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Abstract

Weighted model counting (WMC) is a popular framework to perform probabilistic inference with
discrete random variables. Recently, WMC has been extended to weighted model integration
(WMI) in order to additionally handle continuous variables. At their core, WMI problems consist
of computing integrals and sums over weighted logical formulas. From a theoretical standpoint,
WMI has been formulated by patching the sum over weighted formulas, which is already present
in WMC, with Riemann integration. A more principled approach to integration, which is rooted
in measure theory, is Lebesgue integration. Lebesgue integration allows one to treat discrete
and continuous variables on equal footing in a principled fashion. We propose a theoretically
sound measure theoretic formulation of weighted model integration, which naturally reduces to
weighted model counting in the absence of continuous variables. Instead of regarding weighted
model integration as an extension of weighted model counting, WMC emerges as a special case
of WMI in our formulation.

Keywords: weighted model counting, weighted model integration, measure theory,
probabilistic inference

1. Introduction

Weighted model counting (WMC) [1], in combination with knowledge compilation [2], has
emerged as the go-to technique to perform inference in probabilistic graphical models [3] and
probabilistic programming languages [4] with discrete random variables. A major drawback of
standard WMC, however, is its limitation to discrete (random) variables and hence to discrete
probability distributions and weight functions only. This puts considerable restrictions on the
problems that can be modeled. Weighted model integration (WMI) [5] is a recent extension of
the WMC formalism that tackles this deficiency and allows additionally for continuous variables.

Example 1. Consider the example of the WMI problem in Figure 1. The problem has two
continuous random variables (x and y) and one Boolean random variable. The Boolean random
variable determines which weight function is chosen (2x+y2 or x3+y/3). For instance, if we have a
fair Boolean random variable both weight functions have a probability of 1/2 each to be selected.
Given the outcome of the Boolean variable, constraints on the real variables then produce the
feasible regions (the red region and the two blue regions) – inside of which the weight functions
remain non-zero. WMI tackles the problem of computing the integral over the feasible regions.

Since the inception of WMI, a plethora of inference algorithms have emerged following
the WMI paradigm. Some of which perform exact inference [6, 7, 8, 9, 10, 11, 12, 13], or
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Figure 1: Geometric representation of a WMI problem.

approximate inference [14, 11], or solve a subclass of WMI problems efficiently [15, 16, 17]
— demonstrating an avid interest from the research community. The pywmi toolbox for WMI
solvers [18] reassembles some of these efforts in a single Python library. We refer the reader
to [19] for a recent survey on WMI.

All of the above cited works formalize WMI as a combination of Riemann integration and
summation and none leverages the power of Lebesgue integration in order to formally define
weighted model integration. This is rather astounding as Lebesgue integration is a natural fit to
formalize integration/summation in such a discrete-continuous setting. We speculate this is due
to the technical overhead involved with Lebesgue integration compared to Riemann integration.
In this paper we show how the problem of weighted model integration can be defined in terms
of Lebesgue integration and place WMI in a measure theoretic setting. We hope this work will
help bridge theoretical distinctions between different approaches to WMI and create a unified and
cohesive view on probabilistic inference problems in Boolean, discrete, and continuous domains.

Traditionally, probability theory has been one of the main domains of application of Lebesgue
integration and measure theory. Probability is in fact naturally represented as special type of
measure function. Given that WMI is inseparably connected to probabilistic inference, it is con-
venient to formalize WMI in a measure theoretic setting. Effectively, this extends the currently
used class of Riemann integrable WMI problems [5] to the class of Lebesgue integrable prob-
lems.

The remainder of the paper is organized as follows. Appendix A discusses the necessary
background on measure theory. In Section 2, the problems of WMC and WMI are introduced
(using the current formulation based on summation and Riemann integration). Section 3, the
central part of the paper, first presents the formalization of WMC in a measure theoretic setting
(Subsection 3.2), followed by an analogous treatment of WMI (Subsection 3.3). Succeedingly,
Section 4 deals with the important category of probabilistic weight functions, which can directly
be represented as a measure, again first in the Boolean setting (Subsection 4.1), and then in the
hybrid one (Subsection 4.2). In Section 5, we then demonstrate the usefulness of measure the-
oretic WMI for discussing computational complexity considerations of WMI problems, thereby
generalizing prior work [16, 17, 20]. We end the paper with concluding remarks in Section 6.
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2. WMC and WMI

2.1. Weighted Model Counting
Definition 2 (Propositional formula). Let b = { B1, B2, . . . , BM } be a set of M Boolean variables
(or logical propositions), which can be combined in the usual way using logical connectives ¬,
∧ and ∨, producing formulas of propositional logic. We call a literal either a Boolean variable or
its negation, and denote with Lb = { B1,¬B1, B2,¬B2, . . . , BM ,¬BM } the set of all literals over
the set b.

Symbol b will be used throughout the paper to denote the set { B1, B2, . . . , BM } of Boolean
variables. Without loss of generality, we regard the sets of (Boolean, real, integer) variables as
ordered sets (cf. Definitions 4 and 8).

The set of Boolean (truth) values will be denoted by B = { ⊥,> }. In order to assign a truth
value to a formula, we introduce the concept of an interpretation.

Definition 3 (Interpretation of a propositional formula). A total interpretation of the Boolean
variables in b is any mapping from set b to the set B. We require this mapping to commute with
logical connectives in the usual way, so that it can be extended to any propositional formula built
from variables in b. A propositional formula φ is said to be true under the interpretation I if
I(φ) = > and false otherwise.

Closely connected to the notion of interpretation is that of a model.

Definition 4 (Model of a propositional formula). Let I be an interpretation and φ a propositional
formula over b, such that I(φ) = >. We say that the M-tuple

M(I) = (I(B1), I(B2), . . . , I(BM)) ∈ BM

is a model of φ associated with interpretation I. We denote the set of all models of the proposi-
tional formula φ byM(φ) = {M(I) | I(φ) = > }.

In the WMC literature, the model of a propositional formula associated with an interpretation
I is traditionally defined as a subset of Lb containing literals that are true under this interpreta-
tion [1, 21]. Any such subset ML(I) = { `1, `2, . . . , `M }, where `i = ite (I(Bi), Bi,¬Bi) 1 for all
i = 1, 2, . . . , M, uniquely defines the M-tuple (I(B1), I(B2), . . . , I(BM)) ∈ BM used in the previous
Definition, and vice versa.2

Using this notation, the well known Boolean satisfiability problem (SAT) is expressed as the
problem of determining whether M(φ) = ∅. Its counting counterpart (#SAT) is expressed as
determining the exact number of elements inM(φ).

Definition 5 (WMC). Let b be a set of M Boolean variables, and φ be a propositional formula
over b. Furthermore, let wL : Lb → R≥0 be a weight function of Boolean literals. Then the
weighted model count (WMC) of the formula φ is given by:

WMC
(
φ,wL | b

)
=

∑
M∈M(φ)

∏
`∈ML

wL(`). (1)

1The function symbol ‘ite’ denotes the if-then-else function: if the first argument is > (true) the second argument is
returned, else the third argument is returned.

2Note that our definition of an interpretation slightly differs from the one given in [21]. In [21] an interpretation is
an instantiation of variables (function image) that satisfies a logic formula. In contrast, we define an interpretation as a
mapping (function) from variables to the set B. The definitions of a model in [21] and this paper do coincide again.
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For simplicity of exposition, we assume the weight function to be non-negative, which is
also justified by weight functions used in practice. The importance of WMC for probabilis-
tic inference cannot be overstated, and is thoroughly investigated in [1, 4]. Further interesting
generalizations of WMC to semirings other than the R-semiring are discussed in [21].

2.2. Weighted Model Integration
Many applications require probabilistic inference in continuous domains. In order to capture

these applications, the task of weighted model counting has been extended to weighted model
integration [5]. The first step is a definition of a logical theory which combines Boolean and
continuous variables. To this end we follow the definition in [11] (a more formal definition can
be found in [22]).

Definition 6 (SMT formula). Let b = { B1, B2, . . . , BM } be a set of M Boolean variables, and
x = { X1, X2, . . . , XN } be a set of N real variables. An atomic formula is either a Boolean variable
(logical proposition) from set b, or a well-formed arithmetical statement (real arithmetical
proposition) consisting of variables from x, real numbers and symbols +, ·, ^, and ≤, having
standard interpretation as real addition, multiplication, exponentiation, and less-than inequality,
respectively. Atomic formulas are combined using logical connectives ¬, ∧ and ∨, producing
so-called SMT formulas.

Analogously to the Boolean case, aymbol x will be used throughout the paper to denote the
set { X1, X2, . . . , XN } of real (continuous) variables.

We note that any real arithmetical proposition θ can be written in the logically equivalent
form θ′(X1, X2, . . . , XN) ≤ 0. We denote by θ̂ a function from RN to R encoded by proposition θ′.
Based on the restrictions posed on this function, we distinguish, among others, SMT(LRA) for-
mulas (θ̂ is a linear function), SMT(NRA) formulas (θ̂ is a polynomial function) and SMT(RA)
formulas (θ̂ is unrestricted).

Definition 7 (Interpretation of an SMT formula). Let an SMT formula be built over the Boolean
variables in b and continuous variables in x. A total interpretation of the variables in b and x is
a pair I = (Ib, Ix), where Ib is a mapping from b to B and Ix is a mapping from x to R.

The logical value of an atomic formula θ under the interpretation I, is defined as I(θ) :=
Ib(θ) if θ is a logical proposition. In case of θ being a real arithmetical proposition, we define
I(θ) := > if the inequality θ̂(Ix(X1), . . . , Ix(XN)) ≤ 0 holds, and I(θ) := ⊥ otherwise. Requiring
an interpretation to commute with logical connectives in the usual way extends the definition of
interpretation to any SMT formula.

The mappings Ib and Ix from the previous definition are called partial interpretations of
Boolean and continuous variables, respectively. Analogously to the purely Boolean case, we
define models of SMT formulas as (M + N)-tuples.

Definition 8 (Model of an SMT formula). Let I = (Ib, Ix) be an interpretation and φ an SMT
formula over variables in b and x such that I(φ) = >. We say that

M(I) = (Mb(I),Mx(I))

=

(
(Ib(Bi))M

i=1 ,
(
Ix(X j)

)N

j=1

)
∈ BM × RN

is a model of formula φ associated to interpretation I. The set of all models is denoted again by
M(φ).
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The projection ofM(φ) to BM is denoted by

Mb(φ) =
{

b ∈ BM | there is x ∈RN such that (b, x) ∈M(φ)
}

,

and analogously byMx(φ) its projection to RN . These sets contain partial models of a formula
and are used below in the definition of weighted model integration. Furthermore, for any b ∈ BM ,
set denoted by

Mx(φ)/b =
{

x ∈ RN | (b, x) ∈ M(φ)
}

consists of elements x ∈ Mx(φ) which extend partial model b ∈ Mb(φ) to a total model (b, x) ∈
M(φ).

Definition 9 (WMI). Let b be a set of M Boolean variables, x a set of N real variables, and φ an
SMT formula over b and x. Let w : BM × RN → R≥0 be a weight function of Boolean and real
variables. For any b ∈ B, a function wb : RN → R is defined with wb(x) = w(b, x), for all x ∈ RN .
Assume that for all b ∈ Mb(φ), the functions wb are Riemann integrable on the sets Mx(φ)/b,
respectively. We define the weighted model integral (WMI) of a formula φ with regards to the
weight function w by:

WMI (φ,w | b, x) =
∑

b∈Mb(φ)

∫
x∈Mx(φ)/b

wb(x) dx1 dx2 · · · dxN . (2)

3. Measure theoretic WMC and WMI

As a central contribution, we introduce variants of both WMC (Definition 5) and WMI (Def-
inition 9) based on measure theory, introducing measures of weighted propositional logic and
SMT formulas. We proceed to prove that they generalize classical WMC and WMI based on
summation and Riemann integration. This measure theoretic formulation of WMC and WMI
yields an elegant proof of congruence of these two concepts in the special case of a purely
Boolean domain.

A formulation that treats Boolean and real variables on equal footing and leads to the con-
gruence of WMC and WMI has also been presented in [16], where the authors reduce weighted
model integration to model integration [23]. However, the reduction is performed by transform-
ing the summation over Boolean variables to a Riemann integration over real variables without
relying on the more powerful and expressive Lebesgue integration.

Prior to formulating weighted model counting and integration as a measure theoretic problem,
we give a brief introduction to measure theory. A complete formal excursion on the measure
theoretic concepts essential to this paper is provided in Appendix A.

3.1. An Appetizer of Measure Theory

Let us assume we have two real numbers a and b. We would like to know how far these two
numbers are apart. In other words, we would like to know the length l of the segment S delimited
by a and b. In Euclidean geometry, the length l is simply given by l = |b − a|. Now, instead of
viewing l as the length of the segment S , we can also regard l as the size of the set of points that
make up S .

Measure theory generalizes the concepts of length, area and volume by answering the ques-
tion ‘how big is a specific set?’ This is done by systematically assigning a positive real number
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Table 1: Glossary of technical terms used in measure theory.

σ-algebra (Def. A27) Lebesgue measure (Def. A31)
measurable space (Def. A27) measurable function (Def A32)
Borel σ-algebra (Def. A28) simple function (Def. A34)
countably additive (Def. A28) µ-almost everywhere (Def. A39)
measure (Def. A29) product measure (Theo. A41)
counting measure (Def. A30) probability space (Def. A43)

to a given set. A set is called measurable if such a number can actually be assigned. In Eu-
clidean geometry, a measure of particular importance is the Lebesgue measure, which assigns
the conventional Euclidean length, volume, and hypervolume to measurable subsets of the N-
dimensional Euclidean space RN .

Furthermore, measure theory does also provide the axiomatic formulation of probability the-
ory, as developed by Kolmogorov [24]. More precisely, axiomatic probability theory is formu-
lated in terms of measures that assign to the whole set (domain of definition) size 1, and where
events are interpreted as measurable subsets, whose probability is given by the same measure.
Also, in this setting the expectation of a random variable corresponds to the Lebesgue integral of
a function computed over the probability measure.

On the other hand, in the context of model counting (#SAT), we want to determine/measure
the size of the set of satisfying assignments to a propositional logic formula.

For the uninitiated reader we provide in Table 1 a glossary of technical terms used in measure
theory and give the relevant pointers to their introduction in Appendix A.

3.2. Measure Theoretic WMC
In order to embed WMC into measure theory (using Lebesgue integration), a slight adjust-

ment to Definition 5 is in order. It is more convenient to define a weight function over the set BM ,
similarly to Definition 9, instead of over the set of literalsLb. To this end, we transform the given
weight function wL : Lb → R≥0 over literals to an equivalent weight function w : BM → R≥0 over
BM , as follows: for any b = (b1, b2, . . . , bM) ∈ BM , let

w(b) =

M∏
i=1

ite
(
bi,wL(Bi),wL(¬Bi)

)
. (3)

Equation (1) now becomes:

WMC
(
φ,wL | b

)
=

∑
M∈M(φ)

w(M).

Notice that this expression already looks ‘Lebesguean’. Indeed, we only need to specify the
components of an appropriate measure space.

Proposition 10.
(
BM ,P(BM), µ

)
is a measure space, where P(BM) is a power set of BM and

µ : P(BM)→ [0,+∞] is a counting measure.

Proof. Any set together with a counting measure on its power set defines a measure space.
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We are now in the position to express the weighted model count in measure theoretic terms.

Definition 11 (Lebesgue WMC). Let b be a set of M Boolean variables, and φ a propositional
formula over b. Furthermore, let w : BM → R≥0 be a weight function. The Lebesgue weighted
model count (L−WMC) of the formula φ with respect to the weight w is defined by:

L−WMC (φ,w) =

∫
M(φ)

w dµ .

The integral in the previous definition is well-defined, because w is obviously bounded (as
the set BM is finite) and it is trivially measurable (as the whole power set of BM is a σ-algebra).

Theorem 12. Let b be a set of M Boolean variables, and φ be a propositional formula over b.
Furthermore, let wL : Lb → R≥0 be a weight function of Boolean literals and w : BM → R be
constructed from wL as in Equation (3). Then:

L−WMC (φ,w) = WMC
(
φ,wL | b

)
.

Proof. Since BM is a finite set, w is a simple function. J·K will denote the Iverson bracket, which
evaluates to 1 if its argument is satisfied, and 0 otherwise [25, 26].

L−WMC (φ,w) =

∫
M(φ)

w dµ =

∫
BM

(
w · 1M(φ)

)
dµ

=

∫
BM


 ∑

b∈BM

w(b) · 1{ b }

 · 1M(φ)

 dµ

=

∫
BM

 ∑
b∈BM

w(b) · 1M(φ)∩{ b }

 dµ

=
∑

b∈BM

w(b) · µ(M(φ) ∩ { b })

=
∑

b∈BM

w(b) · Jb ∈ M(φ)K

=
∑

b∈M(φ)

w(b) = WMC
(
φ,wL | b

)
.

This proves that the newly defined Lebesgue weighted model count, based on measure theory,
coincides with the classical weighted model count from Definition 5. This result is the first step
towards a measure theoretic formulation of WMI.

3.3. Measure Theoretic WMI
We now turn to introducing an appropriate measure space for the hybrid domain consisting of

Boolean and real variables, and proving the central result of this paper. In the following, B(RN)
denotes the Borel σ-algebra on RN from Definition A28 and λN the Lebesgue measure on RN

from Definition A31. The exponent in λN shall be omitted for simplicity, when the dimension of
the real space is clear from context.

Proposition 13.
(
BM × RN ,P(BM) × B(RN), µ × λ

)
is a measure space, which is a product of

the measure space
(
BM ,P(BM), µ

)
from Proposition 10 with measure space

(
RN ,B(RN), λ

)
.
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Proof. See Theorem A41.

Next we introduce the technical concept of measurability of an SMT formula. Say that an
SMT formula φ is measurable if its set of modelsM(φ) is a mesurable set in the measure space
from proposition 13.

Lemma 14. SMT(LRA), SMT(NRA) and SMT(RA) formulas are measurable.

Proof. Linear functions, polynomials and generally all real functions obtained by means of ad-
dition, multiplication and exponentiation of real variables and constants, are continuous. Hence,
they are Borel measurable (see Example A33). Now note that the set of models for any real arith-
metical proposition θ is θ̂−1([−∞, 0]). Therefore, these sets are Lebesgue measurable (cf. Defi-
nition A31). The set of models of logical proposition is always measurable, since σ-algebra on
BM is the whole power set P(BM).

The set of models of any formula from the above theories is now obtained as a (possibly
complement of) finite union and intersection of products of models for the Boolean and real
parts of the formula. By definition they remain elements of the product σ-algebra, i.e. they are
measurable.

We have set the stage for the definition of the measure theoretic weighted model integral.

Definition 15 (Lebesgue WMI). Let b be a set of M Boolean variables, x a set of N real variables
and φ an SMT formula over b and x. Furthermore, let w : BM × RN → R≥0 be a weight function
of Boolean and real variables. Assume that the formula φ is measurable and the function w is
integrable with regards to the product measure µ × λ on P(BM) × B(RN) from Proposition 13.
We define the Lebesgue weighted model integral (L−WMI) of the formula φ with respect to the
weight w as:

L−WMI (φ,w) =

∫
M(φ)

w d(µ × λ).

For weight functions that are not Riemann integrable but Lebesgue, Definition 15 provides
an alternative to Defintion 9 for the weighted model intergral. On the other hand, in case of
Riemann integrable weight functions, WMI and L−WMI are equal.

Theorem 16. Under the assumptions of Definition 9, the following equality holds:

L−WMI (φ,w) = WMI (φ,w | b, x) .

Proof. For each b ∈ BM , functions wb are by assumption Riemann integrable over setsMx(φ)/b,
respectively. This implies that the sets Mx(φ)/b are Borel measurable (they are bounded sec-
tions), and that the functions wb are Lebesgue integrable over these sets, respectively (see Theo-
rem A38). Furthermore, the set BM is finite, and the following identities clearly hold:

M(φ) =
⋃

β∈BM
{ β } ×Mx(φ)/β,

w(b, x) =
∑

β∈BM
Jβ = bK · wb(x).

We conclude that the formula φ is measurable (as its model is a union of Borel measurable sets,
hence Borel measurable itself), and that the function w is integrable with regards to the product
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measure µ×λ (as a linear combination of integrable functions, see Proposition A37). Finally, we
obtain:

L−WMI (φ,w) =

∫
M(φ)

w d(µ × λ) =

∫
BM×RN

(
w · 1M(φ)

)
d(µ × λ)

=

∫
BM

( ∫
RN

(
w · 1M(φ)

)
b

dλ
)

dµ (Theorem A42)

=

∫
BM

( ∫
RN

wb · Jb ∈ Mb(φ)K · 1Mx(φ)/b dλ
)

dµ

=

∫
BM

( ∫
RN

wb · 1Mx(φ)/b dλ
)
· 1Mb(φ) dµ

=
∑

b∈Mb(φ)

∫
Mx(φ)/b

wb dλ

= WMI (φ,w | b, x) .

Both, Theorem 12 and Theorem 16, state that the weighted model count/integral of a formula
is equal to the Lebesgue integral of the weight function over the set of models of a formula. This
unification enables us to elegantly prove that WMC is a special case of WMI.

Corollary 17. Let b be a set of M Boolean variables, and φ be a propositional formula over b.
Furthermore, let wL : Lb → R≥0 be a weight function of Boolean literals and w : BM → R≥0 be
constructed from wL as in Equation (3). Then:

WMC
(
φ,wL | b

)
= WMI (φ,w | b, ∅) (4)

Proof. From the point of view of weighted model integration, this presents a degenerate case
with no real variables (x = ∅). The space reduces to the Boolean space BM and the measure
reduces to the Boolean measure µ, i.e. BM × R0 = BM and µ × λ0 = µ. Plugging this into
Theorem 16, together with Theorem 12, yields

WMI(φ,w | b, ∅) =

∫
M(φ)

w dµ = WMC(φ,wL | b).

L−WMI can now easily be extended to domains including integer variables, besides Boolean
and real ones. The construction is completely analogous to the one presented in this section. The
appropriate measure space is(

BM × RN × ZK , P(BM) × B(RN) × P(ZK), µ × λ × ξ
)

, (5)

where ξ is the counting measure on P(ZK), and analogous results as in Theorem 16 and Corol-
lary 17 hold.

4. Weight Functions as Measures

A major application of WMC and WMI is to be found inside probabilistic inference tasks.
There a weight function can be regarded as a probability density function (PDF). This enables us
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to define a measure (i.e. a probability) on the underlying space directly from a weight function.
In this section we consider the weighted model count/integral of a logical formula in this prob-
abilistic setting3. Under these assumptions, WMC and WMI equal simply the probability of the
set of models. The integration process gets encapsulated into the construction of the probability
(cf. celebrated Radon-Nikodym derivative [32, Theorem 6.2.3]). This approach can be extended
beyond probabilistic measures, that is, to any finite measure which represents a weight function.
It is also suitable for hybrid domains with integers, in the manner explained at the end of the
previous section.

4.1. Weighted Model Counting as Measure
Let again b = { B1, B2, . . . , BM } be a set of M Boolean variables which form the basis

of propositional logic. Assume that weight function w : BM → [0, 1] is a PDF on BM , i.e.∑
b∈BM w(b) = 1 holds. The next proposition introduces a natural probability which arises from

the weight function w. We refer to it as a probability associated to the weight function w. As
before, µ denotes the counting measure on P(BM).

Proposition 18. Let w : BM → [0, 1] be a weight function such that
∑

b∈BM w(b) = 1. For any
B ⊂ BM , let η : P(BM)→ [0, 1] be given with

η(B) =
∑

b∈B
w(b) =

∫
B

w dµ.

Then
(
BM ,P(BM), η

)
is a probability space.

Proof. Follows trivially from the definition of η and the properties of w.

As in Section 2.1, we describe how a probabilistic weight function of Boolean literals can
naturally be transformed into a PDF on BM . Let wL : Lb → [0, 1] be a function that, for every
i = 1, 2, . . . , M, satisfies

wL (Bi) + wL (¬Bi) = 1.

Using the same construction as in Equation (3), we get a function w : BM → [0, 1] satisfying∑
b∈BM

w(b) =
∑

b∈BM

M∏
i=1

ite
(
bi,wL (Bi) ,wL (¬Bi)

)
=

M∏
i=1

(
wL (Bi) + wL (¬Bi)

)
= 1. (6)

Proposition 18 now produces a probability η associated with wL. Factorization over literals
indicates their independence with regards to the probability η.

The weighted model count is now obtained by simply measuring the size of the set of models,
using the just introduced probability.

Theorem 19. Let b be a set of M Boolean variables, and φ be a propositional formula over b. Let
wL : Lb → [0, 1] be a probabilistic weight function of Boolean literals and w : BM → [0, 1] be
a PDF constructed from wL as in Equation (3). Furthermore, let η be the probability associated
to the weight function w. Then:

L−WMC
(
φ,wL | b

)
= η (M(φ)) . (7)

Proof. Follows directly from Definition 11 and Proposition 18.

3The discussion of WMI, in this paper, is limited to finitely many variables. In probabilistic logic programming this
is also called the finite support condition [27], which is exposed in more more detail in [28] (for the Boolean case) and
in [29] (for the discrete-continuous case). A possible avenue for future research is an extension to infinitely (including
uncountably) many variables in the special case of WMI with probability measures, cf. [27], [30, Theorem 6.18], and [31].
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4.2. Weighted Model Integration as Measure
We extend the discussion from the last section to the hybrid domain. Let again x = {X1, X2,

. . . , XN} be the set of real variables. Given a PDF w : BM ×RN → R≥0, we obtain the probability
ν : P(BM) × B(RN)→ [0, 1] defined with

ν(E) =

∫
E

w d(µ × λ), (8)

for every E ∈ P(BM) × B(RN). Because of the form of this measure, a hybrid-domain analogue
of Theorem 19 is obtained effortlessly.

Theorem 20. Let b be a set of M Boolean variables, x a set of N real variables and φ a measur-
able SMT formula over b and x. Furthermore, let w : BM × RN → R≥0 be a weight function of
Boolean and real variables. If w is a PDF on BM ×RN defining probability ν given by (8), then:

L−WMI (φ,w) = ν (M(φ)) .

Proof. Follows directly from Definition 15.

In the following we are concerned with the factorization of a weight function into separate
parts over Boolean and continuous spaces, respectively. This discussion is of interest, as proba-
bilities on Boolean and continuous spaces can be combined together using the product measure
construction. We begin with general setting, and later comment on an important special case,
where the weight function fully factorizes.

Any weight function w : BM × RN → R≥0 can be partially factorized such that the equality

w(b, x) = wb(b) · w b
x (x) (9)

holds for all b ∈ BM and x ∈ RN (note the dependency of the second factor on b). The function
wb : BM → R≥0 is the Boolean part of the function w and, for each b ∈ BM , the function
w b

x : RN → R≥0 is a piece of the continuous part. This factorization is generally not unique.
For instance, every non-zero c ∈ R defines a simple factorization, given with wb(b) = c and
w b

x (x) = 1
c w(b, x), for all b ∈ BM and x ∈ RN . However, in the probabilistic setting, partial

factorization is essentially unique:

Lemma 21. Let w be a PDF on BM × RN . Then there are unique PDFs wb on BM and w b
x on

RN , for each b ∈ BM , such that Equality (9) holds for every b ∈ BM and for λ-almost every
x ∈ RN (cf. Definition A39).

Proof. For each b ∈ BM , denote again with wb : RN → R≥0 a function given with wb(x) =

w(b, x). Define the function wb : BM → R≥0 with wb(b) =
∫
RN wb dλ , for every b ∈ BM . Now

for each b ∈ BM , define the functions w b
x : RN → R≥0 with w b

x (x) =
w(b,x)
wb(b) if wb(b) , 0, and

w b
x (x) = 0 otherwise, for every x ∈ RN . In the former case, Equation (9) obviously holds. In the

latter case, from Lemma A40 we conclude that wb(x) = w(b, x) = 0 for λ-almost every x ∈ RN ,
and therefore Equation (9) holds λ-almost everywhere on RN .

Using the fact that w is a PDF together with Theorem A42, we prove that wb is a PDF as
well: ∫

BM
wb dµ =

∫
BM

(∫
RN

w(b, x) dλ
)

dµ =

∫
BM×RN

w d (µ × λ) = 1. (10)
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Proving that w b
x is a PDF, for each b ∈ BM , is trivial. From

1 =

∫
RN

w b
x dλ =

∫
RN

w(b, x)
wb(b)

dλ =
1

wb(b)

∫
RN

wb dλ

it follows that wb is unique, and then w b
x as well.

As a consequence, we can split the probability ν from Equation (8) into Boolean and contin-
uous parts. For a given PDF w on BM ×RN , we first find its unique factors from Lemma 21, that
is the PDFs wb on BM and w b

x on RN , for each b ∈ BM . Each function w b
x defines a probability

τ b on B(RN) given with

τ b(E) =

∫
E

w b
x dλ, (11)

for every set E ∈ B(RN). Using a construction similar to that of the product measure in The-
orem A41, the probability η associated to the weight function wb (from Proposition 18) can be
joined with the probabilities τ b, b ∈ BM , in order to obtain a single probability on BM × RN .

Proposition 22. Let η be a probability on P(BM). For every b ∈ BM , let τ b be a probability on
B(RN). Furthermore, let η × τ : P(BM) × B(RN)→ [0, 1] denote a function given with

(η × τ) (E) =

∫
BM
τ b (Eb) dη

for any set E ∈ P(BM) × B(RN), with notation the Eb being explained in Appendix A. The tuple(
BM × RN ,P(BM) × B(RN), η × τ

)
is a probability space.

Proof. The function η × τ is countably additive, analogous to the proof of Theorem A41. The
equality

(η × τ)
(
BM × RN

)
=1

follows immediately, since η and τ b, for b ∈ BM , are all probabilities.

The measure η × τ is not a product measure, since τ alone has no meaning, yet. Below
we describe an aforementioned important case when a weight function is fully factorized. This
measure is indeed a product measure, offering a motivation for this notation. But first, let us
rephrase the statement of Theorem 20, in accordance with our present discussion.

Corollary 23. Let b be a set of M Boolean variables, x a set of N real variables, and φ a
measurable SMT formula over variables in b and x. Let w : BM × RN → R≥0 be a weight
function of Boolean and real variables, which is a PDF on BM × RN . Now let wb : BM → R≥0
and, for each b ∈ BM , w b

x : BM → R≥0 be unique PDFs such that w(b, x) = wb(b) · w b
x (x) holds

for every b ∈ BM and λ-almost every x ∈ RM . Furthermore, let η be a probability on P(BM)
associated to the PDF wb and, for each b ∈ BM , let τ b be a probability on B(RN) associated to
the PDF w b

x . Lastly, let η× τ be a probability measure on P(BM)×B(RN) associated to the PDF
w obtained from the probabilities η and τ b, for b ∈ BM , using Proposition 22. Then:

L−WMI (φ,w) = (η × τ) (M(φ)) .

12



Proof. We prove that (η × τ) equals the probability ν from Equation (8). Then the claim follows
by Theorem 20. We note that η({ b }) = wb (b) ·µ({ b }). Because of the factorization of the weight
function w, for every b ∈ BM , we have wb = wb(b) · w b

x . Now for any E ∈ P(BM) × B(RN):

ν(E) =

∫
E

w d (µ × λ) =

∫
BM

( ∫
RN

wb · 1Eb dλ
)

dµ

=
∑

b∈BM

(∫
Eb

w b
x dλ

)
· wb(b) · µ({ b })

=

∫
BM
τ b(Eb) dη = (η × τ) (E) .

Lastly, we discuss the announced case of the full factorization of the weight function w. In
practice, there is commonly a single PDF wx associated to any b ∈ BM , i.e. equality

w(b, x) = wb(b) · wx(x)

holds for every b ∈ BM and λ-almost every x ∈ RN . Consequently, there is one probability mea-
sure τ on B(RN). Uniqueness of the product measure from Theorem A41 then implies that the
probability space from Proposition 22 is actually a product of probability spaces

(
BM ,P(BM), η

)
and

(
RM ,B(RM), τ

)
. Result analogous to that of Corollary 23 is valid in this case.

5. The Usefulness of Measure Theoretic WMI for Computational Complexity Discussions

Early research on WMI was mainly concerned with encoding discrete-continuous problems
and developing efficient solvers. Recently, however, more detailed studies of the computational
complexity of WMI problems have emerged [16, 17, 20]. The main objective of the reported
complexity studies is the delineation of tractable WMI problem classes: which WMI fragments
are solvable in polynomial time (in contrast to the #P-hardness of general WMI problems)?

The presented computational complexity studies on WMI start with the observation that a
WMI problem over Boolean and real variables can be reduced to an equivalent WMI problem
over real variables only. Complexity results are then proven for these reduced WMI problems
and consequently also hold for WMI problems with Boolean variables.

Reducing WMI problems to purely real-valued problems enabled Zeng and Van den Broeck
[16] to present their complexity results for problems over different domains in a unified fashion.
However, their method is inherently limited to Boolean- and real-valued WMI problems and does
not extend to WMI problems with integers.

We are first going to sketch the reduction presented by Zeng and Van den Broeck [16] and
point out its limitation to Bools and reals. Secondly, we are going to show how our measure
theoretic formulation provides a more principled unification of discrete and continuous domains.
This enables us to extend the discussion in Zeng and Van den Broeck [16] to cover, in addition
to Booleans and reals, integer variables as well.

5.1. Reduction of WMI problems to purely real-valued problems

The reduction of WMI problems over Booleans and reals to purely real-valued problems was
formally presented in Propostion 3.4 in [16]:

13



Proposition 24. For each problem WMI(φ,w | x,b) there exists an equivalent problem
WMI(φ′,w′ | x′) without Boolean variables b such that

WMI(φ,w | x,b) = WMI(φ′,w′ | x′)

and the primal graphs of φ and φ′ are isomorphic.

The proposition above uses the following definition of primal graph of SMT formulas ([16,
Definition 3.2]).

Definition 25 (Primal graph of an SMT formula). The primal graph of an SMT(LRA) formula
(in conjunctive normal form) is an undirected graph whose vertices are all variables and whose
edges connect any two variables that appear in the same clause.

The structure of the primal graph is the key property in determining the complexity class
of a WMI problem [16]. More concretely, a WMI problem on formula φ falls into the same
computational complexity class as an equivalent WMI problem on formula φ′, if φ and φ′ are
isomorphic.

In [16], the authors prove Proposition 24 by replacing Boolean variables with real valued
variables. More precisely, in an SMT formula φ they replace a Boolean variable b using fresh
atomic SMT formulas (0<xb ∧ xb<1) and (−1<xb ∧ xb<0) for the negation. The Boolean-free
SMT formula is called φ′. Furthermore, they introduce a new weight function that depends on
xb instead of b:

w′(x, xb) =


w′
¬b(x, xb) = w(x,¬b), if −1 < xb < 0;

w′b(x, xb) = w(x, b), if 0 < xb < 1;
0, else.

(12)

This allows for rewriting the weighted model integral as a pure Riemann integration without
summing out Boolean variables:

WMI(φ,w | x,b) =

∫
φ′(x,xb)

w′(x, xb) dx dxb = WMI(φ′,w′ | x ∪ {xb}︸   ︷︷   ︸
=x′

, ∅). (13)

This proves the equivalence of both WMI encodings (with and without Boolean variables)4. The
isomorphism of the primal graphs of φ and φ′ is trivially satisfied as the transformation performed
(replacing Boolean variables with real valued variables) does not introduce nor removes any
edges in the primal graph, but only replaces Boolean variable b with continuous variable xb.

5.2. Measure Theoretic Reduction
Now, the immediate problem with the proof of Proposition 24 presented in the work of Zeng

and Van den Broeck [16] is that it is limited to the finite case of Boolean variables. Therefore, it is
not clear how to extend it to the case of integer valued variables. Contrary to Boolean variables,
integers can take an infinite number of values, which in turn means that, following this procedure,
we would have to introduce an infinite number of continuous pieces to turn the summation over
integers into a Riemann integration over reals (in the Boolean case we only needed two such
pieces, cf. Equation 12). Fortunately, in the light of our results from the preceding sections, we
can re-formulate Proposition 24 such that we cover integers as well.

4Similar to Zeng and Van den Broeck [16], we limited the discussion here to a single Boolean variable for simplicity of
exposition. The argument, however, holds as well for multiple Boolean variables as the elimination of Boolean variables
can be performed in succession.
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Proposition 26. For each problem WMI(φ,w | x, z,b) (over reals x, integers z and Booleans b)
there exists an equivalent problem L−WMI(φ′,w′ | x′, z′,b′) such that

WMI(φ,w | x, z,b) = L−WMI(φ′,w′ | x′, z′,b′)

and the primal graphs of φ and φ′ are isomorphic.

Proof. The proof for the validity of the equality in the proposition follows trivially from Theo-
rem 16 and the observation made in Equation 5. Theorem 16 also gives us φ = φ′, from which
we trivially deduce that the primal graphs of φ and φ′ are isomorphic.

By simply replacing the Riemann integrations with Lebesgue integrations, the computational
complexity discussion in [16, 17, 20] can now be extended to problems where also integer-valued
variables are present.

6. Conclusion

WMI is an essential framework for solving probabilistic inference problems in discrete-
continuous domains. In this paper we present a measure theoretic formulation of WMI using
Lebesgue integration. Consequently, we have ensured conditions for the uniform treatment of
problems in Boolean, discrete, continuous domains, and mixtures thereof, which has always
been a challenge using classical (Riemannian) theory of integration. Moreover, we have pro-
vided clear terminology and precise notation based in measure theory for WMI, putting WMI
on steady-state theoretical footing. We see two direct potential benefits of measure theoretic
WMI. First, a measure theoretic formulation of WMI might enable novel encoding schemes of
WMI problems, which in turn leads to problems being solved more efficiently. The benefits of
encodings based on measure theory has already been demonstrated for weighted model counting
problems [33] and we stipulate that analog techniques can be adapted for solving WMI problems
more efficiently. Secondly, recent advances in using Lebesgue integration for solving integra-
tion and related problems have demonstrated potential [34] and could be harnessed in the WMI
context, as well. Furthermore, the well-behavedness of Lebesgue integration, with regards to
limiting processes, can find its use inside probabilistic inference with potentially infinite number
of variables. This is in concordance with a current trend in probabilistic programming research,
where an increasing number of papers discuss probabilistic programming from a measure theo-
retic perspective [35, 36, 31].
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Appendix A. Background on Measure Theory

The theory presented here is taken from [32]. The reader not familiar with measure theory is
encouraged to read this introduction for background and motivation, as well as the relationship
to classical Riemann integration.

Definition A27 (σ-algebra). Let X be an arbitrary set. A collection A of subsets of X is a
σ-algebra on X if:

• X ∈ A,

• for each set A that belongs toA, its complement Ac belongs toA,

• for each infinite sequence { Ai } of sets that belong toA, set
⋃∞

i=1 Ai belongs toA

The pair (X,A) is referred to as measurable space. Any set A ∈ A is said to be measurable.

It is easy to see that the intersection of two σ-algebras is again a σ-algebra. Hence, we
can define the smallest σ-algebra which contains the given subsets; it is called the σ-algebra
generated by these subsets. Now we can introduce an important σ-algebra on the set RN .

Definition A28 (Borel σ-algebra). The σ-algebra generated by the collection of all rectangles
in RN that have the form

{ (x1, . . . , xN) | ai < xi ≤ bi, for i = 1, . . . ,N }

is called Borel σ-algebra and is denoted with B(RN).

A function µ from a σ-algebraA to [0,+∞] is said to be countably additive if it satisfies

µ

 ∞⋃
i=1

Ai

 =

∞∑
i=1

µ(Ai)

for each infinite sequence { Ai } of disjoint sets fromA.

Definition A29. LetA be a σ-algebra on the set X. The function µ : A → [0,+∞] is a measure
onA if µ(∅) = 0 and µ is countably additive. The triple (X,A, µ) is said to be a measure space.

We now introduce two important measures used in this paper.

Definition A30 (Counting measure). Let X be an arbitrary set, and P(X) the set of all subsets of
X (power set). Then P(X) is trivially a σ-algebra on X. Define a function µ : P(X) → [0,+∞]
by letting µ(A) be n if A is a finite set with exactly n elements, and +∞ otherwise. Then µ is a
measure on P(X) called counting measure on (X,P(X)).

Definition A31 (Lebesgue measure). It is possible to construct a function λN : B(RN)→ [0,+∞]
which assigns to each rectangle R = { (x1, . . . , xN) | ai < xi ≤ bi, for i = 1, . . . ,N } its volume, i.e.
λN(R) =

∏N
i=1(bi − ai). Then extending λN to any set from B(RN) is accomplished by using

countable additivity. The function λN is a measure on B(RN) and is known as the Lebesgue
measure on RN . Sets from B(RN) are in this context often called Lebesgue measurable sets.

Let µ be a measure on a measurable space (X,A). Then µ is a finite measure if µ(X) < +∞

and is a σ-finite measure if X is the union of a sequence A1, A2, . . . of sets that belong to A and
satisfy µ(Ai) < +∞ for each i = 1, 2, . . . .
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Definition A32 (Measurable function). Let (X,A) be measurable space. The function f : X →
[−∞,+∞] is said to be measurable with respect to A if for each real number t the set {x ∈ X |
f (x) ≤ t} belongs to A. In the case of X = RN , a function that is measurable with respect to
B(RN) is called Borel measurable.

Example A33. There are some familiar measurable functions. For instance, any measurable set
B ∈ A gives rise to a measurable function. Namely, its characteristic function 1B is measurable
with respect toA, as both B and its complement Bc belong to σ-algebraA. On the other end of
spectrum, any continuous function f : RN → R is Borel measurable ([32, Examples 2.1.2 (a)]).

Definition A34 (Simple function). Let (X,A) be a measurable space. Function f : X→[−∞,+∞]
is called simple function if it has only finitely many different values.

Let a1, a2, . . . , an be all distinct values of simple function f on measurable space (X,A).
Then f can be written as f =

∑n
i=1 ai1Ai , where Ai = { x ∈ X | f (x) = ai }. Function f is A-

measurable if and only if Ai ∈ A for all i = 1, 2, . . . , n. Simple functions are instrumental in the
construction of Lebesgue integral. Their integral is easy to compute, while the next proposition
shows that they can approximate any measurable function.

Proposition A35. Let (X,A) be a measurable space, and let f be a [0,+∞]-valued measurable
function on X. Then there is a sequence { fn } of simple [0,+∞)-valued measurable functions on
X that satisfy f1(x) ≤ f2(x) ≤ · · · and f (x) = limn fn(x) at each x ∈ X.

Proof. See [32, Proposition 2.1.8].

The construction of integrals takes place in three stages. First, we define an integral of
positive simple functions. Using Proposition A35, the definition is then extended to any positive
measurable function, and finally extended to the subset of all measurable functions. We denote
with f + the function f +(x) = max { 0, f (x) }, i.e. the positive part of function f , and analogously
with f − the function f −(x) = −min { 0, f (x) }. The function f can now be written as f = f +− f −.

Definition A36 (Integral). Let µ be a measure on (X,A). If f is a positive simple function given
by f =

∑n
i=1 ai1Ai , where a1, a2, . . . , an are non-negative real numbers and Ai, A2, . . . , An are

disjoint subsets of X that belong toA, then
∫

f dµ, the integral of f with respect to µ, is defined
to be

∑n
i=1 ai µ(Ai).

For an arbitrary [0,+∞]-valuedA-measurable function on X we define its integral as∫
f dµ = sup

{∫
g dµ | g is a simple positive function and g ≤ f

}
.

Here we use the shorthand g ≤ f to denote that g(x) ≤ f (x) holds for all x ∈ X.
Finally, let f be any [−∞,+∞]-valued A-measurable function on X. If both

∫
f + dµ and∫

f − dµ are finite, then f is called µ-integrable and its integral is defined by∫
f dµ =

∫
f + dµ −

∫
f − dµ.

Suppose that f : X → [−∞,+∞] isA-measurable and that A ∈ A. Then f is integrable over
the set A if the function f · 1A is integrable. In this case

∫
A f dµ, the integral of f over A, is

defined to be
∫

f 1A dµ.
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In the case of X = RN and µ = λN , above integral is often referred to as the Lebesgue integral.
The Lebesgue integral satisfies all usual basic properties of the Riemann integral, for example
linearity and monotonicity.

Proposition A37. Let (X,A, µ) be a measure space, let f and g be measurable functions on X,
and let α be any nonnegative real number. Then:

(a)
∫
α f dµ = α

∫
f dµ,

(b)
∫

( f + g) dµ =
∫

f dµ +
∫

g dµ, and
(c) if f ≤ g then

∫
f dµ ≤

∫
g dµ.

Proof. See [32, Proposition 2.3.4].

Importantly, Lebesgue integral equals the Riemman integral for any Riemman integrable
function:

Theorem A38. Let [a, b] be a closed bounded interval, and let f be a bounded real-valued
function on [a, b]. If f is Riemann integrable, then f is Lebesgue integrable and the Riemann
and Lebesgue integrals of f coincide.

Proof. See [32, Theorem 2.5.4 (b)].

However, there are functions which are Lebesgue integrable, but not Riemann integrable.

Definition A39. Let (X,A, µ) be a measure space. We say that property P holds µ-almost every-
where on X or for µ-almost every x ∈ X ( µ-a.e.) if there is a set N ∈ A such that P holds for
every x ∈ X \ N and µ(N) = 0. We omit the mention of measure µ, when it is clear from context.

Lemma A40. Let f : RN → [−∞,+∞] be Lebesgue integrable function. Then
∫
| f | = 0 if and

only if f = 0 almost everywhere.

Proof. See [32, Corollary 2.3.12].

Now we turn to the construction of product measures, which combine two measure spaces.
Let (X,A) and (Y,B) be two measurable spaces, and let X×Y be the Cartesian product of the sets
X and Y . A subset of X ×Y is a rectangle with measurable sides if it has the form A× B for some
A in A and some B in B. The σ-algebra on X × Y generated by the collection of all rectangles
with measurable sides is called the product of the σ-algebrasA and B and is denoted byA×B.

Let E be a subset of X × Y . Then for each x ∈ X and each y ∈ Y the sections Ex and Ey are
subsets of Y and X, respectively, given by Ex = { z ∈ Y | (x, z) ∈ E } and Ey = { z ∈ X | (z, y) ∈ E }.
If f is a function on X × Y , then the sections fx and f y are functions on Y and X, respectively,
given by fx(z) = f (x, z) and f y(z) = f (z, y).

Theorem A41 (Product measure). Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces. Then
there is a unique measure µ × ν on the σ-algebra A × B such that

(µ × ν)(A × B) = µ(A)ν(B)

holds for each A ∈ A and B ∈ B. Furthermore, the measure under µ × ν of an arbitrary set E in
A × B is given by

(µ × ν)(E) =
∫

X ν(Ex) dµ =
∫

Y µ(Ey) dν.

The measure µ × ν is called the product measure of µ and ν.
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Proof. See [32, Theorem 5.1.4].

Intgrals with respect to product measure can now be evaluated using Tonelli’s theorem, a
special case of Fubini’s theorem.

Theorem A42 (Tonelli’s theorem). Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces, and
let f : X × Y → [0,+∞] be (A× B)-measurable. Then

(a) the function x 7→
∫

Y fx dν isA-measurable and the function y 7→
∫

X f y dµ isB-measurable,
and

(b) f satisfies ∫
X×Y

f d(µ × ν) =

∫
X

(∫
Y

fx dν
)

dµ =

∫
Y

(∫
X

f y dµ
)

dν.

Proof. See [32, Theorem 5.2.1].

Probability theory is naturally expressed in terms of Lebesgue integration.

Definition A43. A probability space is a measure space (Ω,A,P) such that P(Ω) = 1. A measure
P is called a probability.

Let now (X,A, µ) be a measure space. Suppose that f is a non-negative µ-measurable func-
tion on X such that

∫
X f dµ = 1. Then the function P : A → [0, 1] given with P(A) =

∫
A f dµ, for

every A ∈ A, defines a probability on the measurable space (X,A). The function f is called the
probability density function (PDF) of probability P.
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