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An issue that has received limited attention in probabilistic logic programming (PLP) is the model-
ing of so-called epistemic uncertainty, the uncertainty about the model itself. Accurately quantifying
this uncertainty is paramount to robust inference, learning and ultimately decision making. We intro-
duce BetaProbLog, a PLP language that can model epistemic uncertainty. BetaProbLog has sound
semantics, an effective inference algorithm that combines Monte Carlo techniques with knowledge
compilation, and a parameter learning algorithm.

1 Introduction

Uncertainty is either aleatoric or epistemic in nature [3]. The former is the intrinsic uncertainty that a
probabilistic model brings that cannot be reduced with further observations of the world. For example,
a coin toss outcome is intrinsically uncertain. In contrast, epistemic uncertainty stems from the lack of
knowledge about the true model and can be reduced with more observations. Explicitly modeling both
uncertainty types allows for gauging the uncertainty of learned probabilistic models and reasoning over
the robustness of subsequent predictions. Risky decisions can be avoided when a learner has uncertain
results. It also allows for probabilistic inference even when the probabilistic model is not exactly known.

We introduce BetaProbLog, an extension of the probabilistic logic programming (PLP) language
ProbLog. BetaProbLog has a well-defined semantics rooted in probability theory. With so-called second-
order queries, BetaProbLog calculates expectation values, offering a vast range of query types. We
provide an easy to interpret Monte Carlo inference algorithm for BetaProbLog based on knowledge
compilation combined with parallelized tensor operations. This leads to an inference algorithm that is
more than an order of magnitude faster than the one proposed by [1]. In addition, we tackle parameter
learning with epistemic uncertainty. To our knowledge, learning in second-order networks has so far been
limited to networks of only two nodes [4]. We empirically evaluate our work on probabilistic inference
tasks in second-order Bayesian networks, digit classification, and by performing parameter learning in
the presence of epistemic uncertainty. The details of this can be found in our full paper [5].

2 BetaProbLog

BetaProbLog is an extension of ProbLog, a probabilistic logic language based on Prolog [2]. A Be-
taProbLog program consists of three disjoint sets F , B, and R:
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1. a set of probabilistic facts F . Given a probabilistic fact p f ::f, the atom f has probability p f of being
true in a world of the program.

2. a set of beta facts B. A fact beta (α f ,β f )::f defines a random variable X f ∼ Beta(α f ,β f ) representing
the probability of the atom f .

3. a set of logic rules R of the form h :− b1,. . .,bn making up a stratified normal logic program.

An example BetaProbLog program is shown in Example 1. Note that in the absence of beta facts (B = /0)
BetaProbLog reduces to ProbLog. A unique stable model Π(H ) of a BetaProbLog program results
from assigning a truth value to each probabilistic atom H ⊆ F ∪B, and applying R to derive the truth
value of the derived atoms. The probability of query atom q is itself a random variable Xq, defined as
Xq = ∑H ⊆F∪B,q∈Π(H ) ∏ f∈H w( f )∏ f∈(F∪B)\H w(¬ f ) with w( f ) = p f if f is a non-negated fact and
w( f ) = X f if it is a non-negated beta fact, and in case of negation w(¬ f ) = 1−w( f ).

Alongside a BetaProbLog program, the user specifies a second-order query Q = (q,g), with g a func-
tion g : [0,1]→R operating on the probability Xq of atom q being satisfied. The answer A(Q) to the query

Q is the expected value, denoted with E, of g(Xq): A(Q)=Ep(X)[g(Xq)]=
∫

g(Xq)
(

∏
|B|
i=1 p(X fi)

)
dX .

Example 1 A BetaProbLog program with two beta facts, one probabilistic fact and two clauses.
1 b e t a ( 4 0 , 160) : : b u r g l a r y .
2 b e t a ( 1 0 , 90) : : e a r t h q u a k e .
3 0 . 8 : : a larm on .
4
5 alarm :− alarm on , b u r g l a r y .
6 alarm :− alarm on , e a r t h q u a k e .

To compute the probability P(Xalarm < 0.3), we
can use the second order query Q = (alarm,g)
with an indicator g(Xq) = [1 if Xq < 0.3 else 0].

Note that when calculating the mean value of Xq, by choosing g(Xq)=Xq, the second-order query reduces
to a regular ProbLog inference problem. Higher moments of the distribution can be calculated with
g(Xq) = Xk

q for the kth moment. This subsequently allows the calculation of other statistics such as the
variance or skewness of the distribution.

3 Inference and Learning

Both ProbLog and BetaProbLog perform probabilistic inference by solving a weighted model count-
ing task, converting the queried program into a compiled circuit compactly representing Xq (Figure 1).

Figure 1: Circuit example with samples

The integral of the second order query is hard to solve in
general but can be approximated by Monte Carlo sampling.
Instead of sampling directly from X f ∼ Beta(α f ,β f ) we
consider U f ∼ Uniform(0,1) and apply a reparametrization
function r to such that r(U f ,α f ,β f )∼ Beta(α f ,β f ). This al-
lows us to calculate gradients with respect to the distribution
parameters, which enables learning.

BetaProbLog performs parameter learning by minimiz-
ing a loss function. The total loss L is a sum of loss func-
tions L applied to a second-order query, which is compared
to a target value. More concretely, given a BetaProbLog pro-
gram with a set of probabilistic or distributional parameters
θ , a dataset D of tuples (d, t) with d a partially observed
model of the program and t a target value of A(Qd ,θ), the total loss is L (θ) = ∑(d,t)∈D L(A(Qd ,θ), t)
where we explicitly write the dependency of A(·) on θ as we want to learn these parameters.
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4 Experiments

We summarize the results of our experiments below, details are available in the full paper [5].

Question 1: Can BetaProbLog capture the uncertainty with respect to the true model? Following
[1]’s experiment, we analyse how well the spread between the inferred and the actual probability is
captured. The results were positive, even when the inference algorithm was limited to few samples.
Question 2: Does the inference computation time scale? We investigate BetaProbLog’s run time on
several translated Bayesian networks (BN). Results show our approach scales very well. For example
Hepar2, a BN with 103 parameters, took 1.5s to execute. Due to the parallelization the evaluation time
remained relatively constant regardless of using 101 or 104 samples.
Question 3: Can BetaProbLog recover parameters from target probabilities? This learning task
aims to recover the network’s missing beta parameters such that the given queries match their target prob-
ability. For this we utilise BetaProbLog’s parameter learning approach, minimizing the error between the
inferred probability of q and the target probability t with the loss function (A(Q,θ)−t)2 where Q= (q, I)
and I the identity function. Given enough data, BetaProbLog recovers the parameters.

5 Conclusion
Modeling epistemic uncertainty allows for reasoning even when the underlying probabilistic model is
not exactly known. We extended the PLP language ProbLog with sound semantics to support epistemic
uncertainty through beta distributions. These semantics are implemented in the language BetaProbLog
for which we also provide an inference and learning algorithm.
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