,=, 6=}. An ex-

ample LRA formula F would be [(x ≤ 0) ∨ (x ≥ 1)] ∧ [A ∨ (x ≤ 0)]. The task is determining
whether there exists an assignment to the variables such that both the input formula F and
the background theory T are satisfied. For instance, in the example above, (x ≤ 1) entails
A. Just as SMT generalizes SAT with additional theories, counting modulo theories (#SMT)
generalizes model counting (#SAT) with additional theories. In stark contrast with the purely
propositional setting, formulas involving numerical theories may have infinitely many models.
While in this paper we mainly consider the quantifier-free LRA setting, we expect the proposed
ideas to apply to a broader set of quantifier-free theories.

DPLL(T ) is a generalisation of the DPLL algorithm that is designed to solve SMT prob-
lems [30]. The key difference with the classic DPLL algorithm is that it involves a theory
specific solver that interacts with the DPLL algorithm, using the background theory T to prop-
agate additional atoms when possible. For instance in the previous example, when a branch
assigns (x ≥ 1) to true, the theory solver would additionally propagate (x ≤ 0) to be false. We
note that most current implementations are actually extensions of the conflict driven clause
learning (CDCL) algorithm, which augments the DPLL algorithm with conflict clause learning
and backjumping [15, 23, 30]. For the purpose of our discussion we will use DPLL(T ) to refer
to both DPLL(T ) and its CDCL(T ) augmentation.

3 d-DNNF for modulo theory

We now discuss in more detail the d-DNNF properties [12] in the context of #SMT.
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A propositional formula is in negation normal form iff negation only occurs on literals,
and the only other operations are ∨ and ∧. Similar to the DPLL algorithm, the traces of
a DPLL(T ) algorithm produce NNF formulas. The fact that atoms can be associated with
additional logic (e.g. LRA atoms such as x<5), and that a theory specific solver aids the
propagation process, does not change this. The traces of a DPLL(T ) algorithm are also de-
terministic, i.e., the children of each ∨-node do not share any models, because every decision
associated with ∨ still partitions the models. The decomposability property is defined as
∧-node branches not sharing any variables. In the modulo theory setting this needs further
specification, because different atoms can still be linked together through their inner logic (e.g.
shared continuous variables).

Decomposability on the level of atoms is insufficient to ensure the decomposability of count-
ing tasks on the formula. Consider the following example where the ∧-branches do not share any
atoms, but do share variables: [(x < 5)∨(x < y)]∧[(x > 10)∨(y > 10)]. Here, {(x < 5), (x > y)}
and {(x > 10), (y > 10)} are satisfying truth assignments for respectively the left and right ∧-
branch. Together however, they do not form a theory satisfying truth assignment. The benefit
of decomposing on the level of variables, is that the previous situation is impossible, making
it easier to ensure that each truth assignment is indeed theory consistent. Unfortunately such
decomposability can not be achieved in general. For the purpose of our discussion on modulo
theory compilation, we will therefore use the d in d-DNNF to refer to decomposability on an
atomic level rather than on a variable level. We will however expect that all truth assignments
captured by the compiled formula are theory satisfiable. This is not necessarily ensured when
using a theory agnostic compilation approach, which we discuss in more detail in the next sec-
tion. For now, note that the traces of an exhaustive DPLL(T ) algorithm will produce exactly
such d-DNNF formulas where each truth assignment is theory satisfiable.

4 Compilation strategies

4.1 Theory aware versus theory agnostic

Approaches for compiling a formula with respect to a background theory T can be divided into
two categories: theory aware versus theory agnostic approaches. In case of the latter, a Boolean
abstraction of the input formula F is first created, i.e. the formula that is obtained by replacing
every theory atom in F with a fresh Boolean atom. Afterwards, the Boolean abstraction
can be compiled into a d-DNNF formula using any off-the-shelf propositional compiler. As
a consequential benefit, advancements made to those compilers are automatically inherited.
Evidently, theory agnostic approaches also have a downside compared to approaches that are
more theory aware. Namely, since the compiler is unaware of T , the resulting d-DNNF formula
may contain truth assignments that are not consistent with T . For example, when abstracting
F = (x ≤ 0) ∨ (x ≥ 1), both literals could be assigned to true, forming a T -unsatisfiable
truth assignment. It is then up to the down stream inference algorithm that uses the resulting
d-DNNF, to deal with the inconsistent models, typically impacting negatively the run time of
the downstream task. For example, this theory agnostic approach was adopted by Kolb et al.
for solving weighted model integration (WMI) problems, i.e. weighted #SMT problems over
LRA formulas [24]. As a consequence of the theory-agnostic offline phase, a potentially large
number of intermediate computations during the online integration procedure would result in
regions with no models and would be discarded.
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Figure 1: Different representations of (B1∨B2)∧(¬B1∨A), with abbreviations B1 = (x < y−1),
B2 = (x > y + 1), and A = (x > 20).

Figure 1 shows an example of a formula representation that may result from a theory agnostic
approach (1a), compared to a theory aware approach (1b and 1c). In this example, the formula
representation shrank once the theory was considered. This is not always necessarily the case:
the effect that theory awareness has on the representation size heavily depends on the exploitable
structure, which may increase or decrease. Depending on the application requirements, we could
even consider a more condensed representation that omits theory implied atoms (Figure 1c).

4.2 Eager versus lazy solving

It is possible to exploit the existing purely propositional tools while still achieving theory
awareness, by first adapting the Boolean abstracted input formula F in a way that no theory
unsatisfiable truth assignments arise. This idea was used by early SMT solvers, where it is
called ‘eager solving’ [30]. For example, if F includes both (x ≤ 0) and (x ≥ 1), which
were respectively abstracted into A0 and A1, then also add A0 =⇒ ¬A1 or A1 =⇒ ¬A0 to F .
Afterwards, because F is purely propositional, any SAT solver (or in our case compiler) can be
used. Since the adapted abstraction step is also present in eager SMT solvers, we can simply
implement an eager theory compiler by using an existing eager SMT solver as foundation,
swapping their SAT solver for a propositional d-DNNF compiler.

A major disadvantage of the eager approach is that depending on the theory T , it may
introduce many additional variables, and greatly increase the formula size of the abstracted
input formula F . For this reason, numerical theory SMT solvers have instead progressed towards
using a so called ‘lazy solving’ [30] approach that we discuss next. This does not mean, however,
that the eager approach has become irrelevant. It still forms the state-of-the-art SMT approach
for certain theories such as BV1. We hypothesize that similar conclusions can be drawn for the
compilation setting, i.e., that a lazy approach is most suitable for numeric background theories.

In the most basic form, the lazy approach involves purely propositional reasoning over F ,
and verifying (partial) assignments with a theory solver to make sure that every model is indeed
theory satisfiable. Enhancements of this approach have moved to a more proactive design where
the theory solver instead helps propagating atoms and learning conflict clauses. This approach
is the DPLL(T ) (or CDCL(T )) algorithm discussed in Section 2 and is used by most state-of-
the-art SMT solvers [2, 6, 7, 15, 17, 22].

1The 2022 SMT competition winner of the incremental quantifier free BV track was Yices 2 [17], which uses
bit blasting for BV, an eager solving approach.
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4.3 Top-down versus bottom-up compilation

DPLL-based compilers are so called top-down compilers: they start the compilation process
from the whole input formula and work their way down (by branching on literals). In contrast,
bottom-up compilers process an input formula F from the bottom of the expression to the top.
For example, if F is (A∨¬B)∧(¬A∨C), then the two conjuncts are separately compiled before
processing the conjunction itself. This design implies an apply-operation that performs con-
junction, disjunction and negation. The apply-operation enables the incremental construction
of (multiple) formulas, while a top-down compiler requires the complete formula to be known
up front. To achieve an efficient apply-operation, however, the target language of bottom-up
compilers is usually restricted to strongly deterministic and structured decomposable NNF,
such as OBDD and the more general SDD class [10, 32], strict subsets of d-DNNF. In com-
parison, DPLL based top-down compilers instead produce Decision-DNNF, a strict superset of
OBDD [11] (but not of SDD with which it partially overlaps).

An advantage of d-DNNF bottom-up compilation is that it does not restrict the input form.
In contrast, top-down compilation is commonly restricted to formulas in conjunctive normal
form (CNF). While it is possible to translate any propositional formula into CNF, this costs
time and may result in an exponential expression (when using De Morgan’s law), or requires
introducing additional variables [35].

An advantage of top-down compilation is that it has available the full information con-
tained within F . This assumption allows more informed decisions, in turn leading to more
compact compiled formulas. Oppositely, bottom-up compilation may have a pre-analysis step
that considers the whole formula F to determine a suitable guiding structure (cf. static variable
ordering heuristics for OBDD [33] or vtree heuristics for SDD [10]), but that structure can be
suboptimal for intermediate formula representations. This naturally leads to the second point,
which is that even when the final d-DNNF produced by bottom-up compilation is small, the
intermediate results of the apply-operation may grow to be very large, severely impacting the
run time and memory requirements [20].

In terms of compilation in the modulo theory domain, only bottom-up approaches have been
considered so far. For example, the work on extended algebraic decision diagrams (XADD) [34]
which uses a bottom-up approach. Within their implementation, they used a feasibility checker
of a linear programming solver to prune theory unsatisfiable paths during- or after bottom-up
compilation, observing impressive XADD size reductions. Other bottom-up compilers include
work on difference decision diagrams [28] and linear decision diagrams [5].

5 Traces of an exhaustive DPLL(T ) algorithm

In line with top-down compilation for the propositional setting, we propose to compile modulo
theory formulas by storing the search traces generated by an exhaustive DPLL(T ) algorithm.
This is a theory aware, top-down, lazy approach, which we hypothesize to be very suitable for
compiling formulas with numerical background theories such as LRA (cf. Section 4.2).

Existing SMT solvers based on the DPLL(T ) framework form a natural implementation
starting point. As explained in Section 2, the traces of such an approach form d-DNNF formu-
las. To further augment the implementation, it is worth investigating optimisations developed
for #DPLL. For example, component decompositioning mentioned in Section 2 is rarely used
for satisfiability problems but has shown to be highly beneficial for model counting and com-
piling, especially in combination with caching [1]. The augmentations are not straightforward
however, because of the implicit interactions between atoms: components must be decomposed
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on a variable level (rather than atom), and previous decisions must be properly considered.
Especially the latter is a novel challenge for caching. Consider the following example formula
F ′:

(
(x < 3) ∨ (x > 5)

)
∧
(
(y < 0) ∨ (y > 4)

)
. Generally, branching on (x > 5) does not imply

(y < 0). However, if (x+y) < 5 is a decision that has lead to the intermediate formula F ′, then
branching on (x > 5) while compiling F ′ does imply (y < 0). This shows that the compiled
form of F ′ is indeed influenced by previous decisions. This is in contrast to the propositional
setting, where after making a decision l and adapting formula F , the remaining formula F |l
(here F ′) is independent of previous decisions.

Related work To the best of our knowledge, we are the first to propose a theory aware
top-down lazy compiler. The closest related works are [16, 26], who use a DPLL(T ) like ap-
proach to count over modulo theories, but do not consider storing the traces for complication.
[18], in contrast, does consider compilation but is positioned further from DPLL(T ), excluding
optimizations such as conflict clause learning. Moreover, there is limited background theory
support, for example atoms with arithmetic expressions such as x + y < 2 are not possible.

6 Conclusion & Future Work

We have provided a discussion on compilation strategies for (top-down) d-DNNF compilation
for quantifier free modulo theories. We specifically propose compilation through an exhaustive
version of the DPLL(T ) algorithm, drawing parallels with the propositional setting’s evolution
from SAT to #SAT. In future work, we aim to develop a tool based on these ideas, and plan to
further investigate component decompositioning and caching for modulo theories. Additionally,
refining the d-DNNF properties based on application requirements, is of interest.
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