
ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

From Atoms to
Possible Worlds
Probabilistic Inference in the

Discrete-Continuous Domain

Pedro Miguel Zuidberg Dos Mártires

Dissertation presented in partial

fulfillment of the requirements for the

degree of Doctor of Engineering

Science (PhD): Computer Science

November 2020

Supervisor:

Prof. dr. Luc De Raedt





From Atoms to
Possible Worlds
Probabilistic Inference in the

Discrete-Continuous Domain

Pedro Miguel Zuidberg Dos Mártires

Examination committee:
Prof. dr. ir. Robert Puers, chair
Prof. dr. Luc De Raedt, supervisor
Prof. dr. Jesse Davis
Prof. dr. ir. Tinne De Laet
Prof. dr. ir. Guy Van den Broeck

(University of California, Los Angeles)
Prof. dr. Amy Loutfi

(Örebro Universitet)

Dissertation presented in partial ful-
fillment of the requirements for the
degree of Doctor of Engineering
Science (PhD): Computer Science

November 2020



© 2020 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Pedro Miguel Zuidberg Dos Mártires , Celestijnenlaan 200A box 2402, B-3001
Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



I dedicate this thesis to Antonio and Johanna – my parents.





Acknowledgments

Roughly five years ago I finished my Master’s in particle physics. Soon after, I took
up the mad challenge of getting accepted into an artificial intelligence PhD program.
Needless to say that my academic background did not fit the usual requirements to
perform research in computer science. As a consequence, my chances of getting
accepted into a PhD program were, unbeknowst to me at the time, rather slim. It rained
rejections. My first thank you goes to Luc, my doctoral advisor. For some reason, Luc,
after only two video calls between Belgium and Australia, went out on a limb and
offered me a PhD position in his lab. I must confess, in retrospect, I would not have
given myself a PhD position. Luc did. This thesis would not exist without his leap of
faith almost five years ago and his role as PhD supervisor.

A this points I would also like to thank the other members of my examination jury.
Amy, Guy, Jesse, Tinne, thank you for reading and commenting on the text of the thesis
and thanks to Robert Puers for chairing the defense.

My third big thank you goes to all the colleagues, of which some have become friends.
I was lucky to meet you and collaborate with you. Doing a PhD is challenging. I
reckon the last fourish years have been the biggest intellectual challenge of my life
but also the emotional toll of pursuing a PhD can be taxing on one’s state of mind. It
would not have been possible without you! For example, I remember fondly our coffee
breaks, which sometimes turned into long scientific discussions, stupid shenanigans, or
just ramblings about how doing a PhD sucks (sometimes). An important distraction
were also our nights out. Often the most difficult thing was to not talk about work
and research but just unwind. Strangely, those nights out were more frequent at the
beginning of my PhD. I guess I am getting old and bold and it is time to wrap this thing
up.

From a scientific point of view I would like to name a couple of people who helped
me quite a lot during the PhD and were influential on forming my scientific persona.
I would like to thank Anton, who helped me out a lot in the beginning of the PhD
and who I could ask any question. And if Anton did not know the answer, Wannes

iii



iv ACKNOWLEDGMENTS

did. I would also like to thank all the people involved in the ReGROUND project and
especially Andreas. Working on the ReGROUND project allowed me to get in touch
with a lot of different ideas, which I am still working on (some more actively than
others). Additionally, the ReGROUND project paid for some nice trips to Sweden.

I would like to stress that science is a team sport these days and doing research without
great and dedicated collaborators is infinitely more difficult. I remember for example
some very long nights working together with my collaborators (Andreas, Nitesh, Ozan,
Samuel, Vincent) on papers and give up on hours of sleep just to polish a paper a little
bit more. Although those were fun experiences, I hope they won’t repeat ever again.

I could mention heaps of other people and at least one story that we share. Either on the
hallway of the computer science department, on the squash court, at a conference on a
remote island , buying a car, giving exercise sessions, redecorating the lab, sharing
a house for three years, laughing about Italian prime ministers speaking English, ...
Unfortunately, I procrastinated a little bit too heavily when I was writing this and I do
not have a lot of time to write much more.

Finally, I would like to say that doing research is an absolute privilege. Even though it
still sounds odd, I can tell people I am a scientist. I also tell them that I am grateful that
I can spend my time asking questions about the world and wasting even more time on
finding answers that might not exist. This is not self-evident. I am thankful for living
in a society that values public education and promotes research.



Abstract

Life is uncertain, full of ambiguities. Paradoxically, only embracing stochasticity, not
fighting randomness, lets us cut through the surrounding fog of noise and find meaning.
Similarly, machines will only make sense of the world accepting its probabilistic nature.

This dissertation studies probabilistic artificial intelligence, a broad field of research.
We will investigate probabilistic AI at three distinct conceptual levels, or three levels
of abstraction. Throughout all three levels of abstraction, special focus is given to
problems that incorporate discrete and continuous random variables alike – a challenge
only embraced by very few. We start our study with logic atoms (Boolean variables)
from which we build probabilistic logic formulas. A variable instantiation, which
satisfies a probabilistic logic formula with probability greater than zero, is also called a
possible world. In the last two chapters of the thesis these possible worlds will model
the real-world observed through a 3D-camera.

1. Microscopic Level: The microscopic level studies the marriage of logic and
probability theory. We formalize their combination by starting out from logic
atoms, in the context of weighted model integration, from which we then
construct entire probabilistic models. We introduce a range of state-of-the-
art probabilistic inference algorithms. The presented algorithms are based
on knowledge compilation and arithmetic circuits, and use either symbolic

integration for exact inference or Monte Carlo integration for approximate
inference. The algorithms show that probabilistic inference techniques from
the purely discrete or the purely continuous domain can be adapted to perform
probabilistic inference in the discrete-continuous domain.

2. Macroscopic Level: While the microscopic level constitutes a principled
approach to expressing probabilistic models, the level of abstraction is rather
ill-suited for human users. We introduce DC-ProbLog, a probabilistic logic
programming language that allows users to operate at a high-level of abstraction.
We show that we can perform inference by mapping back to weighted model
integration (the microscopic level).

v



vi ABSTRACT

3. Cognitive Level: At the cognitive level we build a perceptual anchoring system.
Perceptual anchoring solves the problem of creating and maintaining, in time
and space, the correspondence between symbols and objects in the real-world.
Our system constructs a probabilistic model of the surrounding world (perceived
through a 3D-camera) and has the capability of probabilistically reasoning about
objects that are present. The key contribution is the design of a framework that
combines perceptual anchoring and probabilistic programming (macroscopic
level). The probabilistic reasoning capacity is useful in situations where objects
are not directly observed but occluded by other objects. Occluded objects can
then be anchored through probabilistic reasoning.



Beknopte samenvatting

Het leven is onzeker, vol ambiguïteit. Stochasticiteit vermijden brengt ons echter niet
dichter bij een oplossing. Enkel door het te omarmen kunnen we doorheen de mist van
ruis zien, en de betekenis erin vinden. Gelijkaardig, kunnen machines enkel de wereld
begrijpen door de probabilistische natuur ervan te erkennen.

Deze dissertatie bestudeert probabilistische artificiële intelligentie, een breed onder-
zoeksveld. We zullen probabilistische AI bestuderen op drie verschillende conceptuele
niveaus, drie niveaus van abstractie. Doorheen alle drie die niveaus gaat er speciale
aandacht naar problemen met zowel discrete als continue willekeurige variabelen – een
uitdaging door zeer weinigen aangegaan. We starten onze studie met logische atomen
(Boolean variabelen) van waaruit we probabilistische logische formules opbouwen.
Een instantie van de variabelen, die voldoet aan een probabilistische logische formule
met een kans groter dan nul, wordt ook wel een mogelijke wereld genoemd. In de
laatste twee hoofdstukken van de thesis zullen deze mogelijke werelden de reële wereld
geobserveerd door een 3D camera, modelleren.

1. Microscopisch niveau: Het microscopisch niveau bestudeert het huwelijk
van logica enerzijds en probabilistische theorie anderzijds. We formaliseren
deze combinatie door te starten vanuit logische atomen, in de context van
weighted model integration, waaruit we daarna volledige probabilistische
modellen opbouwen. We introduceren een waaier van state of the art
probabilistische inferentie algoritmen. De gepresenteerde algoritmen zijn
gebaseerd op knowledge compilation en aritmetische circuits, en gebruiken ofwel
symbolische integratie voor exacte inferentie of Monte Carlo integratie voor
benaderende inferentie. De algoritmen tonen aan dat probabilistische inferentie
technieken van de puur discrete of de puur continue domeinen aangepast kunnen
worden voor het uitvoeren van probabilistische inferentie in het discreet-continue
domein.

2. Macroscopisch niveau: Terwijl het microscopisch niveau een principiële
aanpak vormt om probabilistische modellen in te uiten, is het niveau van

vii



viii BEKNOPTE SAMENVATTING

abstractie echter ongeschikt voor menselijke gebruikers. We introduceren DC-
ProbLog, een probabilistische logische programmeertaal die gebruikers toelaat
om te opereren op een hoog niveau van abstractie. Inferentie wordt uitgevoerd
door het terug afbeelden naar weighted model integration (het microscopisch
niveau).

3. Cognitief niveau: Op het cognitief niveau bouwen we een perceptueel
verankeringssysteem. Perceptuele verankering lost het probleem op van het
creëren en onderhouden, in tijd en ruimte, van de overeenkomsten tussen
symbolen en objecten in de reëel wereld. Ons systeem construeert een
probabilistisch model van de omgevende wereld (waargenomen door een 3D-
camera) en heeft de capaciteit om probabilistisch te redeneren over aanwezige
objecten. De hoofdzakelijke bijdrage omvat het ontwerp van een framework
dat perceptuele verankering combineert met probabilistisch programmeren
(macroscopisch niveau). De capaciteit om probabilistisch te redeneren is nuttig
in situaties waar objecten niet rechtstreeks observeerbaar zijn maar bedekt
door andere objecten. Deze bedekte objecten kunnen worden verankerd via
probabilistisch redeneren.



List of Abbreviations

AC Arithemtic Circuit.

AI Artificial Intelligence.

ALW Algebraic Likelihood Weighting.

AMC Algebraic Model Counting.

d-DNNF Deterministic Decomposable Negation Normal Form.

DAG Directed Acyclic Graph.

DD Decision Diagram.

DDC Dynamic Distributional Clause.

DS Distribution Semantics.

FPGA Field Programmable Gate Array.

GPU Graphics Processing Unit.

KC Knowledge Compilation.

MC Monte Carlo.

MCAD Monte Carlo Anti-Differentiation.

MCMC Markov Chain Monte Carlo.

NMC Nested Monte Carlo.

NNF Negation Normal Form.

ix



x LIST OF ABBREVIATIONS

PLP Probabilistic Logic Programming.

PWM Permanent World Model.

RRMSE Relative Root Mean Squared Error.

RSTD Relative Standard Deviation.

SAT Boolean Satisfiability.

sd-DNNF Smooth Deterministic Decomposable Negation Normal Form.

SDD Sentential Decision Diagram.

SLD Resolution Selective Linear Definite Resolution.

SMT Satisfiability Modulo Theory.

SRL Statistical Relational Learning.

SVM Support Vector Machine.

ToO Theory of Occlusion.

TWM Temporary World Model.

WMC Weighted Model Integration.

WMI Weighted Model Counting.

XADD Extended Algebraic Decision Diagram.

XSDD Extended Sentential Decision Diagram.



Contents

Abstract v

Beknopte samenvatting vii

List of Abbreviations x

Contents xi

List of Figures xvii

List of Tables xix

Introduction 1

1 Introduction 2

1.1 Logic, Probability and Programming . . . . . . . . . . . . . . . . . . 2

1.2 The Symbolic and the Subsymbolic . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

xi



xii CONTENTS

Weighted Model Integration 13

Introduction 14

2 Background 16

2.1 Logic and Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Boolean Satisfiability . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Satisfiability Modulo Theories . . . . . . . . . . . . . . . . . 17

2.2 The Weight of a Model . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 The Count of a Model . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Weighted and Algebraic Model Counting . . . . . . . . . . . 20

2.2.3 Weighted Model Integration . . . . . . . . . . . . . . . . . . 22

2.3 Knowledge Compilation and Counting . . . . . . . . . . . . . . . . . 22

3 WMI Using KC 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The Probability Density Semiring . . . . . . . . . . . . . . . . . . . 27

3.3 WMI via AMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Computing the Probability of SMT Formulas . . . . . . . . . . . . . 30

3.4.1 Symbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Sampo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Discussion on Complexity . . . . . . . . . . . . . . . . . . . 36

3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Exploiting Factorizability 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 λ-SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS xiii

4.3 Anatomy of a Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 λ-SMT: Search vs Compilation . . . . . . . . . . . . . . . . 48

4.3.2 Numeric vs Symbolic Integration . . . . . . . . . . . . . . . 49

4.4 Categorizing Existing Solvers . . . . . . . . . . . . . . . . . . . . . 49

4.5 Exploiting Factorizability of WMI Problems . . . . . . . . . . . . . . 52

4.5.1 Factorized Solving . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Beyond Piecewise-Polynomial WMI . . . . . . . . . . . . . . 60

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 WMI Using Monte Carlo Anti-Differentiation 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Monte Carlo anti-differentiation . . . . . . . . . . . . . . . . . . . . 66

5.3.1 One Level of Nesting . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Repeated Nesting of MCAD . . . . . . . . . . . . . . . . . . 70

5.3.3 Histograms as density estimators . . . . . . . . . . . . . . . . 71

5.3.4 MCAD and Weighted Model Integration . . . . . . . . . . . . 72

5.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Highly Structured Problems . . . . . . . . . . . . . . . . . . 74

5.4.2 Highly Structured Problems with More Challenging Integration 75

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Conclusions 79



xiv CONTENTS

Probabilistic Logic Programming 81

Introduction 82

6 DC-ProbLog 85

6.1 Syntax and Type System . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Multiple Dispatch . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.4 Arithmetic Evaluation . . . . . . . . . . . . . . . . . . . . . 92

6.1.5 Relationship of Multiple Dispatch to Typing in Prolog . . . . 93

6.2 DC-PLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 From DC-ProbLog to DC-PLP . . . . . . . . . . . . . . . . . 96

6.2.2 Valid DC-PLP Programs . . . . . . . . . . . . . . . . . . . . 99

6.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Conditional Probabilities . . . . . . . . . . . . . . . . . . . . 106

6.3.2 Zero Probability Events and Measurements . . . . . . . . . . 106

6.3.3 Algebraic Likelihood Weighting . . . . . . . . . . . . . . . . 108

6.4 Two Showcase Examples . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 The Indian GPA problem . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Bayesian Learning . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Related Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Conclusions 115

Probabilistic Perceptual Anchoring 117

Introduction 118



CONTENTS xv

7 Background 120

7.1 Perceptual Anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Dynamic Distributional Clauses . . . . . . . . . . . . . . . . . . . . 123

7.3 Occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Semantic World Modeling 127

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Anchoring + Inference . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Implementation Details: Pre-processing Pipeline . . . . . . . 129

8.2.2 Theoretical Aspects: Precepts, Attributes and Symbols . . . . 132

8.2.3 Anchoring Management . . . . . . . . . . . . . . . . . . . . 133

8.2.4 Integration of the Inference System . . . . . . . . . . . . . . 135

8.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3.1 Learning the Anchoring Matching Function . . . . . . . . . . 138

8.3.2 Tracking of Occluded Objects . . . . . . . . . . . . . . . . . 142

8.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 A Two-Fold Extension 150

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2 Anchoring of Objects in Multi-Modal States . . . . . . . . . . . . . . 151

9.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.2 Probabilistic Anchoring System . . . . . . . . . . . . . . . . 153

9.3 Learning Dynamic Distributional Clauses . . . . . . . . . . . . . . . 156

9.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.4.1 Multi-Modal Occlusions . . . . . . . . . . . . . . . . . . . . 162

9.4.2 Uni-Modal Occlusions with Learned Rules . . . . . . . . . . 162

9.4.3 Transitive Occlusions with Learned Rules . . . . . . . . . . . 163

9.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



xvi CONTENTS

Conclusions 167

Conclusions 169

Bibliography 177

List of Publications 195



List of Figures

1.1 Geometric representation of a WMI problem. . . . . . . . . . . . . . 6

1.2 Introductory example of probabilistic relational anchoring . . . . . . 9

2.1 Compiled logic formula example and corresponding AC . . . . . . . 24

3.1 Abstracted XSDD to algebraic circuit . . . . . . . . . . . . . . . . . 32

3.2 Experimental comparison Sampo I . . . . . . . . . . . . . . . . . . . 39

3.3 Experimental comparison Sampo II . . . . . . . . . . . . . . . . . . 40

3.4 Experimental comparison Symbo II . . . . . . . . . . . . . . . . . . 41

4.1 Experimental comparison of different WMI solvers . . . . . . . . . . 51

4.2 XSDD example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Factorized solving on XSDD . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Runtime plots comparing F-XSDD solvers to existing WMI solvers on
structured problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Visualization MCAD . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Experimental comparison F-XSDD(Mcad) I . . . . . . . . . . . . . . 75

5.3 Experimental comparison F-XSDD(Mcad) II . . . . . . . . . . . . . 77

6.1 Diagrammatic representation of the hierarchical Prolog type system. . 87

xvii



xviii LIST OF FIGURES

6.2 Diagrammatic representation of the hierarchical ProbLog type system. 87

6.3 Diagrammatic representation of the hierarchical DC-ProbLog type
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Overview of the primary program transformation steps in the ProbLog2
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Bayesian learning of coins . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Graphical illustration of the anchoring components . . . . . . . . . . 121

7.2 Conceptual illustration of the internal data structure that constitutes a
single anchor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1 Overview of the anchoring framework architecture . . . . . . . . . . 130

8.2 Human-robot interface for data-collection . . . . . . . . . . . . . . . 139

8.3 Comparison of different models used as anchor matching function . . 141

8.4 Proof of concept of combing anchoring and reasoning . . . . . . . . . 143

8.5 Different scenarios of relational semantic world modeling . . . . . . . 146

9.1 Examples of measure color attributes . . . . . . . . . . . . . . . . . . 153

9.2 Example of semantically categeorized objects . . . . . . . . . . . . . 153

9.3 Learned distributional logic tree . . . . . . . . . . . . . . . . . . . . 159

9.4 Example training points for learning ToO . . . . . . . . . . . . . . . 161

9.5 Anchoring with a multi-modal occlusion . . . . . . . . . . . . . . . . 163

9.6 Anchoring with learned ToO . . . . . . . . . . . . . . . . . . . . . . 164

9.7 Anchoring with transitive occlusions . . . . . . . . . . . . . . . . . . 165



List of Tables

2.1 Model count example . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Experimental comparison Symbo I . . . . . . . . . . . . . . . . . . . 38

4.1 Overview of the solvers discussed and their properties. . . . . . . . . 52

6.1 Comparison of the Prolog type system and the ProbLog type system. . 87

9.1 Summary of developed WMI solvers. . . . . . . . . . . . . . . . . . 171

xix





Introduction

1



Chapter 1

Introduction

1.1 Logic, Probability and Programming

The mathematical discipline of logic constitutes the bedrock of a large body of
work in artificial intelligence (AI) research, including sub-disciplines such as expert
systems [Jackson, 1998], inductive logic programming [Muggleton; De Raedt, 1994],
or more broadly knowledge representation and reasoning [Levesque, 1986]. One
of the main shortcomings of logic-based AI systems is that they fail to capture
the inherent uncertainty present in the world – aleatoric and epistemic uncertainty
alike [Hüllermeier; Waegeman, 2019]. To express such uncertainties, AI researchers
have set out to enhance pure logic with probabilities.

As a matter of fact, the marriage of logic and probability is an enduring endeavor of AI
research that predates AI itself [Russell, 2015]. Grandees of mathematics, philosophy,
and economics such as Leibniz, Peirce, and Keynes, undertook early efforts to this end
[Hailperin et al., 1984; Howson, 2003]. In the field of AI, Nilsson [1986] and Pearl
[1988] presented seminal works investigating the combination of logic and probability,
which heralded the era of modern AI: systems were now able to capture the inherent
uncertainty present in the world as well as reason about it1

Poole [1993] improved upon these ideas and introduced probabilistic Horn abduction,
which allowed him to later on construct the Independent Choice Logic language [Poole,
1997], an expressive universal probabilistic logic programming language (PLP) [De

1Interestingly Nilsson later revisited, under the influence of Pearl, his original formulation of probabilistic
logic [Nilsson, 1994]. Nevertheless, to the best of our knowledge, Nilsson [1986] was the first one to coin
the term. probabilistic logic itself, from which a rich tradition of combining logic and probability theory
emerged in the field of AI.

2



THE SYMBOLIC AND THE SUBSYMBOLIC 3

Raedt; Kimmig, 2015; Riguzzi, 2018] rooted in logic programming. Subsequently, Sato
[1995] built on top of the ideas advanced by Poole [1993] and introduced the so-called
distribution semantics (DS) for probabilistic logic programs. After the introduction
of DS, a variety of further PLP languages appeared, such as PRISM [Sato; Kameya,
1997], Logic Programs with Annotated Disjunctions [Vennekens et al., 2004], and
ProbLog [De Raedt et al., 2007; Fierens et al., 2015], to name a few.

This thesis is situated in the broader context of the probabilistic logic programming
language ProbLog. ProbLog inherits its syntax from the (non-probabilistic) logic
programming language Prolog [Sterling; Shapiro, 1994]. ProbLog allows one to
express, in addition to logic rules and facts, so-called probabilistic facts, which are
logic facts labeled with the probability of them being satisfied.

Example 1.1. We model two machines (Line 1 in the program below). We want to know

the probability of the first machine working (Line 11), given that the second machine

works (Line 10) and given a model that describes under which conditions the machines

work (Lines 7 and 8). Additionally the program models the outside temperature (Line

3) and whether the cooling of each machine works (Lines 4 and 5) as (Boolean) random

variables (expressed as probabilistic facts).

1 machine(1). machine(2).

2

3 0.8::temperature(low).

4 0.99::cooling(1).

5 0.95::cooling(2).

6

7 works(N):- machine(N), cooling(N).

8 works(N):- machine(N), temperature(low).

9

10 evidence(works(2)).

11 query(works(1)).

Running the program yields p(works(1)|works(2)) ≈ 0.998.

1.2 The Symbolic and the Subsymbolic

The focus of probabilistic logic programming lies on reasoning and probabilistic
inference and only to a lesser extend on learning. The question of how to perform
learning in a probabilistic logic setting is tackled by practitioners of statistical relational

learning (SRL) [Getoor, 2013; De Raedt et al., 2016]. SRL integrates predicate logic
with graphical models [Koller; Friedman, 2009] in order to extend the expressive power



4 INTRODUCTION

of probabilistic graphical models towards relational logic – resulting in probabilistic
logics than can handle uncertainty, with a focus on learning. After two decades of
research, a plethora of SRL frameworks have emerged, e.g. [Sato; Kameya, 2001;
Richardson; Domingos, 2006; Getoor; Taskar, 2007; Fierens et al., 2015].

One obstacle that still lies ahead in the field of SRL is combining symbolic reasoning
and learning, on the one hand, with sub-symbolic data and perception, on the other
hand (see Gardner et al. [2014] and Beltagy et al. [2016]). The question is how to
create a symbolic representation of the world from sensor data in order to reason and
ultimately plan in an environment riddled with uncertainty and noise.

In recent years it has become undeniable that the right way to handle high-dimensional
raw sensor data, such as images, is by means of deep learning [Goodfellow et al.,
2016]. Although exhibiting impressive results, deep models do suffer from certain
drawbacks. As opposed to probabilistic rules, it is, for example, not straightforward to
include prior (symbolic) knowledge in a neural system, which makes them notoriously
data-hungry.

Given these two approaches to artificial intelligence and their respective advantages
and disadvantages, researchers have started investigating how to combine symbolic
and subsymbolic approaches to AI [Garcez et al., 2019; De Raedt et al., 2020]. This
avenue of research was dubbed neuro-symbolic AI. A major recent accomplishment of
a neuro-symbolic algorithm is the much publicized win of AlphaGo over Lee Sedol.
AlphaGo combines Monte Carlo tree search (a symbolic method) with deep Q-learning
(a neural method) [Silver et al., 2016]. While this thesis does not tackle neuro-symbolic
AI directly, it can be placed in the broader neuro-symbolic context.

1.3 Thesis Contributions

The themes and questions studied in this thesis can be placed in the broader context of
probabilistic logic programming (and to a lesser extend in the realm of neuro-symbolic
AI). We study probabilistic programming at three levels of abstraction:

1. the microscopic level

2. the macroscopic level

3. the cognitive level



THESIS CONTRIBUTIONS 5

Microscopic: Weighted Model Integration

Weighted model integration (WMI) is a recently introduced formalism used to
perform probabilistic inference in domains that exhibit discrete and continuous random
variables [Belle et al., 2015a]. Probability distributions are expressed by means of so-
called weighted SMT formulas, which are an extension of weighted Boolean formulas.
SMT formulas consist of atomic SMT formulas and can be regarded as a microscopic
assembly language for probabilistic programming.

Example 1.2. Consider the SMT formula φ.

φ↔a ∧ (0 < x) ∧ (x < 3) ∧ (0 < y) ∧ (y < 2) ∧ (x < y)
∨

(1.1)

¬a ∧ (0 < x) ∧ (x < 3) ∧ (0 < y) ∧ (y < 2) ∧ (x < y + 1) (1.2)

Where a is a Boolean variable, and x and y are real valued variables. Additionally,

consider also the following weight functions w(a) = 0.2, w(¬a) = 0.8, w(x) = 2x and

w(y) = y2. The goal of weighted model integration is then to determine the weight of

an SMT formula. For φ and the two given weight functions we obtain:

w(φ) = w(a)

∫ 2

0

∫ y

0
2xy2dxdy + w(¬a)

∫ 2

0

∫ y+1

0
2xy2dxdy

= 0.2

∫ 2

0
2

1

2
(y − 0)y2dy + 0.8

∫ 2

0
2

1

2
(y + 1 − 0)y2dy

= 0.2

∫ 2

0
y3dy + 0.8

∫ 2

0
(y3 + y2)dy

= 0.2
1

3
(8 − 0) + 0.8

(

1

3
(8 − 0) +

1

2
(4 − 0)

)

= 0.2
8

3
+ 0.8(

8

3
+ 2) =

64

15

Note how the inequalities in the SMT formula translate to the bounds of integration

when computing the weight of φ.

Geometrically, SMT formulas, for which we compute the weight, represent regions
in RD. Weighted model integration then computes the integral of the weight function
where the regions give the bounds of integration.

Example 1.3. Consider the geometric representation of a WMI problem in Figure 1.1.

The problem has two continuous random variables (x and y) and three Boolean random

variables, which produce the different feasible regions (the red region and the two blue

regions). The regions themselves are given by constraints on the continuous variables.



6 INTRODUCTION

Figure 1.1: Geometric representation of a WMI problem.

Moreover, for each feasible region a weight function is given. Outside of the regions

the weight is zero. WMI tackles the problem of computing the integral over the feasible

regions.

The first research question of the thesis addresses solving weighted model integration
problems.

RQ1: Can we adopt inference algorithms from the purely discrete domain or the

purely continuous domain to develop novel WMI solvers?

The first contribution of this thesis is a set of novel algorithms that perform
probabilistic inference for weighted SMT formulas. To achieve this, we follow the
philosophy of extending existing techniques used in the purely discrete domain, such
as knowledge compilation, and the purely continuous domain, such as Monte Carlo

integration.

1. Symbo and Sampo are an exact and an approximate inference algorithm for
WMI, respectively. They are the first ones to be based on standard knowledge
compilation. Knowledge compilation is a well-established technique to perform
probabilistic inference in the purely discrete domain. We show how to extend it
to the discrete-continuous domain.

2. F-XSDD is a family of solvers that builds on Symbo but exploits additional
structure present. A key component to efficient probabilistic inference in



THESIS CONTRIBUTIONS 7

the discrete-continuous domain is the aggressive exploitation of structural
regularities in probabilistic inference problems.

3. In order to compute integrals, Symbo and F-XSDD use symbolic integration. For
high dimensional integrals this can be prohibitively slow, or even infeasible all
together. To remedy this, we developed Monte Carlo Anti Differentiation and
contribute the F-XSDD(MCAD) inference algorithm. Monte Carlo integration,
on which Monte Carlo Anti-Differentiation is based, is a widely used technique
to approximate intractable integrals.

Apart from algorithms that resulted from our research conducted at the microscopic
level, we also present theoretical contributions that led to these algorithms.

We would like to point out that most prior weighted model integration solvers focus
on exact inference, with the notable exception of [Belle et al., 2015b]. In this
thesis we additionally start tackling approximate probabilistic inference for weighted
model integration – a problem that has so far not received a lot of attention. This is
done by means of Monte Carlo estimation of integrals, an approximation technique
complementary to the approximations done by Belle et al. [2015b].

Macroscopic: Probabilistic Logic Programming

While weighted SMT formulas present a sound way to express intricate probabilities
distributions over discrete and continuous random variables, they are quite low level.
As such, modeling and encoding problems might be a cumbersome task from a user’s
perspective. This leads to the second research question.

RQ2: Can we develop a high-level probabilistic logic programming language for

which inference reduces to weighted model integration?

As a second contribution we present DC-ProbLog, a probabilistic logic programming
language that allows a user to express probability distributions in the discrete-
continuous domain while having access to the expressive power of a high-level
programming language. A small teaser example program is shown in Example 1.4.
Probabilistic inference in DC-ProbLog is reduced to inference over weighted SMT
formulas, i.e. to weighted model integration. A similar reduction [Fierens et al., 2015]
has already been performed in the purely discrete domain, where the probabilistic
programming language ProbLog was reduced to weighted model counting (the discrete
equivalent of weighted model integration).

Example 1.4. Consider a simplified and modified version of the program in

Example 1.1. We now model the temperature as continuous random variable that



8 INTRODUCTION

is distributed according to normal distributions with mean 20 and standard deviation 4.

We would like to know the probability of the machine working.

1 temperature ~ normal(20,4).

2

3 works:- temperature>15.

4

5 query(works).

In contrast to a probabilistic programming language with discrete/Boolean random
variables exclusively, a language with continuous variables as well gives more
expressive power to the user of the language.

Cognitive: Probabilistic Perceptual Anchoring

At the cognitive level we study the possibility of applying probabilistic logic
programming (macroscopic level) to cognitive robotics. The goal of cognitive robotics
is the design of autonomous robotic agents with reasoning, learning and planning
capacities. For an autonomous agent to be able to intelligently navigate the surrounding
world, it has to construct an internal representation thereof. A notion that tackles
this problem in a data-driven fashion is bottom-up perceptual anchoring [Coradeschi;
Saffiotti, 2000; Coradeschi; Saffiotti, 2001; Loutfi et al., 2005]. Perceptual anchoring
tackles the problem of creating and maintaining, in time and space, the correspondence
between symbols and sensor data that refer to the same physical object in the external
world. In other words, it targets bridging the symbolic/sub-symbolic gap in cognitive
robotics.

RQ3: Can we equip a cognitive robotics system with probabilistic reasoning

capacities?

As a third contribution, we present a cognitive robotics architecture that couples
perceptual anchoring and probabilistic logic programming. The resulting system is
capable of reasoning probabilistically about the observed world by constructing a
symbolic representation thereof. Furthermore we deploy techniques from the field of
statistical relational learning, which endows the developed cognitive robotics system
with learning faculties.

Example 1.5. Consider the scenario in Figure 1.2. The perceptual anchoring system

produces symbolic information from raw image data, e.g. ball-1. However, once the

stream of data is interrupted, for example by the hand in the right panel of Figure 1.2,

the anchoring system does not produce any symbolic information anymore. At this



STRUCTURE OF THE THESIS 9

point the probabilistic logic programming component kicks in: through the relation

that the ball enters with the hand (the ball is hidden by the hand), the probabilistic

logic programming component knows that the ball is still present. This is indicated

by the yellow dots drawn on top of the hand. This information is then fed to the

anchoring system. The probabilistic reasoning system (in form of a probabilistic logic

programming language), covers situations when there is no direct sensor data arriving

but qualities, such as the position of an object, can be inferred (probabilistically). An

in detail introduction to and treatise of anchoring, including its historical development,

can be found in Persson’s PhD thesis [Persson, 2019].

Figure 1.2: Example of the ability of a system that combines perceptual anchoring and
probabilistic logic programming to perform reasoning on raw sensor data.

1.4 Structure of the Thesis

The thesis will take you, as a reader, on a journey through the land of probability
theory, logic, and programming. First, we will start out at the indivisible atomic
building blocks that constitute propositional logic from which we construct our first
probabilistic gadgets: Boolean variables that might be true or false. From these atoms
we construct then possible (logic) worlds consisting of more than one atom and we will
try to figure out how many worlds are true (in expectation). Secondly, we continue by
adding logic programming to the mix and develop a probabilistic logic programming
language and link it back to the very first atomic building blocks that we started out
with. Thirdly, we apply our experience gained so far to cognitive robotics where we
introduce a cognitive robotics agent that constructs possible internal representations of
the real world in order to reason about the world adequately under uncertainty. We split



10 INTRODUCTION

up the journey into three legs. Each leg treats one of the three levels of abstractions
and can be read rather independently of the other two legs.

Weighted Model Integration

In this first part we study weighted model integration. Chapter 2 introduces the
necessary background, which is then followed by Chapters 3, 4 and 5 – each
introducing novel probabilistic inference algorithms for solving weighted model
integration problems. The following papers have been incorporated in this part.

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc [2019b]. Exact and
Approximate Weighted Model Integration with Probability Density Functions Using
Knowledge Compilation. In: Proceedings of the AAAI Conference on Artificial

Intelligence.

Kolb, Samuel; Zuidberg DosMartires, Pedro; De Raedt, Luc [2019b]. How to Exploit
Structure while Solving Weighted Model Integration Problems. In: Proceedings of the

Uncertainty in Artificial Intelligence (UAI) Conference.

Zuidberg Dos Martires, Pedro; Kolb, Samuel [2020]. Monte Carlo Anti-
Differentiation for Approximate Weighted Model Integration. In: Ninth International

Workshop on Statistical Relational AI @ AAAI.

Probabilistic Logic Programming

In the second part, we continue with the presentation of DC-ProbLog, a probabilistic
logic programming language. In Chapter 6 we introduce the syntax, sketch the
semantics, and provide an inference algorithm for DC-ProbLog. Chapter 6 is largely
based on a workshop paper and paper currently in preparation.

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc [2018]. Knowledge
Compilation with Continuous Random Variables and its Application in Hybrid
Probabilistic Logic Programming. In: Eigth International Workshop on Statistical

Relational AI @ IJCAI.



STRUCTURE OF THE THESIS 11

Zuidberg DosMartires, Pedro; Kimmig, Angelika; De Raedt, Luc [2020a]. Extending
ProbLog with Random Function Symbols. In: (in preparation).

Probabilistic Perceptual Anchoring

The last part is concerned with probabilistic perceptual anchoring where we combine
perceptual anchoring and probabilistic programming. Chapter 7 first introduces the
necessary preliminaries on perceptual anchoring and probabilistic programming. This
is followed by Chapters 8 and 9, where we present and evaluate our architecture of a
cognitive system combing probabilistic programming and perceptual anchoring. The
presented material is based on two previously published papers.

Persson, Andreas; Zuidberg Dos Martires, Pedro; Loutfi, Amy; De Raedt, Luc
[2020b]. Semantic Relational Object Tracking. In: IEEE Transactions on Cognitive

and Developmental Systems 12.1, pp. 84–97.

Zuidberg Dos Martires, Pedro; Kumar, Nitesh; Persson, Andreas; Loutfi, Amy;
De Raedt, Luc [2020b]. Symbolic Learning and Reasoning with Noisy Data for
Probabilistic Anchoring. In: Frontiers in Robotics and AI 7, p. 100.

Conclusions

Besides providing a concluding chapter at the end of each of the three parts of the
thesis, we additionally provide an overarching concluding chapter at the end of the
thesis with a brief summary and an outlook on future work.





Weighted Model Integration

13



Introduction

In the first part of the thesis we discuss, the microscopic level, i.e. the atomic building
blocks that are needed to perform probabilistic inference in the discrete-continuous
domain. These atomic building blocks will serve us as a low level language to express
uncertainty about the world. In a sense, this part of the thesis describes an assembly
language to express both uncertainty and certainty.

We start with a chapter delivering the necessary background on weighted model
counting, weighted model integration, and knowledge compilation. We then proceed
with three chapters where we present probabilistic inference algorithms that tackle
problems in the discrete continuous domain, while adopting probabilistic inference
techniques deployed for to either the purely discrete domain, or the purely continuous
domain, and thereby answering our first research question.

RQ1: Can we adopt inference algorithms from the purely discrete domain or the

purely continuous domain to develop novel WMI solvers?

In Chapter 3 we study how standard knowledge compilation, an inference technique
from the discrete domain, can be extended to the discrete-continuous domain. This
contend was previously published as2:

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc [2019b]. Exact and
Approximate Weighted Model Integration with Probability Density Functions Using
Knowledge Compilation. In: Proceedings of the AAAI Conference on Artificial

Intelligence.

2I played a central role in developing the research idea, developing the theoretical contributions,
implementing the algorithms, and writing the paper.

14



STRUCTURE OF THE THESIS 15

Chapter 4 further develops these ideas by exploiting additional structure, leading to
more efficient algorithms. The content was previously published as3:

Kolb, Samuel; Zuidberg DosMartires, Pedro; De Raedt, Luc [2019b]. How to Exploit
Structure while Solving Weighted Model Integration Problems. In: Proceedings of the

Uncertainty in Artificial Intelligence (UAI) Conference.

While Chapter 3 and Chapter 4 have a strong focus on exact probabilistic inference,
Chapter 5 puts approximate probabilistic inference (in form of Monte Carlo
approximations) front and center. Specifically, we study the combination of dynamic
programming and Monte Carlo integration in high-dimensional linearly constrained
spaces.4:

Zuidberg Dos Martires, Pedro; Kolb, Samuel [2020]. Monte Carlo Anti-
Differentiation for Approximate Weighted Model Integration. In: Ninth International

Workshop on Statistical Relational AI @ AAAI.

3First authorship is shared with Samuel Kolb. Together, we shared a central role in the theoretical and
practical contributions of this paper, as well as writing the paper itself.

4I played a major role in developing the research idea, implementing the algorithms, and writing the
paper (first and last author).



Chapter 2

Background

This chapter describes key concepts necessary to understand our research on weighted
model integration. In other words, we explain the underpinnings of the probabilistic
inference techniques that we developed and that we present in the first part of the thesis.

2.1 Logic and Satisfiability

2.1.1 Boolean Satisfiability

Logic is one of the pillars of mathematics and computer science alike, and plays a
prominent role in artificial intelligence as well. Logic constitutes a formal language to
describe the world, which in turn allows us to model or describe the world in a way
that machines/computers are able to reason and draw conclusions.

Example 2.1. We have a factory and would like to model describe under which

conditions a machine in this factory breaks down. Consider the following logic formula.

broken↔ no_cool ∨ high_temperature (2.1)

In other words, the machine breaks down if and only if the cooling of the machine is

not working or the ambient temperature is too high.

Formally we define logic formulas as follows:

Definition 2.1. Let b be a set of M Boolean variables. We then define propositional

logic formulas as Boolean combinations (by means of the standard Boolean operators

{¬,∧,∨,→,↔}) of Boolean variables bi ∈ b.

16



LOGIC AND SATISFIABILITY 17

A fundamental question is whether there exists an assignment to the Boolean
variables present in the logic formula that satisfies the formula. For the formula
in Example 2.1 this is indeed the case. Picking, for instance no_cool = ⊤ (true) and
high_temperature = ⊥ (false) evaluates the formula to true. There is at least one
satisfying assignment and the formula is satisfiable.

Definition 2.2 (Satisfying interpretation of propositional logic formula). Let j and k be

two disjoint sets of variables and φ(j,k) be a propositional formula over j and k. The

set of total interpretations (or total assignments) that satisfy φ is the set of assignments

to the elements in j and k that satisfy ∃j,k: φ(j,k). We denote the set of total satisfying

interpretations (or models) by Ij,k(φ). The set of partial interpretations is denoted

by Ij(φ), which is the set of assignments to j that satisfy ∃k : φ(j,k). The set of total

assignments to a partially interpreted formula is denoted by Ij(φk), which denotes the

set of assignments to the elements in j that satisfy φ(j,kI), with kI ∈ Ik(φ).

Determining whether a propositional logic formula is satisfiable is in a computational
hard problem and falls in the NP-complete completxity class1. Nevertheless, a plethora
of practical solvers exists (e.g. MiniSAT [Sorensson; Een, 2005],CryptoSAT [Lafitte,
2018]) that tackle the Boolean satisfiability problem and perform astoundingly well in
practice by exploiting structure present in all problems but the most intricate ones.

2.1.2 Satisfiability Modulo Theories

In Example 2.1 we modeled the temperature using a Boolean variable, which seems
odd. After all, temperature is inherently continuous. This is where satisfiability modulo
theory (SMT) formulas come to the rescue [Barrett; Tinelli, 2018].

Example 2.2. Consider the SMT theory broken:

broken↔ (no_cool ∧ (t > 20)) ∨ (t > 30) (2.2)

no_cool is a Boolean variable and t a real-valued variable.

SMT formulas generalize propositional logic formulas to additionally allow the use of
expressions formulated in a background theory.

Definition 2.3 (SMT(RA) (real arithmetics)). Let b be a set of M Boolean and x a

set of N real variables. An atomic formula is an expression of the form g(X) ⊲⊳ c,

1We will repeatedly mention the complexity class of specific computational problems throughout the text.
However, we will not provide any extra detail or background on these classes, or how they relate to each
other. In the context of probabilistic inference, we invite the interested reader to consult the the following
three papers on the topic of complexity theory: [Park; Darwiche, 2004; De Campos; Cozman, 2005; Ceylan
et al., 2016].



18 BACKGROUND

where c ∈ Q, ⊲⊳∈ {=,,,≥,≤, >, <}, and g : RN → R. The symbols Q and R denote the

rational number and real numbers, respectively. We then define SMT(LRA) formulas

as Boolean combinations (by means of the standard Boolean operators {¬,∧,∨,→,↔})
of Boolean variables bi ∈ b and of atomic formulas over x.

We distinguish two special cases:

• SMT(NRA) (non-linear real arithmetics): atomic formulas take the form
∑

i ci ·
x

pi

i
⊲⊳ c, where the xi ∈ x and ci, c, pi ∈ Q.

• SMT(LRA) (linear real arithmetics): atomic formulas take the form
∑

i ci ·xi ⊲⊳ c,

where the xi ∈ x and ci, c ∈ Q.

Note that we introduced three different quantifier free fragments of SMT formulas that
all use a variation of the reals as a background theory. These will be the only types of
SMT formulas used in the remainder of the text. Other common background theories
used are linear integer arithmetics or bit-vectors [Barrett; Tinelli, 2018].

Definition 2.4 (Satisfying interpretation of SMT formula). Let j and k be two disjoint

sets of variables and φ(j,k) be an SMT formula over j and k. The set of total

interpretations (or total assignments) that satisfy φ is the set of assignments to the

elements in j and k that satisfy ∃j,k: φ(j,k). We denote the set of total satisfying

interpretations (or models) by Ij,k(φ). The set of partial interpretations is denoted

by Ij(φ), which is the set of assignments to j that satisfy ∃k : φ(j,k). The set of total

assignments to a partially interpreted formula is denoted by Ij(φk), which denotes the

set of assignments to the elements in j that satisfy φ(j,kI), with kI ∈ Ik(φ).

Analogous to the SAT problem, the satisfiability problem can also be asked for SMT
formulas, i.e. is there an assignment to Boolean and real variables present in an SMT
formula that satisfy the formula. For our Example 2.2 SMT answers the question
whether or not there is an assignment to the variables no_cool and t such that the
formula is satisfied.

Similarly, to the SAT problem the SMT problem is computationally hard as well (NP-
complete for SMT(LRA)), yet tools, such as Z3 [De Moura; Bjørner, 2008] and
MathSAT [Cimatti et al., 2013], that solve the SMT problem reliably in practice have
been developed over the last couple of years.

We also introduce the notion of formula abstraction.

Definition 2.5. (Atomic formula abstraction) Let c(x) be an atomic formula (cf.

Definition 2.3), absc(x) is then called the atomic formula abstraction of c, given that

(absc(x) ↔ ∃x.c(x)) holds.



THE WEIGHT OF A MODEL 19

Example 2.3. Consider the following SMT formula from Example 2.2:

broken↔ (no_cool ∧ (t > 20)) ∨ (t > 30) (2.3)

Abstracting all SMT(LRA) atomic formulas gives use the abstracted formula:

brokenabs ↔ (no_cool ∧ bt>20) ∨ bt>30 (2.4)

bt>20 and bt>30 are fresh Boolean variables equivalent to the respective SMT(LRA)

atomic formulas.

Iverson Brackets A handy notational apparatus, of which we will make ample use,
are Iverson brackets [Iverson, 1962; Knuth, 1992]. Iverson brackets map propositional
logic formulas to 1 if their argument evaluates to true (is satisfied) and to 0 otherwise.
We will denote Iverson brackets by double square brackets:

~p� =






1, if p is true

0, otherwise
(2.5)

Iverson brackets allow us to seamlessly mix real numbers and SMT formulas:

f (x) = 0.2 × ~x > 4� + 0.8 × ~x < 3� (2.6)

2.2 The Weight of a Model

2.2.1 The Count of a Model

In the previous section we were interested in the question whether logical formulas (or
their SMT extensions) are satisfiable. We can also ask an other questions: how many
distinct assignments satisfy the a formula. For propositional logic formulas this simply
amounts to counting the number of satisfying assignment to the Boolean variables, a
#P-complete problem [Valiant, 1979]. The number of distinct satisfying assignments
is dubbed the model count and the task of computing the model count is also referred
to as #S AT .

Example 2.4. Consider the Boolean formula for M

M ↔ (x ∨ y) ∧ (y ∨ ¬z)

A naive and straightforward way to compute the model count is through a truth table,

cf. Table 2.1.



20 BACKGROUND

Table 2.1: The model count of M is 5

x y z M

0 0 0
0 0 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1
1 1 0 1
1 1 1 1

5

While the #SAT problem has received quite some attention from the research
community, its sister problem #SMT, where the satisfying models to an SMT formula
are counted, has only been of limited interest to researchers so far, with some
exceptions [Ma et al., 2009; Chistikov et al., 2015; Zhou et al., 2015; Phan; Malacaria,
2014]. We speculate that this is due to the complicating factor of including a (decidable)
first-order logic fragment to propositional logic.

2.2.2 Weighted and Algebraic Model Counting

Weighted model counting generalizes #SAT tasks. Instead of simply counting the
number of satisfying assignments, one performs a weighted sum over models.

Definition 2.6 (Weighted mode counting (WMC)). Given a set b of M Boolean

variables, a weight function w : BM → R≥0, and a propositional formula φ (called

support) over b, the weighted model count is

WMC(φ,w|b) =
∑

bI∈Ib(φ) w(bI) (2.7)

Ib(φ) is the set of interpretations that satisfy φ (cf. Definition 2.4).

Traditionally, WMC is used when the weight function w factorizes as product of weights
of literals:

WMC(φ,w|b)=
∑

bI∈Ib(φ)
∏

bi∈bI w(bi) (2.8)

When performing probabilistic inference, we take

0≤w(bi)≤1 and w(bi)+w(¬bi) = 1 (2.9)



THE WEIGHT OF A MODEL 21

The resulting sum over products is then a computation in the probability semiring [Kim-
mig et al., 2017]. Effectively, this computes the probability that propositional logic
formula is satisfied.

In [Kimmig et al., 2017] probabilistic inference over propositional formulas, i.e. over
satisfying models, has been extended to arbitrary commutative semirings. The general
setting of model counting over commutative semirings is called algebraic model
counting. More formally,

Definition 2.7. A commutative semiring is an algebraic structure (A,⊕,⊗, e⊕, e⊗)
equipping a set of elementsA with addition and multiplication such that

1. addition ⊕ and multiplication ⊗ are binary operationsA×A → A

2. addition ⊕ and multiplication ⊗ are associative and commutative binary

operations over the setA

3. ⊗ distributes over ⊕

4. e⊕ ∈ A is the neutral element of ⊕

5. e⊗ ∈ A is the neutral element of ⊗

6. e⊕ is an annihilator for ⊗

Definition 2.8. (Algebraic model counting (AMC)) [Kimmig et al., 2017] Given:

• a propositional logic theory φ over a set of variables b

• a commutative semiring (A,⊕,⊗, e⊕, e⊗)

• a labeling function α : L → A, mapping literals L from the variables in B to

values from the semiring setA

The algebraic model count of a theory φ is then defined as:

AMC(φ, α|b) =
⊕

b∈Ib(φ)

⊗

bi∈b α(bi)

We use α instead of w and the term label rather than weight to reflect that the elements
of the semiring cannot always be interpreted as weights.

Algebraic model counting constitutes a general framework for many common inference
tasks in artificial intelligence. Defining an appropriate semiring and labeling functions
allows one, for instance, to perform sensitivity analysis, compute gradients or determine
the provenance of queries in databases [Kimmig et al., 2017].



22 BACKGROUND

2.2.3 Weighted Model Integration

Standard weighted model counting only supports discrete probability distributions.
To repair this omission, WMC has recently been extended towards weighted model
integration (WMI) [Belle et al., 2015a], supporting additionally continuous variables.

Example 2.5. Consider again the theory broken (cf. Equation 2.2). Assume that t

is distributed according to: t ∼ Nt(20, 5) and that the probability for no_cool being

true is 0.01. Determining the probability of the formula being true extends the SMT

problem to weighted model integration.

Following the formulation of [Morettin et al., 2017] we give the defintion of WMI
definition:

Definition 2.9 (Weighted model integration (WMI)). Given a set b of M Boolean

variables, x of N real variables, a weight function w : BM × RN → R≥0, and a support

φ, in the form of an SMT formula, over b∪x, the weighted model integral is

WMI(φ,w|x,b) =
∑

bI∈Ib(φ)

∫

Ix(φbI )
w(x,bI)dx (2.10)

2.3 Knowledge Compilation and Counting

As mentioned earlier, model counting is a computationally hard problem, #P-complete
to be precise. Nevertheless practically useful model counters exist. State-of-the-art
techniques for solving model counting problems, are based on exhaustive DPLL
algorithms [Birnbaum; Lozinskii, 1999], which count the number of satisfying
assignments to a formula. These solvers can be divided into two classes: the ones
that build up a trace of the DPLL search, and the ones that do not. The latter return
immediately the model count. The former builds up a diagrammatic representation of
the propositional formula over which the model count can be obtained efficiently. By
keeping a trace, such #SAT solvers [Huang; Darwiche, 2005; Oztok; Darwiche, 2018]
constitute, in fact, top-down knowledge compilation schemes.

Knowledge compilation [Darwiche; Marquis, 2002] has emerged as the go-to technique
for dealing with the computational intractability of propositional reasoning (#P-
hard [Valiant, 1979]). The key idea is to split up inference on logical formulas
into an off-line and an on-line step. In the off-line step, a propositional formula is
compiled from its source representation into a target representation, in which repeated
on-line poly-time inference is available.

#SAT can also be performed by compiling formulas bottom-up [Choi; Darwiche, 2013].
However, it has been shown [Huang; Darwiche, 2005; Oztok; Darwiche, 2018] that



KNOWLEDGE COMPILATION AND COUNTING 23

top-down compilation, i.e. knowledge compilation through exhaustive DPLL search,
outperforms bottom-up compilers.

Similar to model counting, weighted model counting has as well been performed
via knowledge compilation, for instance for probabilistic inference in Bayesian
networks [Chavira; Darwiche, 2008] probabilistic programming [Fierens et al., 2015].

A popular language to compile propositional formulas into are Sentential Decisions

Diagrams (SDDs) [Choi et al., 2013], which we will use throughout this part of
the thesis. SDDs are a subset of deterministic decomposable negation normal form

(d-DNNF) formulas [Darwiche, 2001]. SDDs and d-DNNFs are well-known target
langauges for knowledge compilation.

Boolean formulas in negation normal form [Darwiche, 1999] are nested conjunctions
and disjunctions that allow for negation only applied directly to the atoms in the
formula. In the next chapter we will need three more restrictions on the logic formulas,
which are satisfied by definition by d-NNFs and SDDs2.

Definition 2.10 (Determinism). An NNF formula is deterministic if and only if for

every disjuntion the disjuncts are pairwise logical inconsistent.

Definition 2.11 (Decomposability). An NNF formula is decomposable if and only if

for every conjunction the conjuncts do not share any variables.

Definition 2.12 (Smoothness). An NNF formula is smooth if and only if for every

disjuncion all the disjuncts are Boolean functions over the same variables.

Smooth d-DNNFs are denoted by sd-DNNFs.

Example 2.6. Consider again the formula from Example 2.1:

broken↔ no_cool ∨ high_temperature

A diagrammatic representation of the formula is depicted in Figure 2.1. Note the extra

negation present in the diagram. This ensures that the or node is deterministic, i.e. the

disjuncts are mutually inconsistent, which avoid double counting when computing the

(weighted) model count.

Let us assume that the cooling of the machine fails with probability

p(no_cool)=0.01

and that the temperature is too high with probability

p(high_temparature)=0.02

2Further restrictions/properties exist but will not be used in the thesis.



24 BACKGROUND

The weighted model count is easily computed by turning the decision diagram

(representing the Boolean formula) into a so-called arithmetic circuit (AC) [Darwiche,
2003]. An AC is obtained from a DD by replacing the conjunction nodes by

multiplication nodes and the disjunction nodes by addition nodes, as well as replacing

the Boolean atoms in the leaves with their corresponding weight (in our case these are

the probabilities of the atoms being true). The probability for the formula is obtained

by evaluated the AC:

p(broken) = 0.98 × 0.01 + 0.02 = 0.0298 (2.11)

high_temperature

AND

no_cool

OR

broken

NOT

0.02

×

0.01

+

p(broken)

1-0.02

Figure 2.1: On the right we show a diagrammatic d-DNNF representation of the
Boolean formula in Equation 2.1 and on the right the corresponding arithmetic circuit.

To compute the algebraic model count on an NNF, Kimmig et al. [2017] give
algorithm 2.1.

In order to compute algebraic/weighted model counts on a d-DNNF, we need the
neutral-sum property.

Definition 2.13 (Neutral-sum property [Kimmig et al., 2017]). A semiring addition and

labeling function pair (⊕, α) is neutral if and only if ∀b ∈ b : α(b) ⊕ α(¬b) = e⊗.

Theorem 2.1 (AMC on d-DNNF [Kimmig et al., 2017]). Evaluating a d-DNNF

representation of the propositional theory φ, using Algorithm 2.1, for a semiring



KNOWLEDGE COMPILATION AND COUNTING 25

Algorithm 2.1 Evaluating an NNF circuit N for a commutative semiring
(A,⊕,⊗, e⊕, e⊗) and labeling function α[Kimmig et al., 2017].

1: function Eval((N,⊕,⊗, e⊕, e⊗, α))
2: if N is a true node ⊤ then return e⊗

3: if N is a false node ⊥ then return e⊕

4: if N is a literal node l then return α(l)
5: if N is a disjunction

∨m
i=1 Ni then

6: return
⊕m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)

7: if N is a conjunction
∧m

i=1 Ni then

8: return
⊗m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)

and labeling function with neutral tuple (⊕, α) is a correct computation (cf. [Kimmig
et al., 2017, Definition 10]) of the algebraic model count.

Decision diagrams (DD), such as SDDs, are data structures that compactly represent
Boolean formulas. DDs are obtained by compiling Boolean formulas into directed
acyclic graphs. Although traditionally developed for propositional logical formulas,
the idea of compiling logical formulas into a more succinct representation has also
found its way into the hybrid domain, where a prominent example are XADDs [Sanner
et al., 2011; Kolb et al., 2018], a language based on binary decision diagrams [Bryant,
1986]. In the next three chapter we will further investigate this line of work: using
diagrammatic representations of SMT formulas to perform probabilistic inference.



Chapter 3

WMI Using KC
∗

Weighted model counting has recently been extended to weighted model integration,
which can be used to solve hybrid probabilistic reasoning problems. Such problems
involve both discrete and continuous probability distributions. We show how standard
knowledge compilation techniques (to SDDs and d-DNNFs) apply to weighted model
integration, and use it in two novel solvers, one exact and one approximate solver.

3.1 Introduction

As portrayed in Chapter 2, the state-of-the-art method for probabilistic inference with
discrete random variables reduces inference to weighted model counting [Chavira;
Darwiche, 2008], while utilizing knowledge compilation [Darwiche; Marquis, 2002].

Standard weighted model counting only supports discrete probability distributions.
To repair this omission, WMC has recently been extended towards weighted model
integration (WMI) [Belle et al., 2015a], supporting additionally continuous variables.
However, the weight functions supported within most formulations of WMI [Belle
et al., 2015a; Belle et al., 2016; Morettin et al., 2017; Kolb et al., 2018] allow only
for piecewise polynomial functions. Moreover, none of these works has studied the
applicability of standard knowledge compilation techniques to WMI.

The key contribution displayed in this chapter is that we show how to handle actual
probability density functions instead of piecewise polynomials in the context of WMI
by applying standard knowledge compilation techniques. To this end, we cast weighted

∗
This chapter has previously been published as [Zuidberg DosMartires et al., 2019b].

26



THE PROBABILITY DENSITY SEMIRING 27

model integration within the framework of algebraic model counting [Kimmig et al.,
2017].

More specifically, we elucidate the following contributions:

1. We introduce the probability density semiring.

2. We show how this allows us to cast WMI within AMC and thereby to use the
general body of literature on knowledge compilation.

3. We introduce Symbo, a solver for WMI that realizes knowledge compilation and
exact symbolic inference.

4. We introduce Sampo, a solver for WMI that realizes knowledge compilation and
approximate inference via sampling.

Symbo exploits the PSI-Solver by [Gehr et al., 2016] to simplify algebraic expressions,
while Sampo is based on mapping the arithmetic circuit that results from the KC
step onto Edward [Tran et al., 2016], a probabilistic programming language wrapped
around TensorFlow [Abadi et al., 2016]. The latter transforms approximate inference
into an embarrassingly parallelizable task.

For the remainder of the chapter, we will assume that the weight function factorizes as:

w(x,b) = wx(x)wb(b) = wx(x)
∏

b∈bwb(b) (3.1)

We can assume this without loss of generality as any weight function that does not
follow this factorization can be rewritten as a sum of weight functions over mutually
exclusive partial assignments to the Boolean variables, where each individual term of
the sum factorizes according to Equation 3.1. The weighted model integral is then
expressed as a sum over weighted model integrals. This point is exposed in more detail
in Section 4.2.

3.2 The Probability Density Semiring

We are now going to define the probability density semiring and the labeling function,
cf. Definition 2.8. This will allow us to cast WMI as AMC.

Definition 3.1 (Labeling function α). Let l be a literal. Then the label of the literal l is

given by:

α(l) ≔






p(l) if l is a Boolean variable

~c(x)� if l is an atomic formula abstraction



28 WMI USING KC

In the former case, p(l) denotes the probability for l being true and in the latter case,

c(x) denotes the condition of which l is the abstraction.

The label of a negated literal ¬l is given by:

α(¬l) ≔






1 − p(l) if l is a Boolean variable

~¬c(x)� if l is an atomic formula abstraction

Example 3.1. Applying the labeling function α to the literals in our introductory

Example 2.5 yields, for instance: α(no_cool)=0.01 and α(abst>20)=~t>20�.

Definition 3.2 (Probability density semiring S). The elements of the semiring S are

given by the set

A ≔ {a} (3.2)

where a denotes any algebraic expression over RA. The neutral elements e⊕ and e⊗

are defined as:

e⊕ ≔ 0 e⊗ ≔ 1 (3.3)

For the addition and multiplication we define:

a1 ⊕ a2 ≔ a1 + a2 (3.4)

a1 ⊗ a2 ≔ a1 × a2 (3.5)

Example 3.2. An example of an algebraic expression overRAwould be 0.01×~s+20 <
t� × ~t ≤ 30� + ~t > 30�, s ∈ R, t ∈ R.

Lemma 3.1. The structure S = (A,⊕,⊗, e⊕, e⊗) is a commutative semiring.

Proof (Sketch). We need to show that the properties in Definition 2.7 hold. The proof
relies on the commutativity and associativity of the Iverson brackets under standard
addition and multiplication. Similarly for the distributivity of the multiplication over
the addition (cf. Property 3). Lastly, properties 4 to 6 are trivially satisfied. We
conclude that the structure S is indeed a commutative semiring. �

Lemma 3.2. The pair (⊕, α) is neutral, i.e. α(l) ⊕ α(¬l) = e⊗, where l is a literal.

Proof. We have two cases:

1. l is a Boolean variable, α(l) ⊕ α(¬l) = P(l) ⊕ 1 − P(l) = 1.

2. l is an atomic formula: α(l) ⊕ α(¬l) = ~l� ⊕ ~¬l� = ~l� + ~¬l� = ~⊤� = 1 �



WMI VIA AMC 29

Lemma 3.3 (AMC on d-DNNF with S). The algebraic model count is a correct

calculation on a d-DNNF representation of a logic formula given the density semiring

S.

Proof. This follows immediately from Lemma 3.1 and 3.2, together with Theorem 2.1.
�

3.3 WMI via AMC

A key difference between WMI and AMC is that in an AMC task there is no integral.
This intuitively implies that we need to perform an integration on the algebraic model
count if we want to cast WMI using AMC: “WMI =

∫

AMC”. Additionally, WMI
is defined on SMT formulas and AMC on propositional logic formulas. We address
these differences in Theorem 3.1, which also allows us to show that WMI can be cast
as AMC.

Theorem 3.1. Let φ be an SMT(RA) formula over the Boolean variables in the set b

and continuous variables in the set x. Let φa be the propositional logic formula over

the set of Boolean variables b and bx, where bx is the set of abstractions of atomic

formulas (cf. Definition 2.5) in φ. Let w be a weight function over the Boolean variables

in b and the continuous variables in x. Furthermore, let AMC(φa, α|bx ∪ b) evaluate

to Ψ in the semiring S, with Ψ =
∑

v∈Ib,bx (φa)
∏

vi∈v avi
. Then

WMI(φ,w|x,b) =

∫

Ψwx(x)dx (3.6)

Proof. In the first step we rewrite Ψ (an example is given in Example 3.2) as the
sum-product over the algebraic expressions av. The av are the probability or Iverson
labels of the literals from Definition 3.1. In the second step (Equation 3.8 to 3.9) we
split up the sum and the product over the variables b into sums over the abstractions
of atomic formulas axi

and atomic propositions abi
- likewise for the product. bi and

x j denote the assignment to a specific variable for a variables in the set of variables
b and xa, respectively. The superscript b in φb

a indicates a specific assignment to
the Boolean variables corresponding to the atomic propositions. Next (Equation 3.9
to 3.10), we push the product over the atomic propositions through and note that this
product corresponds to the weight of the Boolean variables wb(b).



30 WMI USING KC

∫

Ψwx(x)dx (3.7)

=

∫




∑

v∈IB,BX
(φa)

∏

vi∈v
avi




wx(x)dx (3.8)

=

∫
∑

b∈IB(φa)

∑

xa∈IBX
(φb

a )





∏

bi∈b
abi









∏

x j∈xa

ax j




wx(x)dx (3.9)

=

∫
∑

b∈IB(φ)

∑

xa∈IBX
(φb

a )

∏

x j∈xa

ax j
wb(b)wx(x)dx (3.10)

=
∑

b∈IB(φ)

∫
∑

xa∈IBX
(φb

a )

∏

x j∈xa

ax j
w(x,b)dx (3.11)

=
∑

b∈IB(φ)

∫

x∈IX (φb)
w(x,b)dx (3.12)

In Equation 3.11 we exchanged the summation and the integration (assuming that
Fubini’s theorem [Fubini, 1907] holds). We also rewrote the product of the weight
functions for the Booleans and for the continuous variables as a single weight function,
assuming that the weight function factorizes accordingly. The integral over the so-
obtained sum-product is the integral over Iverson brackets. In Equation 3.12 we
rewrite the indefinite integral over the Iverson brackets as the definite integral with
boundary conditions corresponding to the conditions present in the Iverson brackets.
This corresponds to the definition of the weighted model integral. �

We have shown that we can solve a WMI problem by formulating it as an AMC
problem, given that the weight function is factorizable. The weighted model integral
for a non-factorizable weight function is then obtained by adding up the weighted model
integrals for the factorizeable weight functions into which the problem decomposes.

3.4 Computing the Probability of SMT Formulas

We describe now Symbo and Sampo, algorithms that, respectively, produce the exact
and the approximate weighted model integral of an SMT formula φ and a factorizable



COMPUTING THE PROBABILITY OF SMT FORMULAS 31

weight function w utilizing knowledge compilation.1

3.4.1 Symbo

In Lemma 3.3 we saw that the probability semiring S can be used to calculate the
algebraic model count on a d-DNNF representation of a logical formula. Recalling
Theorem 3.1, we are hence also capable of obtaining the weighted model integral for
an SMT formula, given the probability distributions of the random variables.

Algorithm 3.1 (Symbo). Symbo computes the weighted model integral of an

SMT(NRA) formula φ for a factorizable weight function w by executing the

following steps:

1. Abstract all atomic formulas in φ according to Definition 2.5 and obtain

φa.

2. Compile φa into a d-DNNF representation φcompiled.

3. Transform φcompiled into an arithmetic circuit ACφ by replacing logical

and/or operations with symbolic multiplications/additions.

4. Label literals in ACφ according to the labeling function given in Definition

3.1 with corresponding symbolic values.

5. Symbolically evaluate ACφ and obtain Ψ.

6. Multiply Ψ by the weight of the continuous variables on which Ψ depends.

7. Symbolically integrate over the continuous variables by calling a symbolic

inference engine.

We implemented Algorithm 3.1 using the SDD package2 for the KC step and the
inference engine of the PSI-Solver for symbolic manipulations3. Note that in our initial
work [Zuidberg DosMartires et al., 2019b] we did not explicitly give a name to the
class of compiled SMT formulas. Only in [Kolb et al., 2019b], the paper on which
Chapter 4 is based, did we introduce the name XSDD: the abstracted SMT formula is
represented as an SDD.

Example 3.3. Consider our introductory Example 2.5. Executing the first two steps of

Symbo yield the compiled logic formula that is shown on the left in Figure 3.1. Steps

1Implementations of both algorithms are available under https://bitbucket.org/pedrozudo/hal_
problog.

2http://reasoning.cs.ucla.edu/sdd/
3For a detailed discussion of allowed symbolic manipulations see [Gehr et al., 2016]

https://bitbucket.org/pedrozudo/hal_problog
https://bitbucket.org/pedrozudo/hal_problog
http://reasoning.cs.ucla.edu/sdd/


32 WMI USING KC

number three and four of Symbo produce the arithmetic circuit on the right in Figure

3.1.

NOT

abst>30 abst>20no_cool

AND

AND

OR

broken

~t ≤ 30�

~t > 30� ~t > 20�0.01

×

×

+

Ψbroken

Figure 3.1: Shown on the left is a graphical representation of the compiled logic formula
given in Equation 2.2 (in the SDD target language), where the atomic formulas have
been abstracted away. On the right we see the corresponding arithmetic circuit where the
literals have been replaced by corresponding labels according to the labeling function
in 3.1 and where the logic and/or operation have been replaced by ×/+ respectively.

The probability for the theory broken, which coincides with the weighted model

integral, is obtained by evaluating the arithmetic circuit (step five), multiplying this

expression by the probability density function for t (step six) and carrying out the

integral (step 7).



COMPUTING THE PROBABILITY OF SMT FORMULAS 33

p(broken)

=

∫

(0.01[t>20][t≤30] + [t>30])Nt(20, 5)dt

= 0.01

∫

20<t≤30
Nt(20, 5)dt+

∫

t>30
Nt(20, 5)dt

= 1 − 0.01

∫ − 5
√

8
2 +

20√
8

−∞
e−x2

dx − 0.99

∫ − 5
√

8
2 +

30√
8

−∞
e−x2

dx

In Example 3.3, the weight function on the continuous variables depended only on
a single variable. It is, however, easy to see that our formalism does also allow for
multivariate distributions that are then used with more intricated integration bounds,
such as in Example 3.2.

3.4.2 Sampo

In the general case, symbolic inference methods are not able to produce numerical
results to a given problem. This is because the resulting integrals are not tractable
utilizing symbolic integration. For such cases Monte Carlo (MC) methods are used to
compute intractable integrals by approximating the integration by a summation.

Theorem 3.2 (MC approximation of WMI). Let φ be an SMT(RA) theory, w a

factorizable weight function over the Boolean variables b and continuous variables x.

Furthermore, let AMC(φ,w|x∪ b) evaluate to Ψ. Then the Monte Carlo approximation

of WMI(φ,w|x,b) is given by:

WMIMC(φ,w|x,b) ≔
1

N

N∑

i=1

Ψ(xi) (3.13)

where the xi’s are N independent and identically distributed random variables drawn

from the density w.



34 WMI USING KC

Proof.

WMI(φ,w|x,b) =

∫

Ψ(x)wx(x)dx (3.14)

= Ewx(x)[Ψ(x)] (3.15)

≈ 1

N

N∑

i=1

Ψ(xi) (3.16)

The expression in Eqaution 3.15 denotes the expectation of Ψ(x) with respect to w(x).
The approximation in 3.16 is the mean value of Ψ obtained through MC assignments
to the continuous random variables present in Ψ. �

The MC approximation of the weighted model integral of an SMT formula necessitates
that we evaluate a compiled SMT problem at N different points, i.e. we need to evaluate
a compiled theory N times with different weights. This is exactly where the strength of
knowledge compilation lies: expensively compile once and cheaply evaluate often.

Numerical computation libraries such as TensorFlow rely heavily on the concept
of computation graphs. Realizing that we can translate a d-DNNF formula to a
computational graph and express the labels of literals in an SMT formula as tensors
allows us to compute the N evaluations necessary for the MC approximation of the
weighted model integral not only cheaply but also in parallel.

Algorithm 3.2 (Sampo). Sampo computes the weighted model integral of an

SMT(RA) formula φ for a factorizable weight function w by executing the

following steps:

1. Abstract all atomic formulas in φ according to Definition 2.5 and obtain

φa.

2. Compile φa into a d-DNNF representation φcompiled.

3. Transform φcompiled into an arithmetic circuit ACφ, i.e. replacing logical

and/or operations with elementwise tensor multiplications/additions.

4. Label the literals in ACφ according to the labeling function given in

Definition 3.1 with corresponding tensors.

5. Symbolically evaluate ACφ and obtain Ψ represented by a computation

graph CG.



COMPUTING THE PROBABILITY OF SMT FORMULAS 35

6. Run the CG representing Ψ N times, where N is the number of samples

approximating the probability densities.

7. Take the mean of the values of the N runs of the CG.

We implemented Algorithm 3.2 using again the SDD package for the KC step and
using TensorFlow as the underlying numerical computation library. Random variables
are sampled using the Edward library [Tran et al., 2016].

Example 3.4. Let us illustrate Sampo on our running example in Equation 2.2. Assume

therefore that we already have at hand ACEvaluated
φ . We then need to sample N values

for the random variable t. Lets suppose we sample 5 values.

tMC ∈ {12.8, 35.1, 17.6, 22.2, 21.4} (3.17)

and plug these samples into Ψ. We map the Boolean random variable no_cool to a

1D tensor whose entries are 0.01. Consulting the arithmetic circuit in Figure 3.1, we

easily see that we obtain for the MC estimate:

ΨMC =





0.01
0.01
0.01
0.01
0.01





◦





[12.8>20]
[35.1>20]
[17.6>20]
[22.2>20]
[21.4>20]





◦





[12.8≤30]
[35.1≤30]
[17.6≤30]
[22.2≤30]
[21.4≤30]





+





[12.8>30]
[35.1>30]
[17.6>30]
[22.2>30]
[21.4>30]





=





0.01
0.01
0.01
0.01
0.01





◦





0
1
0
1
1





◦





1
0
1
1
1





+





0
1
0
0
0





=





0
1
0

0.01
0.01





(3.18)

where ◦ denotes the elementwise multiplication of tensors. With the Monte Carlo

estimate of Ψ we obtain the MC estimate for the weighted model integral by simply

averaging:

WMIMC =
1

5

5∑

i=1

ΨMC,i = 1.02/5 = 0.204

Compiling an SMT formula and transforming the resulting arithmetic circuit into
a computation graph has the advantage that sampling becomes embarrassingly
parallelizable. To the best of our knowledge, Sampo is the first probabilistic inference
algorithm for the hybrid domain that is able to harness parallelization on a GPU.



36 WMI USING KC

3.4.3 Discussion on Complexity

The complexity of Symbo and Sampo is mainly determined by the complexity of their
subcomponents. The knowledge compilation step is #P-hard. The evaluation of the
resulting arithmetic circuit is done in polytime. Symbo, however, suffers from the
problem that the search for simplifications in symbolic expressions is a hard problem.
One such simplification is the symbolic integration step itself. For example, integrating
convex polytopes is #P-hard [Dyer; Frieze, 1988; Koutis, 2003; Koutis, 2003]. These
complexity concerns do not hold for Sampo, as we are dealing with mere additions
and multiplications on the GPU. In the next section the computational complexity
of symbolic simplifications becomes experimentally apparent in the ClickGraph
benchmark for Symbo (cf. Table 3.1).

In the case of weighted model counting the time to evaluate the arithmetic circuit is
polynomial in time polynomial in size of the circuit. As discussed in the previous
paragraph this does not hold anymore for WMI. While WMC consists of an expensive
compilation step and a cheap evaluation step. WMI consists of two expensive steps!

3.5 Experimental Evaluation

In the previous section we have developed two algorithms that perform weighted
model integration for weight functions in the form of probability density functions.
Because general probability density functions are common in probabilistic programs,
but have only been approximated in existing weighted model integration algorithms
(using piecewise polynomial weight functions), we compare Symbo and Sampo with
state-of-the-art inference algorithms in probabilistic programming.

To this end, we extended the syntax of the probabilistic programming system
ProbLog2 [Dries et al., 2015], so that it allows for the use of abstractions
of atomic formulas and for the declaring how continuous random variables are
distributed. ProbLog2 implements inference for the probabilistic programming
language aProbLog [Kimmig et al., 2011], where inference is done through algebraic
model counting.

We are interested in three main questions during the experimental evaluation of Symbo
and Sampo.

Q1 How does Symbo, a logico-symbolic solver, compare to a pure, state-of-the-art,
symbolic solver for the hybrid domain?

Q2 How does Sampo compare to related state-of-the-art probabilistic inference
algorithms?



EXPERIMENTAL EVALUATION 37

Q3 In the interest of completeness we also adopted Symbo to solve traditional
weighted model integration problems, where the weight function is expressed as
a polynomial function.

We answer Q1 by comparing Symbo, which uses the PSI-Solver and combines it with
KC, to pure symbolic inference with the PSI-Solver.

For Q2, we compare Sampo to the inference algorithms of Distributional Clauses (DC)
[Nitti et al., 2016a]4, BLOG [Milch et al., 2005]5 and to Hybrid Probabilistic Model
Counting (IHPMC) [Michels et al., 2016]6. These are state-of-the-art probabilistic
programming systems that all support first order logic as well as hybrid representations.

In Q3 we compare Symbo to the existing WMI solver of [Morettin et al., 2017], which
uses predicate abstraction, SMT solving and numerical integration, and to the solver
of [Kolb et al., 2018], which uses XADDs [Sanner; Abbasnejad, 2012] and hence
symbolic integration.

Experiments were performed on a laptop Intel(R) i7 CPU 2.60GHz with 16 Gb
memory, running Linux OS. Sampo took additionally advantage of an NVIDIA Quadro
M1000M.

Q1 (Symbo): We compared Symbo and the PSI-Solver on the set of benchmark
experiments given in Gehr et al., 2016, section F of Appendix7.

In Table 3.1, we observe that Symbo outperforms the PSI-Solver for 9/10 benchmarks,
for 7/10 even when including the time spent on the knowledge compilation step. Only
for the ClickGraph benchmark does PSI perform better than Symbo, which timed-out
after 15s during circuit evaluation. This is because PSI integrates out variables after
loop iterations. This is not yet supported in the ProbLog implementation and Symbo
ends up with a large symbolic expression that is hard to integrate over. This could be
solved, for example, by using sub-queries, as can be done in ProbLog2.

We note that the symbolic inference engine underlying the PSI-Solver has until now
only been used for imperative programing. The implementation of Symbo shows that
the powerful symbolic inference engine can also be adopted for logic programming
when making use of KC.

To conclude, it is generally beneficial to perform logical inference on top of symbolic
inference in the hybrid domain.

4https://bitbucket.org/problog/dc_problog
5https://bayesianlogic.github.io
6https://github.com/SteffenMichels/IHPMC
7cf.: Fun [Minka et al., 2014] and R2 [Nori et al., 2014]

https://bitbucket.org/problog/dc_problog
https://bayesianlogic.github.io
https://github.com/SteffenMichels/IHPMC


38 WMI USING KC

Benchmark KC Evaluation PSI Domain
BurglarAlarm 31.4 0.8 190.1 D
CoinBias 41.9 7.9 12.9 H
Grass 31.2 1.2 228.0 D
NoisyOR 35.8 11.2 12.7 D
TwoCoins 27.0 2.1 57.8 D
ClickGraph 4300 – 10500 H
ClinicalTrial 54.6 25.7 3400 H
AddFun/max 25.2 4.4 53.1 H
AddFun/sum 27.1 2.1 84.9 H
MurderMystery 27.6 0.3 65.4 D

Table 3.1: Knowledge compilation and arithmetic circuit evaluation times for Symbo,
and problem solving time for PSI. Times are given in ms. Run times were averaged
over 50 runs. We omitted the standard deviations on the run time as they are negligible.
The domain column indicates whether the problem is Discrete or Hybrid.

Q2 (Sampo): In order to evaluate Sampo, we chose benchmarks from [Nitti et al.,
2016a] and [Michels et al., 2016], which were stated to be hardest in terms of query
complexity. We show our results in Figures 3.2 and 3.3. In Figure 3.2, we compare
Sampo to DC and BLOG. A comparison with IHPMC for this first problem is not
possible as IHPMC does not allow for expressing hierarchical models. DC an BLOG
are, just like Sampo, sampling based methods, which use both importance sampling
and likelihood weighting.8 This is why we plot the evaluation time and the standard
deviation in function of the number of samples. IHPMC is not a sampling based method
but iteratively splits up the space into mutually exclusive pieces and calculates bounds
for each piece, which translates to iteratively tighter and tighter error bounds. For
this reason we investigate in the plots in Figure 3.3 the standard deviation of the four
methods scrutinized in function of the run time.

All four plots clearly indicate that once Sampo has transformed a probabilistic program
into an arithmetic circuit, the run time is not only lower but also that Sampo is more
accurate than the competing algorithms. This is especially true for two distinct cases.
Firstly, when there are binary random variables present. Contrary to DC and BLOG,
Sampo does not sample these random variables but includes their probability as weight
in the circuit evaluation. This can be seen Figure 3.2a and 3.3a. The reason why
the STD is not zero for Sampo in 3.2a is due to floating point rounding errors. The
second case where Sampo clearly outperforms the other methods is when we condition
on low probability events, cf. Figure 3.3b. Here we condition on an event that has
probability 0.0001 to occur. The logic structure of the problem implies that the query

8BLOG also provides rejection sampling and MCMC.



EXPERIMENTAL EVALUATION 39

0.0

0.5

1.0

1.5

ru
n 

tim
e 

[s
]

Sampo
DC
BLOG

102 103 104 105 106 107

number of samples

10 8

10 6

10 4

10 2

ST
D

(a)

0

1

2

ru
n 

tim
e 

[s
]

Sampo
DC
BLOG

102 103 104 105 106 107

number of samples

10 3

10 2

10 1

ST
D

(b)

Figure 3.2: The example used is drawing balls (denoted by bi and having different size,

color and material) with replacement from an urn [Nitti et al., 2016a]. The queries
used are (a) p(b1=b2∧col(b1)=black) and (b) p(b1=1|0.39<size(b1)<0.41). The upper
panel shows the run time (circuit evaluation for Sampo). Evaluation runs are averaged
over 50 runs and the knowledge compilation step is averaged over 50 compilations.
Time-out was set at 2.5s. The linear behavior of Sampo towards higher sample numbers
is due to the GPU starting to run out of memory. Sampo spent 1.62s for (a) and 0.11s
for (b) on the knowledge compilation step, averaged over 50 runs.

given the observation must be satisfied. In Figure 3.3b we see that Sampo is the
only algorithm that picks up this structure. As the inference reduces to inference on
exclusviely Boolean random variables, Sampo immediately finds the correct solution
without drawing any samples for continuous random variables, in contrast to the other
algorithms.

We also observe that there is practically no time penalty for the number of samples for
Sampo, contrary to DC and BLOG. This behavior manifests itself most prominently
in the upper panel of Figure 3.2a and in Figure 3.3a. For the latter, we see that higher
sample numbers, which correspond to lower STDs, take up just as much time as lower
sample numbers. This produces the quasi-vertical line Figure 3.3a. This behavior is due
to delegating the N evaluations of the arithmetic circuits, which correspond to N times
sampling the continuous random variables, to the GPU and executing the evaluation
in parallel. Only in Figure 3.2a we observe a linear dependency of the run time in
function of the number of samples towards high sample numbers. This is caused by the
GPU running out of memory.



40 WMI USING KC

0.0 0.5 1.0 1.5 2.0
Inference time [s]

10 3

10 2

10 1

100

M
SE

Sampo
DC
BLOG
IHPMC

(a) query: p( f99)

0.0 0.5 1.0 1.5
Inference time [s]

0.0

0.5

1.0

M
SE

Sampo
DC
BLOG
IHPMC

(b) query: p( f99| f0)

Figure 3.3: We show the dependencies of the mean squared error on time for two
queries of the theory: fi ↔ di ∨ c > li ∨ fi−1, cf. [Michels et al., 2016]. fi and di are
Bools. The probability of di being true is 0.0001. c and li are normally distributed
variables with mean 20 and 30 respectively and standard deviation 5. Note the two
different scales for the plots on the y-axis. The mean squared errors are averaged over
50 runs. The average KC time (over 50 iterations) is 4.34s for (a) and 2.66s for (b). In
the left plot the mean squared error was calculated with respect to the mean of 50 runs
using Sampo with 105 samples. In the right plot, we stopped when all the runs for a
given number of samples for an algorithm reached the correct solution (which is 1.0)
or the algorithm timed-out after 2s.

Q3 (WMI): By allowing Symbo to handle also bounded polynomial weights, instead
of probability density distributions, we can compare Symbo to the existing exact WMI
solvers of WMI-PA [Morettin et al., 2017] and WMI-XADD [Kolb et al., 2018]. This
extension of Symbo is necessary as these solvers are limited to polynomial weights
and cannot handle proper probability densities.

We made the experimental comparison of the three methods on a set of synthetic
problems given in [Morettin et al., 2017]9. The benchmarks consist of WMI problems
that have from five to seven Boolean variables and where the weight functions are
multivariate polynomials of dimensions two to three.

We compared the three methods on the benchmarks with two dimensional polynomial
weights. We observe in Figure 3.4 that Symbo solves the majority of the problems with
bivariate polynomials faster than the other two methods. We omit the comparison plot
for the benchmarks with three dimensional polynomials, as here the other methods,
which are specialized algorithms for polynomial weight functions, beat Symbo at
large. Symbo spends most of the time on the final integration step (cf. point 7 in
Algorithm 3.1). In fact, Symbo spent at most 0.32s on the KC step, at most 0.34s on the
circuit evaluation and any remaining time on the symbolic integration - for any of the
presented benchmarks. Using a dedicated integrator for bounded polynomials instead
of the generic PSI integrator could mitigate this problem. In the next chapter we will

9https://github.com/unitn-sml/wmi-pa

https://github.com/unitn-sml/wmi-pa


RELATED WORK 41

investigate integrating out variables during the evaluation of the arithmetic circuit, as
this leads to smaller symbolic expressions.

2 4 6 8 10
Inference time [s]

0

20

40

60
In

st
an

ce
s s

ol
ve

d
wi

th
in

 ti
m

e 
lim

it

Symbo
XADD
PA

Figure 3.4: We show the number of problem instances solved below the time limit for
problems with bivariate polynomial weights.

3.6 Related Work

In the initial work on weighted model integration [Belle et al., 2015a] the authors
perform weighted model integration on piecewise polynomials by iteratively generating
models by adding the negation of the model from the previous iteration to the formula.
In subsequent work by [Morettin et al., 2017] the number of generated models is
substantially reduced by deploying SMT-based predicate abstraction [Graf; Saïdi,
1997]. In this line of work [Belle et al., 2016] also investigated component caching
while performing a DPLL search when calculating a weighted model integral. Their
approach is indeed related to knowledge compilation. However, it is not applicable in
cases when algebraic constraints exist between variables and couple these. The methods
proposed on WMI are strictly limited to piecewise polynomials. We, completely lift
this restrictions and are able to perform WMI via knowledge compilation on SMT(RA)
and SMT(NRA) formulas using probability density functions instead of piecewise
polynomials on SMT(LRA).

As seen in Section 3.5, WMI has also been studied in the context of XADDs [Kolb
et al., 2018] and the approach is closely related to Symbo. Here again, the weight
functions considered are only of polynomial form. Another drawback of this approach
is that, unlike for the SDDs and d-DNNFs used in our approach, there are not yet any
efficient compilers available for converting WMI to XADDs. For SDDs and d-DNNFs,
one can employ standard state-of-the-art KC technology. SDDs are more succinct than
BDDs, of which XADDs are an extension. This entails, in turn, that SDDs are more



42 WMI USING KC

succinct than XADDs. Standard knowledge compilation techniques are not readily
available for XADDs as Kolb et al.’s compilation algorithm interleaves symbolic and
logic inference.

Somewhat related to WMI with piecewise polynomials is the work of [Gutmann et al.,
2010], who restricted distributions to Gaussians, which are chopped up into easily
integrable and axis-aligned pieces.

Contrary to these works, we generalize WMI by providing a much larger class of
weight functions and constraints.

With respect to inference for probabilistic programming in the hybrid domain, two
classes of algorithms exist: approximate and exact. Firstly, for what concerns one of
the few exact inference systems, there is the already mentioned work for imperative
probabilistic programming [Gehr et al., 2016], which has contributed the PSI-Solver
that we use in Symbo. The PSI-Solver beats other recent approaches in exact
probabilistic inference [Narayanan et al., 2016]. We show that knowledge compilation
speeds up pure symbolic inference and that Symbo outperforms the PSI-Solver.

Another approach, related to exact inference in probabilistic logic programming, is that
of [Islam et al., 2012]. Similarly to Symbo, they symbolically evaluate a theory in order
to obtain an expression for a probability density. However, their approach is restricted
to Gaussians (although gamma distributions are in theory also implementable), and
more importantly it is built on top of Prism [Sato, 1995], which assumes that proofs
are mutually exclusive, and which avoids the disjoint sum problem. As a consequence
they do not support WMI in its full generality. Supporting WMI requires the KC step,
which they do not address.

Secondly, for what concerns approximate inference, we have the sampling approaches
in Distributional Clauses by [Gutmann et al., 2011; Nitti et al., 2016a] and BLOG
by [Milch et al., 2005], which we have already discussed in Section 3.5 and which
both deploy importance sampling in order to sample from probability distributions and
densities alike, combined with likelihood weighting.

Approximate inference is also performed in [Michels et al., 2016]. In their work,
a hybrid probabilistic problem is represented by so called hybrid probability trees

(discussed in Section 3.5). Our experiments show that Sampo outperforms DC, BLOG
and IHPMC. Moreover, Sampo has the advantage that when conditioning on rare events
in the discrete domain, we still obtain reliable estimates of the weighted model integral.
Using pure sampling based methods such as in Distributional Clauses and BLOG leads
to poor results. This is known to be problematic when using importance sampling
based methods.

Note that when conditioning on rare events in continuous domains, Sampo performs as
poorly as other sampling techniques as it performs essentially rejection sampling with



CONCLUSIONS 43

almost all samples being rejected.

3.7 Conclusions

We have shown how standard knowledge compilation can be applied to the task of
weighting model integration by leveraging algebraic model counting and thereby
presenting a unified formalism for weighted model integration and knowledge
compilation. We have also introduced an exact and an approximate solver based on
this idea and demonstrated their effectiveness. Sampo is to the best of our knowledge
the first sampling based algorithm deployable in the WMI setting.



Chapter 4

Exploiting Factorizability
∗

Solving WMI problems in the SMT(LRA) domain consists of two sub-problems
1) finding convex polytopes, and 2) integrating over them efficiently.

We formalize the first step as λ-SMT and discuss what strategies solvers apply to
solve both the λ-SMT and the integration problem. This formalization allows us
to compare state-of-the-art solvers and their behavior across different types of WMI
problems. Moreover, we identify factorizability of WMI problems as a key property that
emerges in the context of probabilistic programming. Problems that can be factorized
can be solved more efficiently. However, current solvers exploiting this property
restrict themselves to WMI problems with univariate conditions and fully factorizable
weight functions. We introduce a new algorithm, F-XSDD, that lifts these restrictions
and can exploit factorizability in WMI problems with multivariate conditions and
partially factorizable weight functions. Through an empirical evaluation, we show the
effectiveness of our approach.

4.1 Introduction

Contrary to solvers for WMC, the relative advantages and drawbacks of the different
WMI solvers are not yet well understood. Understanding these solvers and their
differences requires a clear separation of the model counting and the integration
component. The existing attempts [Belle et al., 2015a; Morettin et al., 2017] to
separate these two components are all tied to specific solving paradigms. To decouple
the formulation in a general way, we, as a first contribution, introduce λ-SMT, the

∗
This chapter has previously been published as [Kolb et al., 2019b].

44



λ-SMT 45

problem of rewriting a generic WMI problem into a sum of integrals over convex
polytopes. This allows us to formally disentangle the model counting (solving λ-SMT)
and integration steps (computing integrals). As a second contribution, we discuss
the main paradigms used to solve the λ-SMT step – DPLL search and knowledge
compilation – and the integration step – numeric and symbolic integration.1 This
allows us to compare different state-of-the-art solvers and understand how their design
choices affect the kind of WMI problems they are able to solve efficiently. Finally,
we observe that fully factorizable WMI problems have given rise to efficient solvers
for subsets of WMI [Belle et al., 2016; Molina et al., 2018]. While factorizability

naturally emerges in probabilistic programming, the strong conditions imposed by full
factorizability – no multivariate conditions and fully factorizable weight functions –
fail to cover most applications. Therefore, as a third contribution, we present a novel
algorithm to solve generic WMI problems that can automatically exploit factorizability

in the problem structure.

4.2 λ-SMT

In the weighted model integration literature the weight function w of a WMI
problem WMI(φ,w|x,b) over SMT(LRA) formulas and polynomial weight functions
is expressed as an AST with LRA atoms and polynomials. The class of functions
expressible by these ASTs is equivalent to the class of piecewise-polynomial
case functions, as shown in [Kolb et al., 2018]. A piecewise-polynomial case
function f = {φ1: ω1, · · · , φn: ωn} consists of tuples 〈φi, ωi〉, where φi is a conjunction
of SMT(LRA) literals and ωi is a polynomial over x. The world-supports φi form a
partition of the space spanned by the Cartesian product x × b, i.e., they are mutually
exclusive (disjoint) and exhaustive (covering the whole space). Note that, as we
consider only LRA atomic formulas, every φi corresponds to a convex polytope in
the real space (contrary to the given support φ). All assignments to the variables in x,
b that satisfy φi are weighted with the polynomial world-weight ωi, which no longer
relies on b.

Example 4.1. Consider the weight function

w({x, y}, {a}) = ite(a, 2x + y, x2y) × ite((y < 5), 3, 0)

where x and y are real variables, and a is a Boolean variable. Moreover, consider the

SMT(LRA) formula

φ=((a ∧ (x < 5)) ∨ (x>y)) ∧ bounds

1We understand a numeric integration method as a method that outputs the value of a definite integral (not
necessarily obtained through numeric approximations) and symbolic integration as the problem of finding
the anti-derivative



46 EXPLOITING FACTORIZABILITY

with

bounds = (x<10) ∧ (x>2) ∧ (y<10) ∧ (y>2)

We can then partition the space with the following case functions:






(y < 5) ∧ (x < 5) ∧ bounds ∧ a : 6x + 3y

(y < 5) ∧ (x ≥ 5) ∧ (x > y) ∧ bounds ∧ a : 6x + 3y

(y < 5) ∧ (x > y) ∧ bounds ∧ ¬a : 3x2y

(4.1)

We omitted the cases where the polynomial weight is 0.

By using the notion of case functions, the weighted model integral (Equation 2.10) can
be rewritten as a sum of integrations of polynomials over convex polytopes. In order to
show this, we first write the definite sum and integral as an indefinite sum and integral
of indicator functions multiplied by the weight function w.

WMI(φ,w|x,b) =
∑

bI∈Ib(φ)

∫

Ix(φbI )
w(x,bI)dx

=
∑

b

∫

~φ(x,b)�w(x,b)dx (4.2)

We continue manipulating this expression by 1) rewriting ~φ(x,b)�w(x,b) as a case-
function f (x,b) with tuplesW f = {〈φi, ωi〉}, 2) exploiting the mutual exclusivity of
the world-supports to rewrite f (x,b) =

∑

〈φi,ωi〉∈W f
~φi(x,b)�ωi(x), and 3) reordering

the summations:

∑

b

∫

f (x,b)dx

=
∑

b

∫
∑

〈φi,ωi〉∈W f

~φi(x,b)�ωi(x)dx (4.3)

=
∑

〈φi,ωi〉∈W f

∑

b

∫

~φi(x,b)�ωi(x)dx (4.4)

Finally, we push the Iverson brackets back into the index and the bound of the
summation and integral, respectively.

∑

〈φi,ωi〉∈W f

∑

bI∈Ib(φi)

∫

IX (φ
bI
i

)
ωi(x)dx (4.5)



ANATOMY OF A SOLVER 47

In accordance to the terms world-support and world-weight, we define the world-

volume vol w.r.t. to a tuple 〈φi, ωi〉 as:

vol(φi, ωi|x,b) =
∑

bI∈Ib(φi)

∫

Ix(φ
bI
i

)
ωi(x)dx (4.6)

Solving any WMI problem can thus be reduced to a two step procedure: 1) rewriting the
problem into a sum over tuples 〈φi, ωi〉 of disjoint world-supports and world-weights
(i.e., convex polytopes and polynomials), and 2) integrating every world-weight ωi over
the corresponding world-support φi. We formally define the first step of this procedure
as λ-SMT:

Definition 4.1. (λ-SMT) Given a WMI problem WMI(φ,w|x,b), find a set W of

pairwise logically inconsistent world-supports φi (i.e., their conjunction is unsatisfiable)

and world-weights ωi such that the sum over their world-volumes is equal to the

weighted model integral:

∑

〈φi,ωi〉∈W
vol(φi, ωi|x,b) =WMI(φ,w|x,b) (4.7)

We call a tuple 〈φi, ωi〉 ∈ W redundant if φi is not satisfiable (i.e., logically inconsistent)

or ωi = 0, since integrating over them yields 0. Further, we call a λ-SMT solutionW∗

reduced, if no element inW∗ is redundant.

The λ-SMT problem lies at the heart of all WMI solvers, and it is easy to see that
such setsW always exist, as any WMI problem can be written as a case-function (see
above and [Kolb et al., 2018]) and enumerating all cases yields a solution to the λ-SMT
problem. In order to obtain a reduced solution, we can discard all redundant cases –
doing this efficiently is a key part of WMI-solving.

Conceptually similar 2-step decompositions of WMI solving can be found in prior
works. In [Morettin et al., 2017, Definition 5], the authors separate the steps of
finding truth assignments to the Boolean variables and solving non-Boolean WMI
problems (WMInb). In [Kolb et al., 2018, Section 3], a case function representation
is built by compiling the WMI problem to an XADD. We continue this discussion
in Section 4.4.

4.3 Anatomy of a Solver

With the formal definition of λ-SMT we can now study how different solvers handle this
problem and how the representation of the solution to the λ-SMT problem influences
strategies to solve the subsequent integration step. Even though the λ-SMT and the



48 EXPLOITING FACTORIZABILITY

integration steps can be intertwined, there are broadly two ways to tackle the λ-SMT
step, and two ways to tackle integration.

4.3.1 λ-SMT: Search vs Compilation

λ-SMT concerns the analysis of the structure of the WMI problem, finding a way to
rewrite the problem into disjoint, convex polytopes with purely polynomial weight
functions. The techniques used to solve this part of the problem relate closely to
techniques used for WMC and #SAT. On the one hand, solvers such as PA [Morettin
et al., 2017] and PRAiSE [De Salvo Braz et al., 2016] use variants of DPLL search
to enumerate the conditions of the polytopes over which to integrate. On the other
hand, XADD-based solvers [Sanner et al., 2011; Kolb et al., 2018] and SDD-based
Symbo [Zuidberg DosMartires et al., 2019b] use knowledge compilation to compile
the problem structure into a compilation language in which the solutions to the λ-SMT
problem are efficiently represented.

A key aspect to solving λ-SMT efficiently is detecting redundant tuples 〈φ, ω〉 early in
the solving process. For many solvers, the support φ of a WMI problem plays a crucial
role in avoiding the enumeration of redundant tuples by restricting their search to the
feasible space described by the support.

Solvers relying on compilation aim to find small representations for λ-SMT solutions.
By checking for redundant tuples during or after the compilation, they try to find
reduced λ-SMT solutions. Additionally, they often compress the representation of an λ-
SMT solution by grouping tuples 〈φ1, ω〉, ..., 〈φn, ω〉 that have the same world-weight ω
as 〈∨i φi, ω〉 (e.g., by using DAGs [Kolb et al., 2018]).

The setW can be further compressed when a solver supports the concept of a labeling

function. The labeling function originates from the WMC literature, where a labeling
function αmaps literals to real-valued weights. This allows them to factorize the weight
function over the Boolean variables: w =

∏

b∈b αb(b). The Symbo solver [ZuidbergDos
Martires et al., 2019b] reuses the notion of a labeling functions to partially factorize
the weight function w as w(x,b) = w′(x,b) ·∏b∈b αb(b) or w′(x,b) ·∏b∈b αb(x, b).
Consider two tuples 〈φ1, ω1〉 and 〈φ2, ω2〉 of a λ-SMT solution, where φ1 = φs ∧ b

and φ2 = φs ∧ ¬b and b ∈ b. If, then, ω1 = ωs · αb(true) and ω2 = ωs · αb(false),
we can group these cases as 〈φs, ωs · αb(b)〉. Labeling functions over multiple literals
can thus allow a number of tuples exponential in the number of literals to be grouped
together (e.g., within a single SDD [Zuidberg Dos Martires et al., 2019b]). Note,
that we now have to relax the fact that the world weight does not depend on b. We
can reintroduce this dependency on b as long as for any Boolean instantiation, the
world-weight will be polynomial.



CATEGORIZING EXISTING SOLVERS 49

4.3.2 Numeric vs Symbolic Integration

With respect to integration, WMI solvers fall into two categories: those using numeric

integration, and those using symbolic integration. Given the function w and the set
of free variables x to integrate, numeric integration approaches directly compute the
result as a real number. Symbolic integration approaches will instead integrate out the
variables one-by-one, obtaining symbolic intermediate results (i.e., repeated variable
elimination). Integrating out a variable that has multiple symbolic lower- or upper-
bounds causes these expressions to grow quickly. Therefore, numeric integration
procedures are usually more efficient at performing individual integrations.

There are, however, two key advantages of symbolic integration, as demonstrated
in [Kolb et al., 2018]. First, symbolic integration can be used to solve structured
problems by reusing intermediate results across different vol(φi, ωi) computations.
In doing so, it aims to avoid having to compute a potentially exponential number
of individual integrations. This reuse resembles caching in traditional DPLL search
and exploits the compression of the λ-SMT models discussed in the previous section.
Secondly, when computing the probabilities of multiple queries Q over a small subset
of variables xQ, the result r of integrating out all variables except those in xQ can
be computed symbolically and then reused to quickly compute query probabilities,
integrating out xQ from r · q,∀q ∈ Q [Kolb et al., 2018]. Note that this inference
scheme is similar to the compile once, query multiple times knowledge compilation
approach.

4.4 Categorizing Existing Solvers

In this section we categorize current solvers by analyzing how they handle both the
λ-SMT problem and integration.

Predicate Abstraction [Morettin et al., 2017] (PA) The PA solver uses the
MathSAT [Cimatti et al., 2013] SMT solver to solve WMI problems. First, it solves
the λ-SMT problem by introducing fresh Boolean variables for the SMT conditions
in the weight function and performing a two-step DPLL search. In the first step, it
finds truth assignments to the original and fresh Boolean variables. Such an assignment
defines a setWi of world-supports (defined by the original variables) with a common
world-weight (defined by the fresh variables). If, after using the SMT solver to remove
redundant tuples from Wi, Wi contains more than one world-support, the second
step enumerates them by finding truth assignments to the LRA atoms in the support.
The PA solver avoids enumerating sets of equivalent world-supports by using partial

assignments. Second, for every world-support φi, it uses numeric integration to integrate



50 EXPLOITING FACTORIZABILITY

the polynomial over the convex polytope specified by φi. For the integration it relies on
the LattE Integrale integration software [De Loera et al., 2013b].

Bound Resolution [Kolb et al., 2018] (BR) The BR solver tackles a WMI
problem by first compiling it to an equivalent XADD, which represents a solution to the
λ-SMT problem. Compilation is performed through a bottom-up compilation scheme2,
using recursive apply operations. Pruning unsatisfiable paths within XADDs can be
done using an LP or SMT oracle. While it is an expensive operation, it is crucial to keep
the XADDs small and efficient. Paths in the XADD correspond to tuples inW and the
DAG structure of the XADD compresses paths with the same world-weight. Instead of
performing integration separately for every path and summing the results (which could
be done using symbolic or total integration), the BR algorithm exploits overlapping
paths using symbolic integration. The algorithm recursively integrates every variable,
tracking only one pair of upper- and lower-bound at a time, and building the result
of the integration dynamically as a new XADD (integration is a closed operation for
polynomial case functions with linear conditions).

Symbo [Zuidberg Dos Martires et al., 2019b] The Symbo solver first computes
a compressed representation of an λ-SMT solutionW in the form of pairs of XSDDs
(representing

∨

i φi)3 and distinct world-weights ω. XSDD compilation is performed
bottom-up and, as current SDD software is strictly discrete, fresh Boolean variables
are introduced as abstractions for atomic SMT formulas. Currently, pruning redundant
tuples within the circuit is not supported, instead, unfeasible world-supports are
detected only later, at the integration stage. Symbo supports labeling functions (see
Section 4.3.1), which enables a more compressed representation ofW. Solving and
integrating requires a bottom-up pass over the circuit that reassembles the tuplesW,
checking for redundancy during the assembly and, finally, integrating the different
(weighted) tuples using a symbolic integration engine. Both inconsistency checking
and symbolic integrations are performed using the computer algebra system PSI [Gehr
et al., 2016].

PRAiSE [De Salvo Braz et al., 2016] Another DPLL based solver is PRAiSE,
which, contrary to PA, performs symbolic integration, representing intermediate results
as symbolic expression trees. These expression trees can be seen as tree-based
alternatives to XADDs. They represent a compiled version of the problem after

2The authors refer to their compilation as top-down, however, within the knowledge compilation literature,
this type of recursive compilation is commonly referred to as bottom-up.

3Zuidberg DosMartires et al. did not use the term XSDD. This nomenclature was introduced in [Kolb
et al., 2019b] to refer to SDD with atomic SMT formulas in the leaves. In practice, XSDDs are implemented
using traditional SDD software and additional book-keeping for the non-Boolean literals (cf. Chapter 3).



CATEGORIZING EXISTING SOLVERS 51

Figure 4.1: We test the performance of several solvers on a set of random WMI
problems generated using the PA benchmark generator. For problems that have little
structure and dense inequalities, solvers using numeric integration (full lines) perform
better than solvers using symbolic integration (dashed lines). Since the problems
are relatively shallow, the differences in solving the λ-SMT problem are secondary
(runtimes include compilation).

(symbolic) integration. However, as PRAiSE does not keep a trace of its DPLL search,
it is foremost a search based approach.

Other solvers As mentioned in the section on PA, other DPLL based methods exist,
however we consider them superseded by PA. A functionally different solver is CC

solver [Belle et al., 2016], which also performs DPLL search over abstractions of
SMT formulas but introduces component caching to compute solutions more efficiently.
However, the solver is restricted to a subset of WMI, requiring axis-aligned (univariate)
LRA atoms in the real space and weight functions that factorize over all Boolean and
real variables [Belle et al., 2016, Proof Theorem 6].

We also introduce a solver denoted as XSDD(LattE). XSDD(LattE) follows the same
strategy as Symbo to solve the λ-SMT problem using SDD compilation, but it then
builds a list of all convex polytopes by doing a bottom-up evaluation of the circuit and
evaluates them using numeric integration with Latte.

Discussion The solver design choices (see Table 4.1 for an overview), search vs
compilation, and numeric vs symbolic integration, as well as how to implement them
have a big influence on what problems the solver will be able to solve efficiently. On
the one hand, solving the λ-SMT problem through DPLL avoids a potentially expensive



52 EXPLOITING FACTORIZABILITY

Table 4.1: Overview of the solvers discussed and their properties.

PA BR Symbo PRAiSE

λ-SMT

DPLL X X

Compilation XADD XSDD
Integration

Numeric Latte
Symbolic XADD PSI (Tree) Exp. Tree

compilation step and is less sensitive to the problem formulation. This allows the
PA solver to efficiently tackle problems like their road-network problem [Morettin
et al., 2017]. On the other hand, compiling a circuit representation of λ-SMT can
avoid recomputing λ-SMT solutions as the circuit can be efficiently combined with
other circuits (representing, e.g., queries for conditional inference). Moreover, solving
structured problems in which many world-supports share a common (base) world-
weight, for example, problems using mutual exclusivity constraints over terms, and
computing multiple query probabilities benefit from knowledge compilation and
symbolic integration [Kolb et al., 2018]. Caching in DPLL-based approaches is used
in a similar spirit, however, no current DPLL-based WMI solver exploits caching for
WMI problems with non-axis aligned SMT(LRA) atoms. When integration steps are
not reusable, numeric integration approaches will fare better than symbolic integration
for single WMI queries (see Fig. 4.1).

4.5 Exploiting Factorizability of WMI Problems

There is an additional type of structure that has been exploited in the WMI
literature to speed up inference: factorizable WMI problems, which is a subset
of WMI [Belle et al., 2016; Molina et al., 2018]. However, it is usually
subjected to the strong constraints of using only axis-aligned LRA atoms and fully

factorizable weight functions. In this subset of WMI problems, the computation
of vol(φ, ω) for any tuple 〈φi, ωi〉 = 〈

∧

x∈x φx(x),
∏

x∈x ωx(x)〉 can be rewritten
as vol(φ, ω) =

∫ ∏

x∈x~φx(x)�ωx(x)dx. This formulation allows the integrations to
be pushed inwards for any partition of the variables x into disjoint sets x1 and x2:
∫ ∏

x∈x1
~φx(x)�ωx(x)

[∫ ∏

y∈x2
~φy(y)�ωy(y)dx2

]

dx1.

Factorization is less straight-forward in the case of general WMI (which includes
non-axis aligned LRA atoms). However, many problems, especially those coming
from a probabilistic programming context, are partially factorizable [Gehr et al., 2016].



EXPLOITING FACTORIZABILITY OF WMI PROBLEMS 53

Therefore, we introduce F-XSDD, a new solver that exploits factorized solving for
WMI problems with multivariate inequalities and weight functions that might not
factorize completely. Our method F-XSDD compiles a WMI problem into a set of
XSDDs, performs a static circuit analysis and structures WMI as factorized, symbolic
integration over the XSDDs.

4.5.1 Factorized Solving

After compiling a λ-SMT solution W for a WMI problem WMI(φ,w|x,b), every
set of tuples 〈φi, ω〉 sharing the same world-weight ω is grouped as 〈∨i φi, ω〉.
Each disjunction of world-supports (

∨

i φi) is represented as an XSDD D4. Com-
puting WMI(φ,w|x,b) now consists of summing over all 〈D, ω〉 pairs and comput-
ing

∑

φi
vol(φi, ω) for every pair. Instead of integrating every 〈φi, ω〉 tuple separately,

however, we first reconsider jointly integrating ω over D =
∨

i φi. Using indefinite
sums and integrals, and Iverson brackets (like in Equation 4.2), we can rewrite:

∑

φi

vol(φi, ω) =
∑

φi

∑

b

∫

~φi(x,b)�ω(x)dx (4.8)

=
∑

b

∫

~

∨

i

φi(x,b)�ω(x)dx (φi are disjoint) (4.9)

=
∑

b

∫

~D(x,b)�ω(x)dx (
∨

i

φi as XSDD D) (4.10)

By representing the disjunction as an XSDD, we can use its nested representation to
push integrations inside, i.e., towards the leaves of the SDD. The intuition is that if
the expression D contains disjoint sub-expressions over independent sets of variables,
those sub-expressions can be integrated separately and the results can be reused if
those sub-expressions occur multiple times (we give an example in the supplementary
material).

Consider, first, the case of a fully factorizable world-weight ω(x) =
∏

x∈x ωx(x), an
assumption we will revisit later. Using the corresponding XSDD D, we can decompose
the integral recursively into smaller sub-problems.

4XSDD compilation follows the XADD compilation scheme described in [Kolb et al., 2018] using
tuples 〈D, ω〉 of SDDs and polynomials to represent case-functions.



54 EXPLOITING FACTORIZABILITY

Algorithm 4.1 Factorized Integration

1: world-weight ω
2: procedure vol(XSDD D, vars x)
3: if x = ∅ then

4: return ~D�

5: else if D is terminal then

6: return
∫

~D�
∏

x∈x ωx(x)dx

7: else if D =
∨

c Dc then

8: return
∑

c vol(Dc, x)
9: else if D = D1 ∧ D2 then

10: xs = x ∩ vars(D1) ∩ vars(D2)
11: x∗1, x

∗
2 = vars(D1) \ xs, vars(D2) \ xs

12: r1 = vol(D1, x
∗
1 ∩ x)

13: r2 = vol(D2, x
∗
2 ∩ x)

14: return
∫

r1 · r2 ·
∏

x∈xs
ωx(x)dxs

Proposition 4.1 (OR Node). If D corresponds to an OR node, i.e., D =
∨

Dc
Dc where

all Dc (again SDDs) are mutually exclusive, we obtain:

∑

b

∫

~

∨

Dc

Dc(x,b)�ω(x)dx (4.11)

=
∑

b

∫

(
∑

Dc

~Dc(x,b)�)ω(x)dx (4.12)

=
∑

Dc

∑

b

∫

~Dc(x,b)�ω(x)dx (4.13)

Proposition 4.2 (AND node). If φ(x) corresponds to an AND node, i.e., D(x,b) =
D1(x1,b) ∧ D2(x2,b), and we denote xs = x1 ∩ x2, x∗1 = x1 \ xs, x∗2 = x2 \ xs,



EXPLOITING FACTORIZABILITY OF WMI PROBLEMS 55

ωx =
∏

x∈x ωx(x), D1 = D1(x1,b), D2 = D2(x2,b), we obtain:

∑

b

∫

~D1 ∧ D2�ωxdx = (4.14)

∑

b

∫

~D1�~D2�ωx∗1
ωx∗2
ωxs

dx = (4.15)

∑

b

∫
[
∫

~D1�ωx∗1
dx∗1

][
∫

~D2�ωx∗2
dx∗2

]

ωxs
dxs = (4.16)

∫
[∑

b1

∫

~D1�ωx∗1
dx∗1

][∑

b2

∫

~D2�ωx∗2
dx∗2

]

ωxs
dxs (4.17)

This decomposition allows us to compute weighted model integrals using a recursive
symbolic integration algorithm (Algorithm 4.1). Given the world-weight ω, XSDD D

and variables to integrate x, the algorithm computes
∑

b

∫

~D(x,b)�ω(x)dx. If the set
of variables to integrate over is empty, the algorithm returns ~D� (the integrations will
occur higher in the circuit). If D is a literal (leaf of the XSDD), the integral over ~D�
is computed for the variables x. If D is an OR node, the variables x are recursively
integrated from the child nodes and the results are summed (line 8). Finally, if D is an
AND node, the subsets of x that only occur in one of the child nodes are recursively
integrated out and multiplied (rp · rs), and the remaining subset xs ⊆ x that occur
in both children are integrated out from the resulting expression (line 14). The vars
values (lines 10 and 11) are precomputed using static circuit analysis.

Let us briefly explain why the outer sum over the Boolean variables b does not occur
in the algorithm. Conjuncts of conjunctions in SDDs do not share Boolean variables
and disjuncts of disjunctions in SDDs are pairwise logically inconsistent. We further
assume that the algorithm is applied to a smoothed circuit, i.e., logically irrelevant
Boolean variables are not dropped from the circuit. The sum over the truth values of
a Boolean can be pushed into the integration (cf. Equations 4.17) until it reaches a
disjunction (cf. Equations 4.13) for which every disjunct is logically consistent only for
one of the truth values, which eliminates the sum over that Boolean. For non-smoothed
circuits such a disjunction does not necessarily exist.

In order to avoid traversing the SDD multiple times unnecessarily, intermediate results
are cached using the tuple 〈SDD D, variables x〉 as key. Nodes will only be revisited if
different variables need to be integrated out from them. If a node is visited multiple
times with different sets of integration variables, the common subset of variables could
be detected using circuit analysis and integrated out first. The result can then be cached
and reused.



56 EXPLOITING FACTORIZABILITY

Example 4.2. Consider the weight function w = 2xy and the following SMT formula:

x>0 ∧ x<1 ∧ [y<1 ∨ x>y] ∧ y>1/2 (4.18)

Abstracting the atomic SMT formulas we can compile this formula into the XSDD seen

in Figure 4.2.

2xy

AND

x>0 x<1

x>y

NOT y<1 y>1/2

AND OR

AND AND

Figure 4.2: The SMT formula in Equation 4.18 for weight 2xy from Example 4.2
compiled into an equivalent XSDD.

We are now able to compute the weighted model integral of the problem by evaluating

the XSDD and integrating out the resulting symbolic expression:

∫ (

~x>0�~x<1�~y<1�~x ≥ y� + ~x>0�~x<1�~y>1/2�~x>y�

)

2xydxdy

To solve this integral efficiently we would like to push the integration inside the

evaluation of the XSDD and reuse intermediate integration steps. This process of

pushing-in the integration over variables is visualized in Figure 4.3.

Evaluating the XSDD depicted in Figure 4.3 results in computing the following integral:

2

∫

(x>0)∧(x<1)

( ∫

(y<1)∧(x≤y)
ydy +

∫

(y>1/2)∧(x>y)
ydy

)

xdx



EXPLOITING FACTORIZABILITY OF WMI PROBLEMS 57

Figure 4.3: We show how integration variables can be pushed inside the XSDD, to
integrate subexpressions separately.

We see that the atomic formulas in the SMT(LRA) formula in Equation 4.18 become

the integration bounds over which to integrate the weight function.

Generic weight functions We describe three mechanisms to relax the condition
that world-weight functions have to factorize as expressions over single variables.
First, any polynomial can be rewritten into sums of products over powers of single
variables. Integration can then be performed separately – each product fully factorizes
into expressions over single variables – and the results can be summed to obtain the
final result. Second, if the world-weight function factorizes into several products of
expressions over non-overlapping sets of variables, we can group these sets of variables
together, treating them as inseparable units (and substituting each inseparable unit by a
single “set-variable” in the algorithm). If this factorization is not readily apparent, i.e.,
it is not a product of expressions that do not share real variables, the world-weight could
be analyzed upfront to find a suitable decomposition. Third, F-XSDDs, like Symbo,
support labeling functions (see Section 4.3.1) which occur frequently in the context
of probabilistic programming [Kimmig et al., 2011]. To use a labeling function α, the
factorized integration algorithm requires two changes: 1) for any Boolean literal l over
a Boolean variable b, the evaluation of ~l� has to be replaced by the label assigned
to that literal αb(l); and 2) if labels are polynomials, vars(D) has to include the real
variables occurring in the labels of Boolean literals in D (to prevent integrating out
those real variables too early).



58 EXPLOITING FACTORIZABILITY

Circuit ordering and redundancy To what extent a WMI problem can be exploited
by factorized solving depends on the problem itself, the structure of the XSDD and the
ordering of the literals in the XSDD. Currently, compilation procedures for XSDDs
do not take into account that some of the literals are abstractions of inequalities, and,
therefore, they do not use information about the real variables and their occurrences in
inequalities and labels.

4.5.2 Experimental Evaluation

In this section we want to answer three research questions.

Q1 Can the F-XSDD solver exploit factorizability in WMI problems?

Q2 What is the influence of the symbolic integration back-end on F-XSDD solver
(F-XSDD(PSI) vs F-XSDD(BR)

Q3 How does F-XSDD perform compared to state-of-the-art solvers?

In our experimental evaluation we compare the state-of-the-art solvers described in
Section 4.4 to a variety of XSDD based solvers. F-XSDD(PSI) and F-XSDD(BR) are
both implementations of our factorized integration algorithm. F-XSDD(PSI) uses
PSI as its symbolic integration back-end, while F-XSDD(BR) relies on XADDs
to represent symbolic intermediate results and uses the BR (bound-resolution)
algorithm to perform symbolic integration (on the XADDs). Using the BR algorithm
within the F-XSDD solving scheme allows for having different variable integration
orderings in different subdiagrams and to use labeling functions in combinataion with
XADDs. When a problem does not factorize, F-XSDD(BR) reduces to BR with
the overhead of performing a static circuit analysis. XSDD(PSI) and XSDD(BR)
are implementations of F-XSDD(PSI) and F-XSDD(BR) where we turned off the
factorization. XSDD(PSI) is a reimplementation of Symbo [Zuidberg DosMartires
et al., 2019b]. XSDD(Sampling) is functionally equivalent to XSDD(Latte) (cf.
Section 4.4, Other Solvers), using a simple rejection-sampling based backend for
Monte Carlo integration (105 samples per integration).5

In the table below we give an overview of WMI solvers used in our empirical analysis.
For the PA [Morettin et al., 2017] and the PRAiSE [De Salvo Braz et al., 2016]
solvers we used the original implementation, and we reimplemented the BR [Kolb et al.,
2018] and the Symbo (listed as XSDD(PSI)) [Zuidberg DosMartires et al., 2019b]
algorithms. We indicate whether the solvers are based on knowledge compilation
and whether the integration is performed through symbolic integration. All listed

5All experimentally evaluated solvers are part of the pywmi library [Kolb et al., 2019a] (http://pywmi.
org).

http://pywmi.org
http://pywmi.org


EXPLOITING FACTORIZABILITY OF WMI PROBLEMS 59

solvers perform exact WMI inference with the exception of XSDD(Sampling), which
approximates the integration step with Monte Carlo integration through rejection
sampling.

Name KC Symbolic Implementation

PA Original
PRAiSE X Original
BR X X Reimplemented
XSDD(Latte) X New
XSDD(Sampling) X New
XSDD(PSI) X X Reimplemented
XSDD(BR) X X New
F-XSDD(PSI) X X New
F-XSDD(BR) X X New

We test the solvers on four WMI problem-templates, whose size can be controlled by
a parameter (N). The click-graph problem is a probabilistic program and part of the
benchmark used to compare Symbo and PSI [Zuidberg DosMartires et al., 2019b],
and is the problem both solvers struggled with most. We encoded the problem as a
WMI problem template. We introduce a synthetic problem, dual-mutex, that is both
structured and factorizable with φ = (

∨

i(xi0 ≤ xi1)) ∧∧

i, j,i ¬(xi0 ≤ xi1) ∨ ¬(x j0 ≤ x j1)
and w = 1. Additionally, we encoded the highly-structured mutually-exclusive and xor

problems from [Kolb et al., 2018]. Our experimental results are shown in Figure 4.4.

We can answer Q1 affirmatively, as the performance of both F-XSDD solvers on click-
graph and dual-mutex demonstrates that it can succesfully exploit the high degree of
factorizability of those problems.

For Q2, we can observe that the BR solver and the corresponding XADD structure is
required to solve the highly structured mutually-exclusive and xor problems. While both
back-ends perform similarly on dual, only F-XSDD(BR) can achieve an exponential-
to-linear in reduction time for the click-graph problem by combining factorizable
solving with XADDs with BR. We can see the effect of using DAGs to compactly
represent intermediate symbolic results and exploiting the overlapping paths using
bound resolution. However, the results also clearly show that the BR solver is unable
to efficiently solve these problems without factorized solving.

With respect to Q3 we can clearly see that F-XSDD(BR) consistently delivers best-in-
class results across these benchmark problems. The F-XSDD solvers outperform the
numeric solvers PA and XSDD(Latte) on these structured problems. On the click-graph,
mutually-exclusive and xor problems we see that F-XSDD(PSI), like PRAiSE, suffers
from its tree-based representation for intermediate symbolic results. The performance
of XSDD(Sampling) indicates that the number of tuples in the solutions of the λ-SMT
problem of dual-mutex and mutually-exclusive grows polynomially, while for the



60 EXPLOITING FACTORIZABILITY

Figure 4.4: On the click-graph (top-left) and pairwise-factorizable dual-mutex (top-
right) problems, F-XSDD outperforms all exact state-of-the-art solvers, while on the
highly structured xor (bottom-left) and mutually-exclusive (bottom-right) problems, it
achieves performance on par with BR when using XADDs and bound-resolution as
integration back-end (runtimes include compilation).

click-graph and xor problems, they exhibit exponential growth. This demonstrates the
need for symbolic integration and the ability to reuse symbolic integration steps in
these cases.

4.5.3 Beyond Piecewise-Polynomial WMI

Our implementation of factorized solving focuses on WMI problems with SMT(LRA)
atoms and piecewise polynomial densities. This puts us on even footing with most of the
WMI literature [Belle et al., 2015a; Morettin et al., 2017; Kolb et al., 2018]. However,
factorized solving does not require piecewise polynomial densities, the expressiveness
depends on the back-end that is used for symbolic computations. As a matter of
fact, by using PSI as a back-end for symbolic expression manipulation, our factorized
solving implementation can already deal with common probability distributions such
as Gaussians out of the box.



CONCLUSIONS 61

4.6 Conclusions

In this chapter, we introduced the problem of λ-SMT, which allowed us to dissect in
detail different state-of-the-art solvers. Moreover, we introduced F-XSDD, a novel
solver that exploits factorizable weight functions through static circuit analysis and that
outperforms or is on par with the state-of-the-art.

A promising road for future research would be to realise an XSDD implementation
that treats LRA literals as first-class citizens, either through a top-down knowledge
compiler for SMT formulas, combining the strengths of DPLL search and knowledge
compilation, or through a bottom-up compiler in the spirit of XADD compilation [Kolb
et al., 2018]. Compared to the current XSDD compilation, an SMT-aware compiler can
look inside the atomic SMT atomic formulas and prune out redundancies, potentially
leading to significantly smaller circuits.



Chapter 5

WMI Using Monte Carlo
Anti-Differentiation

∗

Probabilistic inference is a computationally hard task. Two prominent techniques to
mitigate this hardness are Monte Carlo estimation and dynamic programming. The
former is first and foremost used to cope with intractable probability distributions
of continuous random variables, while the latter has been applied to probabilistic
inference in domains with discrete random variables. Surprisingly, a serious effort of
combining both techniques to perform probabilistic inference in discrete-continuous
domains has not been made, yet. We introduce Monte Carlo anti-differentiation
(MCAD), an integration method that recursively nests Monte Carlo estimators within a
dynamic programming algorithm. MCAD can be thought of as approximate symbolic
integration. In this chapter, we develop and experimentally evaluate MCAD in the
context of weighted model integration.

5.1 Introduction

Comparing weighted model integration to weighted model counting, we identify one
major complication: integrating out continuous variables. Computing integrals is a
computationally hard problem and suffers from the curse of dimensionality1. Integrating

∗
This chapter is based on [Zuidberg DosMartires; Kolb, 2020].

1The term curse of dimensionality was originally coined in [Bellman, 1957] in the context of dynamic
programming but has since also been applied to the problem of integration.

62



INTRODUCTION 63

a polynomial over a convex polytope, for example, is #P-hard [Dyer; Frieze, 1988;
Koutis, 2003; Koutis, 2003].

Since the inception of WMI, a number of algorithms have emerged that exploit structure
present in WMI problems, e.g. [Morettin et al., 2017; Kolb et al., 2018; Kolb et al.,
2019b; Zeng; Van den Broeck, 2019]. Exploiting structure, such as determinism and
context-specific independence [Chavira; Darwiche, 2008], allows these algorithms
to avoid the combinatorial explosion induced by the discrete random variables, when
possible. More concretely, the state-of-the-art F-XSDD solver [Kolb et al., 2019b]
combines dynamic programming techniques and symbolic integration to exploit the
structure present in common probabilistic inference problems.

Symbolic integration is the problem of performing anti-differentiation (finding the
indefinite integral, also called the primitive). The F-XSDD solver performs inference
by recursively nesting symbolic integration steps and caching symbolic sub-results that
can be reused. This is conceptually elegant but computationally problematic as these
symbolic integration steps are hard to perform (#P-hard in general).

A popular technique to (approximately) circumvent the computational hardness
of integration is Monte Carlo estimation. An interesting twist to Monte Carlo
estimation is nested Monte Carlo (NMC) [Rainforth et al., 2018]. NMC recursively
computes approximations of expectations of expectations, i.e. it approximates nested
integrations. However, Monte Carlo integration, including NMC, can only perform
definite integration and not indefinite integration which is necessary for symbolic
integration.

We introduce the concept of Monte Carlo anti-differentiation (MCAD), an extension
of NMC that computes the integrals by performing approximate symbolic integration.
MCAD allows us deploy Monte Carlo integration within a dynamic programming
algorithm.

In this chapter we will use the following definition of the weighted model integral (cf.
Equation 4.2 in the previous chapter):

Definition 5.1 (Weighted modeling integration [Kolb et al., 2019b]). Given a set b of

M Boolean variables, x of N real variables, a weight function w : BM × RN → R≥0,

and a support φ, in the form of an SMT formula, over b and x, the weighted model

integral is given by:

WMI(φ,w|x,b) =
∑

b

∫

~φ(x,b)�w(x,b)dx (5.1)



64 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

Furthermore, as we want to study integration over the real domain, we will, for the
sake of clarity, ignore Boolean variables in the remainder of this chapter2:

WMI(φ,w|x)=

∫

~φ(x)�w(x)dx (5.2)

In order to apply dynamic programming to solve WMI problems, the weight function
has to be separable in some way. We will assume a fully separable weight function:

w(x) =
T∏

k=1

wk(xk)

T being the number of real variables.

Following the notation developed in Chapter 4, we denote the compiled representation
of φ(x) by D(x). We write the weighted model integral for a fully factorized weight
function now as:

WMI(φ,w|x) =

∫

~D(x)�
T∏

k=1

wk(xk)dx (5.3)

This is equivalent to Equation 4.10, apart from the remove dependency on the Boolean
variables.

5.2 Problem formulation

The main concept underlying symbolic integration is anti-differentiation of univariate
functions.

Definition 5.2. Given an interval [a, b]⊆R and a function f :[a, b]→R, a differentiable

function F:[a, b]→R is called an anti-derivative of f if
∂F(x)
∂x
= f (x), for all x∈[a, b].

∫

f (x)dx denotes the set of anti-derivatives of f , which differ by a constant k:
∫

f (x)dx+

k.

Once an anti-derivative is obtained in closed form, which is trivial for polynomials, we

compute the integral
∫ ub

lb
f (x)dx = F(ub) − F(lb). Where lb, ub ∈ [a, b] are the lower

and upper bounds respectively. In order to use anti-differentiation for the integration
of multivariate functions, we have to repeatedly compute the anti-derivative. The
lower and upper bounds depend in this case on the variables that have not yet been

2Zeng; Van den Broeck [2019] have shown that summation over Boolean variables can be transformed
into integration over real variables. Ignoring Boolean variables comes, hence, with no loss of generality.



PROBLEM FORMULATION 65

integrated out. Due to the dependencies between variables in the bounds of integration,
the number of lower and upper bound combinations can explode as variables are
successively integrated out. This makes symbolic integration of multivariate functions
a computationally hard problem.

To show how symbolic integration is used for WMI, let us rewrite the compiled represen-
tation of the support D(x) as a disjunction of conjunctions E(x)=∨iE

i(x)=∨i∧ je
i j(xi j),

where the disjuncts are pairwise logically inconsistent. This is a crucial property as it
avoids double counting. Note that rewriting φ(x) as E(x) can lead to an exponential
blow-up of the SMT formula. The ei j(xi j) are SMT(LRA) atoms depending on the
variables xi j⊆x. The Ei(x)’s form convex polytopes as they are conjunctions of linear
constraints on a convex domain of definition. Let us now calculate the weighted model
integral of a single disjunct of E(x):

WMI(Ei,w|x) =

∫

~Ei(x)�
T∏

k=1

wk(xk)dx

=

∫

~∧ je
i j(x)�

T∏

k=1

wk(xk)dx (5.4)

Symbolic integration is performed by successively integrating out the T variables in x.
The order of integration is determined by the WMI algorithm3, which uses symbolic
integration as a subroutine.

Now we would like to integrate out the variable xT . Therefore, we need to separate the
conditions in Ei that depend on xT and the ones that do not:

~Ei(x)� = ~Ei,T−1(x1:T−1)�~Ei,T (x1:T )� (5.5)

~Ei,T−1(x1:T−1)� is the Iverson bracket of the conjunction of SMT(LRA) atoms that do
not contain the variable xT and ~Ei,T (

x1:T )

� is the Iverson bracket of the conjunction
of atoms that do dependent on xT . The latter become the bounds of integration for the
integration over xT .

3We have studied the problem of ordering in [Derkinderen et al., 2020].



66 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

Dropping, for notational clarity, the index on Ei’s we write the weighted model integral
for a specific E as:

WMI(E,w|x) =

∫
[

~ET−1(x1:T−1)
�

T−1∏

k=1

wk(xk)
]

×
[
∫

~ET (

x1:T )

�wT

(

xT )

dxT
]

︸                             ︷︷                             ︸

≕γT (x1:T−1)

dx1:T−1 (5.6)

=

∫
[

~ET−1(x1:T−1)
�

T−1∏

k=1

wk(xk)
]

× γT

(

x1:T−1) dx1:T−1 (5.7)

We call γT (x1:T−1) the anti-derivative of ~ET
(

x1:T )

wT (xT )� with respect to dxT . In
a dynamic programming scheme the function γT is cached and does not need to be
recomputed. Computing the exact form of γT is computationally hard.

This brings us to the crux of this chapter. On the one hand, we would like to exploit

the structure present in WMI problems, for which we need to perform symbolic
integration. On the other hand, we want to circumvent the curse of dimensionality

of integration by using MC techniques. We propose Monte Carlo anti-differentiation,
which allows to cache subresults (the γ’s) in a dynamic programming scheme, while
deploying Monte Carlo methods (approximating the γ’s). This leads to a recursive
nesting of Monte Carlo estimators, akin to the concept behind NMC [Rainforth et al.,
2018].

5.3 Monte Carlo anti-differentiation

In the previous section we stated that the γT in Equation 5.7 is the function that we
would like to compute, cache, and reuse. Unfortunately, computing γT exactly is
expensive. In this section we will describe how to approximate, cache, and reuse γT .

First, however, let us introduce some new notation to denote groups of variables. Until
now we have had x, which denotes an (ordered) set of variables of size T . xi denotes a
variable in that set. We will additionally use xi to denote D subsets of x. These subsets,
which contain variables from the set x are exhaustive and pairwise mutually exclusive:

x =
⋃

1≤i≤D
xi (5.8)

xi ∩ x j = ∅ i , j (5.9)



MONTE CARLO ANTI-DIFFERENTIATION 67

In other words, we group variables together in D different disjoint sets of variables.
The notation x j:k, with ( j ≤ k), means the following:

x
j:k
≔

⋃

j≤i≤k

x
i. (5.10)

If all xi are singletons we have that T = D.

We now write Equation 5.7 in terms of sets of variables instead of single variables:

WMI(E,w|x) =

∫
[

~ED−1(
x

1:D−1)
�

D−1∏

k=1

wk(xk)
]

× γD
(

x
1:D−1) dx1:D−1 (5.11)

5.3.1 One Level of Nesting

Let us revisit Equation 5.11. The function γD depends here on all the variables in
x

1:D−1. This dependency came about through ~ED
(

x
1:D)�, which is the Iverson bracket

of the conjunction of SMT(LRA) atoms containing the variables in xD. This means
that ~ED

(

x
1:D)� does not necessarily depend on all variables in x1:D but only on a subset

thereof. We denote the subset of variables that co-occur with xD in SMT(LRA) atoms
by x1:D

C
. This subset also includes all the variables in xD.

As γD does only depend on the variables in x1:D−1
C

, it is only defined on the domain of
definition of the variables x1:D−1

C
\xD given by the WMI problem.

γD(x1:D−1) = ~bounds(x1:D−1
C )�γD(x1:D−1

C ) (5.12)

We continue by writing γD again in its integral form:

~bounds(x1:D−1
C )�γD(x1:D−1

C ) = ~bounds(x1:D−1
C )�

∫

~ED
(

x
1:D
C

)

�wD(xD)dxD (5.13)

=

∫

~bounds(x1:D−1
C )�~ED

(

x
1:D
C

)

�wD(xD)dxD (5.14)

The Iverson brackets in Equation 5.14 form a convex polytope (conjunction of linear
inequalities). We call this polytope KD and denote its volume by vol(KD).

Definition 5.3. The Monte Carlo anti-derivative γ̂D of γD is given by:

γ̂D(x1:D−1
C ) = ρ̂(x1:D−1

C |KD,wD) (5.15)

ρ̂ is a function estimator that gives a Monte Carlo estimate, given the polytope KD and

the weight function wD. The symbol x1:D
C

denotes the set of variables that are coupled

to the variables in xD through SMT(LRA) atoms (this includes the variables in xD).



68 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

Example 5.1. Consider Figure 5.1 on Page 69, particularly the convex polytope given

on the left and the weight function w2(x2) (depth T=2) depicted next to it. We would

like to compute the anti-derivative of the weight function with respect to the variable

x2, which means that we need to integrate out x2 taking into consideration the bounds

imposed on x2 (blue):

~E2(x1, x2)� = ~1≤x2�~x2≤4�~x1≥x2�

The problem is that these bounds do not induce a convex polytope but only a region

in R2 in which w2(x2) is not Lebesgue integrable. The integral is not finite on this R2

region. To fix this, we take also into consideration the domain of the WMI problem on

the x1 variable (1≤x1) and (x1≤4) (in dashed red). These five inequalities combined do

now induce a convex polytope K2(shaded in blue). With the convex polytope at hand,

we can sample uniformly points from it. We then weight each sample with the weight

produced by the weight function w(x2) = (x2 − 2)2. The Monte Carlo approximation

of the anti-derivative γ̂2(x1) is then obtained by estimating the density of the weighted

samples. We performed the density estimation using a histogram (bottom right).



MONTE CARLO ANTI-DIFFERENTIATION 69

0 1 2 3 4 5
x1

0

1

2

3

4

5

x2

x 1

0
1

2
3

4x2

0 1 2 3 4

w2(x2)  

0

2

4

6

0 1 2 3 4 5
x1

0

1

2

3

4

5

x2
1 2 3 4

x1

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2(x1)

Figure 5.1: On the top left is given a convex polytope (shaded in blue) constrained
by the inequalities (1≤x2), (x2≤4), (x1≥x2) (blue), and (1≤x1), (x1≤4) (dotted red). To
its right the weight function w2(x2) = (x2 − 2)2 is shown. The plot on the bottom left
shows samples drawn uniformly from within the convex polytope K2 delimited by
the constraints (1≤x2), (x1≥x2) and (x1≤4). The first histogram on the bottom right
shows the projection of the samples onto the x1-axis and binned into 18 bins of equal
width. In the lower right is shown the piecewise constant function that approximates
the anti-derivative of x2 over the weight function w2(x2) constrained by the convex
polytope. The anti-derivative is denoted by γ2(x1). Its approximation is obtained by
weighting the samples with the weight function w2(x2) = (x2 − 2)2 and estimating the
density through a histogram. In other words, the second histogram is the weighted
equivalent of the first histogram; using the weight function w2(x2). The plot does
also show in red the (exact) symbolic integral:

∫

~1 ≤ x2�~x2 ≤ x1�(x2 − 2)2dx2 =
∫ x1

1
(x2 − 2)2dx2 = 1/3x3

1 − 2x2
1 + 4x1 − 7/3.



70 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

Proposition 5.1. On level of MCAD produces biased estimates of weighted model

integrals if the estimate γ̂ is biased.

Proof. Let us assume we want to calculate the following weighted model integral:

WMI(φ,w1 × w2|x1, x2)

=

∫

~E1(x1)�~E2(x1:2
C )�w1(x1)w2(x2)dx2dx1

=

∫

~E1(x1)�w1(x1)
(
∫

~E2(x1:2
C )�w2(x2)dx2

)

dx1

=

∫

~E1(x1)�w1(x1)γ(x1)dx1 (5.16)

As γ̂ is a random variable. we are interested in the expected bias:

E

[ ∫

~E1(x1)�w1(x1)γ̂(x1)dx1 −
∫

~E1(x1)�w1(x1)γ(x1)dx1
]

=

∫

~E1(x1)�w1(x1)E
[

γ̂(x2)
]

dx1 −
∫

~E1(x1)�w1(x1)γ(x1)dx1

=

∫

~E1(x1)�w1(x1)
(

γ(x1) + β(x1)
)

dx1 −
∫

~E1(x1)�w1(x1)γ(x1)dx1

=

∫

~E1(x1)�w1(x1)β(x1)dx1 (5.17)

We see that already one level of MCAD nesting for the estimation of the weighted
model integral is biased if the expectation of the bias β on the estimate is non-zero. �

As shown in the proof of Proposition 5.1, MCAD produces inevitably bias estimates.
In future work we will have to provide bounds on this bias.

5.3.2 Repeated Nesting of MCAD

Until now we considered only one level of nesting, i.e. we only had the γD that we
estimated. We are now going too formalize repeated nesting of Monte Carlo estimators.
Consider again Equation 5.7, where we have one level of nesting. Performing this



MONTE CARLO ANTI-DIFFERENTIATION 71

nesting repeatedly can be described via the following two equations:

γD(x1:D−1) =

∫

~ED
(

x
1:D
C

)

�wD
(

x
D
)

dxD (5.18)

γk(x1:k−1) =

∫

~Ek

(

x
1:k
C

)

�wk(xk)γk+1(x1:k)dxk 1≤k<D (5.19)

Where x1:k
C

denotes the set of variables that are coupled through SMT(LRA) atoms
with xk.

Definition 5.4. We call a repeated nesting scheme layered if the following equations

hold by definition:

γD(x1:D−1)
!
= γD(xD−1) =

∫

~ED
(

x
D−1:D
C

)

�wD
(

x
D
)

dxD (5.20)

γk(x1:k−1)
!
= γk(xk−1) =

∫

~Ek

(

x
k−1:k
C

)

�wk(xk)γk+1(xk)dxk 1≤k<D (5.21)

This means that γk at layer k depends only on the variables in xk−1 from the previous

layer.

Definition 5.5. We call a repeated nesting scheme factorized if the following equations

hold by definition:

γD(x1:D−1)
!
= γD =

∫

~ED
(

x
D
)

�wD
(

x
D
)

dxD (5.22)

γk(x1:k−1)
!
= γk =

∫

~Ek

(

x
k�

wk(xk)γk+1(xk)dxk 1≤k<D (5.23)

This means that γk at layer k does not depend on any variables and is constant.

Note that γ1=WMI(E,w|x) and recall that when solving WMI problems via dynamic
programming it is exactly these γ’s that are being cached. Since computing them
exactly is computationally expensive, we replace them by function estimates.

γ̂D(x1:D−1) ≔ ρ̂(x1:D−1|wD,KD) (5.24)

γ̂k(x1:k−1) ≔ ρ̂(x1:k−1|wk × γ̂k+1,Kk) 1≤k<D (5.25)

5.3.3 Histograms as density estimators

The perhaps simplest approach to estimate a function is by means of (multidimensional)
histograms, i.e. piecewise constant functions. If we assume the domain of γk to be the



72 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

hyperrectangle HRk, we can partition the domain into a predefined number of bins Mk

of volume vk (vk depends on Mk and the volume of HRk). Let us also assume that we
have Nk samples drawn uniformly from the polytope Kk. The estimate of γk in the i-th
bin denoted by bi

k
(1 ≤ i ≤ Mk) is obtained with:

γ̂k(x1:k−1∈bi
k) = ρ̂(x1:k−1∈bi

k |wk × γ̂k+1,Kk)

=
vol(Kk)

vkNk

Nk∑

j

(

~x
1:k−1
j ∈bi

k�wk(xkj)γ̂k+1(x1:k
j )

)

(5.26)

x
k
j

denotes the j-th sampled values for the variables in xk. Similarly for x1:k−1. Note that

the samples for xk
j

and x1:k−1 are drawn jointly as the polytope Kk is dependent on those

sets of variables. Equation 5.26 simple tells us that we esimate γk in bin bi
k

by taking
a weighted average over the samples that fall into bin bi

k
. Computing this weighted

average for every bin in HRk gives the estimate of γ̂k.

Even though using histograms as density estimators is straightforward, they are not well
suited for estimating high dimensional data. If we want to preserve the bin resolution,
the number of bins we need to partition our space into grows exponentially with the
number variables present in the set xC . A possible solution would be to represent the
estimate by a lower dimensional representation instead of histograms, such as kernel
density methods [Rosenblatt, 1956; Parzen, 1962], density estimation trees [Ram;
Gray, 2011], or mixed sum-product-networks [Molina et al., 2018]. We leave this
issue as a point for future research.

5.3.4 MCAD and Weighted Model Integration

In Subsection 5.3.2 we introduced nested MCAD under the assumption that the
integrand decomposed into a product. However, when performing WMI (and for
that matter WMC) the integrand decomposes into a sum-product. We incorporate this
decomposition into MCAD by adapting the density estimate of the γ’s at each level of
integration in the following manner:

γ̂k(x1:k−1) = ρ̂(x1:k−1|wk

∑

j γ̂ j,k+1, ~Ek�) 1≤k<D (5.27)

At each level we have now a sum over multiple γ’s from the previous layer.



EXPERIMENTAL EVALUATION 73

5.3.5 Implementation

As mentioned in the introduction, MCAD can be viewed as a Monte Carlo version
of symbolic integration – variables are integrated out sequentially. Probabilistic
inference algorithms using symbolic integration as underlying routine, such as the
F-XSDD algorithm4, naturally lend themselves to be equipped with MCAD. We denote
the resulting algorithm by F-XSDD(Mcad), a probabilistic inference algorithm that
combines dynamic programming and Monte Carlo integration.

An important issue when implementing MCAD is to avoid high rejection rates
when sampling from convex polytopes. This is especially true when sampling from
high-dimensional polytopes. We tackled this problem by leveraging the VolEsti
library5. VolEsti is a highly optimized C++ library that implements different sampling
strategies [Emiris; Fisikopoulos, 2014; Cousins; Vempala, 2016; Emiris; Fisikopoulos,
2018] to efficiently and directly sample points uniformly from high dimensional convex
polytopes while avoiding any sample rejection.

A further complication of MCAD, which we have not yet addressed, is the
computational hardness of computing the volume of rational convex polytopes, which
is strongly #P-hard [Dyer; Frieze, 1988; Koutis, 2003; Koutis, 2003]. For low
dimensional polytopes (<3 dimensions) the volume can be computed using symbolic
integration (with PSI [Gehr et al., 2016]). For intermediate dimensional polytopes
(/10 dimensions) simplex decomposition can be used (e.g. LattE Integrale [De Loera
et al., 2013a]). For even higher dimensional polytopes, only approximate algorithms,
such as the randomized polynomial volume estimation algorithm available in the
VolEsti library constitute a practical choice. The volume approxation algorithm
of VolEsti approximates the volume up to a user-defined threshold in polynomial
time by recursively constructing co-centric balls of diminishing radii [Dyer et al.,
1991]. We implemented these three options and denote the specific algorithms
by: F-XSDD(Mcad(PSI)), F-XSDD(Mcad(LattE)) and F-XSDD(Mcad(VolEsti)),
respectively.

5.4 Experimental Evaluation

In the experimental evaluation we study the performance and accuracy of MCAD based
solvers on WMI problems. Firstly, we study MCAD on a set of standard benchmark
problems already present in the WMI literature. Secondly, we modify two existing
benchmarks problems to further demonstrate the strengths of MCAD based WMI

4Available in the PyWMI toolbox: https://github.com/weighted-model-integration/pywmi.
5https://github.com/GeomScale/volume_approximation

https://github.com/weighted-model-integration/pywmi
https://github.com/GeomScale/volume_approximation


74 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

solvers. The experiments presented in this section were performed on a Intel(R) i7
CPU 2.60GHz machine with 16GB memory, running Linux OS.

5.4.1 Highly Structured Problems

How does an MCAD based solver fare against a symbolic integration based solver

in terms of run time and accuracy of the MC approximation?

In order to answer this question we study F-XSDD(Mcad(PSI)) on four benchmarks
problems (Click(N), Dual(N), Xor(N), Mutex(N)), where N denotes the variable
problem size. The former two were introduced in [Kolb et al., 2019b], and the latter
two in [Kolb et al., 2018].

We compare F-XSDD(Mcad(PSI)) to F-XSDD(BR) [Kolb et al., 2019b], the PA
solver [Morettin et al., 2017], and the simple rejection sampling algorithm included
in the PyWMI toolbox. F-XSDD(BR) is the state-of-the-art algorithm when it comes
to exploiting structure. It outperforms or is on par with other solvers on these four
benchmarks. PA is another state-of-the art solver, which does, however, perform
poorly on highly structured problems – we include it for completeness. Both of these
algorithms perform exact WMI. The rejection sampler simply samples uniformly from
the domain of definition of the problem, which is a hypercube, and tests whether a
sample satisfies all the constraints imposed by the problem. If the sample is accepted it
is weighted with the value obtained from evaluating the integrand at the sampled point.

Figure 5.2 shows the experimental comparison of these four solvers. Plotted are the
run times in dependency of the problem size and for the approximate solver we did
also plot the relative root mean squared error (RRMSE). For F-XSDD(Mcad(PSI))
we used 5 × 104 samples per MCAD step. To determine the number of samples for
the rejection algorithm we determined the number of MCAD steps performed by F-
XSDD(Mcad(PSI)) and multiplied 5 × 104 with this number. RRMSEs were obtained
by using five runs and comparing to the exact result obtained with the F-XSDD(BR)
solver. The standard deviation on the run times are not shown as they are negligible.

The plots in Figure 5.2 show that F-XSDD(Mcad(PSI)) beats the exact WMI solvers
when comparing run times and with only little damage to the accuracy (quantified by
the RRMSE). This is in contrast to the rejection sampler, which suffers from increasing
RRMSEs when going to larger problems. The PA solver, prematurely times out on all
benchmarks (only solving the first instance for the Click(N) benchmark), which was to
be expected as the PA solver does not target highly structured problems.



EXPERIMENTAL EVALUATION 75

Figure 5.2: Comparison of the run time of F-XSDD(Mcad(PSI)) to the exact state-of-
the-art WMI solver F-XSDD(BR) and PA on four benchmark problems in the WMI
literature. Additionally we compare the accuracy of F-XSDD(Mcad(PSI)) to the one
of a rejection sampling algorithm.

5.4.2 Highly Structured Problems with More Challenging
Integration

The benchmarks used so far to assess the efficacy of WMI solvers that exploit structure
are rather simple from an integration point of view: the weight over which the
integration is performed is usually 1 and the dimension of the integration domain
is at most 2. This leads us to our second experimental question.



76 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

How does MCAD fare against symbolic integration in problems that exhibit both

a rich structure and more challenging integration steps?

To answer this questions we first introduce a variation of the Xor(N) benchmark. Instead
of having a constant weight function of 1, we use now a weight function w=

∏

i f (xi)
where the f (xi) are of polynomial form and the xi are the continuous variables present
in the benchmark. We denote this variation of the Xor(N) benchmark by Xor( f (x),N).
Secondly we introduce a new benchmark that we dub M-ual( f (x),N,M), a variation of
the Dual(N) benchmark, which is specified as follows:

φ =

N∨

i=1





M∑

k=1

(xik≤0)



 ∧
N∧

i=1

N∧

j=i+1



¬




M∑

k=1

xik≤0



 ∨ ¬




M∑

k=1

x jk≤0









with domain
∧M

k=1

∧N
i=1(−1≤xik≤1) and w=

∏N
i=1

∏M
k=1,k,i f (xik). f (xi j) being a

polynomial in xi j (e.g. x2
i j

). It is easy to see that by increasing N and M simultaneously
a high-dimensional problem is created. For instance, the problem M-ual( f (x), 10, 10) is
100-dimensional. Note that similarly to the Dual(N) problem the M-ual problem
naturally decomposes into M-dimensional independent integrals with no shared
constraints on the variables, i.e. the problem allows for a factorized nesting scheme
(cf. Definition 5.5). This means that for the M-ual problems the error on the MC
approximation of the weighted model integral stems entirely from the MC integration
and not from the density estimation.

In Figure 5.3 we compare again F-XSDD(Mcad(PSI)) to F-XSDD(BR), PA and a
simple rejection sampling algorithm (under similar condition as in Figure 5.2). Addi-
tionally we included the F-XSDD(Mcad(LattE)) and the F-XSDD(Mcad(VolEsti))
solvers in the experimental comparison.

We observe that in the first two experiments in Figure 5.3, F-XSDD(Mcad(PSI)) is again
the fastest algorithm without significant hits on the accuracy and the rejection algorithm
does again perform poorly when going to higher dimensions. Furthermore, we observe
that the approximation of the volume computation with F-XSDD(Mcad(VolEsti))
introduces extra noise in the weighted model integral. However, when going to high
dimensional spaces (the third experiment) we see that F-XSDD(Mcad(VolEsti)) is the
only algorithm that can cope with the situation. Remember that computing the volume
of a convex polytope is itself #P-hard. On this third comparison, the PA solver did not
solve any of the problems within the time-out (set at 200s) and the rejection algorithm
started producing negative weighted model integrals, which is impossible. This lead
us to leave out the rejection algorithm from the comparison. Note that for the third
experiment we plotted the relative standard deviation (RSTD) in the lower panel, as the
exact result is not available for a comparison.



CONCLUSIONS 77

Figure 5.3: Run time comparison of MCAD based solvers to the state-of-the-art WMI
solvers on modified benchmarks problems already present in the literature. Additionally,
we study the accuracy of the MCAD based algorithms compares to a simple rejections
sampling algorithm.

5.5 Conclusions

We developed Monte Carlo anti-differentiation, a method that combines two powerful
methods in computer science: Monte Carlo integration and dynamic programming. We
established an interesting link between weighted model integration and nested Monte
Carlo estimation [Rainforth et al., 2018]. Furthermore, we provide an implementation
of MCAD, dubbed F-XSDD(Mcad), based on state-of-the-art sampling techniques in
linearly constrained spaces, which enriches the F-XSDD family of algorithms with
an approximate solver. F-XSDD(Mcad) is the first inference algorithm for WMI that
performs Monte Carlo integration while exploiting structure present in WMI problems,



78 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

and avoiding prohibitively high sample rejection rates. Our empirical evaluation shows
that F-XSDD(Mcad) is able to deliver fast yet reliable approximate inference on a set
of representative WMI benchmark problems. In order to increase the practicality of
MCAD it might be of interest to investigate density estimators other than histograms,
such as density estimation trees, which have already been used in the context of
WMI[Morettin et al., 2020].

A major shortcoming of MCAD is its unavoidable biasedness and especially the lack
of bounds on the bias. Two research directions ahead would be intersting. On the one
hand the theoretical derivation of bounds on the bias and on the other hand, the study
of unbiased Monte Carlo approximation schemes. For the former we stipulate that
bounds can be derived in the spirit of the derivation of bounds given in [Rainforth et al.,
2018]. For the latter it might be interesting to investigate Gibbs sampling techniques
that have already been investigated for discrete-continuous probabilistic graphical
models [Afshar et al., 2015; Afshar et al., 2016]. The proposed Gibbs samplers would
have to be adapted to the WMI context: in Afshar et al. [2015] and Afshar et al. [2016]
the conditioning set consists of (conjunctions of) equality constraints only, whereas
for WMI and-or structures of inequality constraints are common. It is interesting to
note that in the numerical integration literature Gibbs sampling for convex bodies, for
example in the VolEsti library, is referred to as coordinate hit-and-run sampling.

A further advantage of Gibbs sampling (beside its unbiasedness) is that it allows us
to draw samples directly from (constrained) probability distributions instead of first
uniformly drawing samples and then weighting them accordingly. In this context it
is also interesting to investigate other techniques that exhibit this advantage [Lovász;
Vempala, 2006; Afshar; Domke, 2015].

Finally, MCAD, is as of now formulated in a WMI setting. It would be intriguing to
place MCAD in a broader dynamic programming context. This would also open up the
possibility to a wider domain of application for MCAD.



Conclusions

In this part we tackled the following research question:

RQ1: Can we adopt inference algorithms from the purely discrete domain or the

purely continuous domain to develop novel WMI solvers?

We started by investigating weighted model integration in combination with knowledge
compilation techniques. In Chapter 3 we have shown how standard knowledge
compilation can be applied to the task of weighting model integration by leveraging
algebraic model counting and thereby presenting a unified formalism for weighted
model integration and knowledge compilation. At the same time we introduced an exact
and an approximate solver based on this idea and demonstrated their effectiveness.

In Chapter 4 we built on the ideas developed in the Chapter 3 and further formalized
the theory underpinning weighted model integration combined with knowledge
compilation. This resulted in tge introduction of λ-SMT satisfiability problem, which
also allowed us to dissect in detail different state-of-the-art solvers.

Furthermore, we introduced F-XSDD, a novel solver that exploits factorizable weight
functions through static circuit analysis and that outperforms or is on par with the
state-of-the-art. A promising road for future research would be to realise an XSDD
implementation that treats LRA literals as first-class citizens, e.g. through a top-
down knowledge compiler for SMT formulas, combining the strengths of DPLL
search and knowledge compilation. Specifically, pruning impossible sub-diagrams
(e.g., through top-down compilation and the use of SMT solvers) and clustering
inequalities with common variables to enable more efficient symbolic integration.
For symbolic integration engines, it is, moreover, essential to determine an ordering of
the SMT literals that compressses not only λ-SMT solutions but does equally minimize
integration time. We have tackled this problem in a recent publication [Derkinderen
et al., 2020].

In Chapter 5 we developed Monte Carlo anti-differentiation, a method that combines

79



80 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

two powerful methods of computer science: Monte Carlo integration and dynamic
programming, which we formulated as nested Monte Carlo estimation [Rainforth
et al., 2018]. Furthermore, we provide an implementation of MCAD, dubbed F-
XSDD(Mcad), based on state-of-the-art sampling techniques in linearly constrained
spaces, which enriches the F-XSDD family of algorithms with an approximate
solver. F-XSDD(Mcad) is the first inference algorithm for WMI that performs Monte
Carlo integration while exploiting structure present in WMI problems, and avoiding
prohibitively high sample rejection rates. Our empirical evaluation shows that F-
XSDD(Mcad) is able to deliver fast yet reliable approximate inference on a set of
representative WMI benchmark problems.

The MCAD paper [Zuidberg Dos Martires; Kolb, 2020], on which Chapter 5 is
based, constitutes a first step towards deploying approximate Monte Carlo integration
techniques for probabilistic inference in high dimensional hybrid domains. We hope it
sparks further research at the intersection of WMI and Monte Carlo methods.

While we have limited ourselves to satisfiability modulo theories over (linear) real
arithmetics, there do exist WMI solvers that tackle linear integer arithmetics [Kolb
et al., 2018]. Here it might be of interest to investigate links to other existing solver
that do not lie directly in the domain of weighted model integration [Ma et al., 2009;
Zhou et al., 2015; Gao et al., 2018].

A promising avenue of further research seems to be the exploration of the space of WMI
problems and imposing restrictions on it, resulting in a subclass of WMI problems.
Much in the direction of the efforts undertaken in [Zeng; Van den Broeck, 2019; Zeng
et al., 2020]. Formally identifying classes of WMI problems and which solvers solve
them efficiently (and possibly automating the detection of the class) would allow WMI
to gain more widespread usage.

While, the theoretical formulation of WMI is elegant and solving WMI problems
efficiently touches on a lot of different topics, which are usually not considered together,
such as dynamic programming, Boolean satisfiability, Monte Carlo estimation, one
major shortcoming of WMI remains. There are no real-world applications! This opens
up an interesting avenue for future research: finding domains that can be modeled
using SMT formulas and which necessitate a probabilistic approach. Finding such
applications will also be beneficial to further improve on state-of-the-art WMI solvers
as it would lead to a problem driven development of such solvers.



Probabilistic Logic
Programming

81



Introduction

In the previous part we have seen how to model discrete-continuous probabilistic
problems using the language of satisfiability modulo theories. In order to perform
inference in these domains, we presented a range of exact and approximate inference
algorithms. While weighted SMT formulas are a sound way of expressing probability
distributions in discrete-continuous domains, they are rather cumbersome from a user’s
perspective. In this second part of the thesis, we present DC-ProbLog, a high-level
probabilistic logic programming tailored towards discrete-continuous domains, which
allows users to concisely encode probability distributions. We will answer our second
research question.

RQ2: Can we develop a high-level probabilistic logic programming language for

which inference reduces to weighted model integration?

DC-ProbLog can be regarded as an extension from two different points of view. On the
one hand, it extends weighted SMT formulas to a universal probabilistic programming
language, where inference reduces to weighted model integration. On the other hand,
it adds continuous random variables to ProbLog, a probabilistic logic programming
language over the discrete domain.

A major limitation of ProbLog becomes immediately apparent in the introductory
Example 1.1: we need to model the temperature as a discrete (Boolean) random
variable rather than a continuous probability density.

Poole has characterized probabilistic programming as independent choices plus

deterministic systems [Poole, 2010]. In the case of probabilistic logic programming
with discrete random variables the deterministic system is given by a logic program.
DC-ProbLog builds on this idea but relaxes the independence assumption by explicitly
distinguishing between two types of dependencies 1) those expressed by the logic
program (the deterministic system) and 2) those expressed by using random variables
as parameters of distributions for other random variables (the independent random
choices). This explicit distinction is not made by any other probabilistic (logic)

82



CONCLUSIONS 83

programming language including discrete and continuous random variables. Such
a programming language is also called hybrid.

When writing (hybrid) probabilistic programs, users have a range of options, from
encoding entire probability distributions defined by the probabilistic program into
a single choice random variable (no deterministic system), all the way to a set of
individual independent choice random variables with minimal use of random variables
as parameters tied together by a deterministic system. As already discussed by Poole
[2010], not all options work equally well with all inference algorithms. DC-ProbLog
provides these options within the same semantic framework, leaving it to system
developers to focus the syntax towards a subset of options and/or to exploit the different
options when integrating different inference approaches into their system.

Developing the DC-ProbLog language, leads to the following specific contributions:

1. We introduce a type system for DC-ProbLog, which allows us to introduce a
neat and clean syntax to extend ProbLog with function symbols for continuous
random variables.

2. We sketch a purely declarative semantics for DC-ProbLog based on Sato’s
distribution semantics that allows us to disentangle independent choices and the
discrete system underlying a probabilistic program.

3. We reduce inference in DC-ProbLog to weighted model integration in
the algebraic model counting setting [Kimmig et al., 2011; Kimmig et al.,
2017], analogous to reducing inference in ProbLog to weighted model
counting [Chavira; Darwiche, 2008].

4. We present an implementation of DC-ProbLog, which reduces naturally to
ProbLog in the absence of function symbols.

DC-ProbLog is heavily influenced by two predecessor languages: 1) ProbLog language
and 2) Distributional Clauses [Gutmann et al., 2011; Nitti et al., 2016a]. The latter is a
probabilistic logic programming languages that allows for continuous random variables.
However, its semantics differ from the semantics of ProbLog as it does not reduce to
ProbLog in the absence of continuous random variables.

The work presented on DC-ProbLog is based on a workshop paper in collaboration
with Anton Dries and Luc De Raedt and a forthcoming paper in collaboration with
Angelika Kimmig and Luc De Raedt.6

6I have been leading the development of the syntax and the type system, as well as the inference algorithm
(reduction to WMI). Furthermore I have implemented completely independently the DC-ProbLog language.
Angelika Kimmig and I have been developing the semantics.



84 WMI USING MONTE CARLO ANTI-DIFFERENTIATION

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc [2018]. Knowledge
Compilation with Continuous Random Variables and its Application in Hybrid
Probabilistic Logic Programming. In: Eigth International Workshop on Statistical

Relational AI @ IJCAI.

Zuidberg DosMartires, Pedro; Kimmig, Angelika; De Raedt, Luc [2020a]. Extending
ProbLog with Random Function Symbols. In: (in preparation).

The reader will spot passages where the exposition might be brief and informal. It
is also likely that the text will considerably change for a version published in a peer
reviewed paper.



Chapter 6

DC-ProbLog
∗

6.1 Syntax and Type System

DC-ProbLog is a probabilistic logic programming language derived from the
probabilistic logic programming language ProbLog. As such, a lot of the syntax
and general structure of DC-ProbLog programs are inherited from ProbLog. A major
syntactic difference between ProbLog and DC-ProbLog is the presence of distributional

facts in the latter. Distributional facts allow a user to express random variables that
are distributed according to a certain probability distribution specified by a random
function symbol.

Example 6.1. In this example we model the temperature as a continuous random

variable distributed according to a normal distribution with mean 20 and standard

deviation 5 (Line 3).

1 machine(1). machine(2).

2

3 temperature ~ normal(20,5).

4 0.99::cooling(1).

5 0.95::cooling(2).

6

7 works(N):- machine(N), cooling(N).

8 works(N):- machine(N), temperature<25.0.

9

∗
This chapter is based on the following two papers [Zuidberg Dos Martires et al., 2018; Zuidberg

DosMartires et al., 2020a].

85



86 DC-PROBLOG

10 evidence(works(2)).

11 query(works(1)).

Distributional facts are terms where the predicate ~ /2 is written in infix notation. The
first argument is a named random variable and the second describes the distribution
according to which the random variable is distributed. In the case of Example 6.1 the
function symbol is normal /2 .

Distributional facts are not limited to describing continuous random variables but can,
for example, also model discrete probability distributions, of which an example would
be the Poisson distribution.

Example 6.2. In this example we show how to model the size of a group of people

as a Poisson distribution and answer queries about the size of the group using the

comparison predicates > /2 and =:= /2 .

1 n_people ~ poisson(6).

2

3 more_than_five:- n_people>5.

4 exactly_five:- n_people=:=5.

5

6 query(more_than_five).

7 query(exactly_five).

6.1.1 Type System

Before we formally specify the syntax of DC-ProbLog, we specify a hierarchical type
system. To this end we will modify the type system given in [Sterling; Shapiro, 1994],
one of the main references on Prolog. The base type in the type system of [Sterling;
Shapiro, 1994] is the Term type, from which other types are subtyped. In other words:
everything is a Term.

Term

• Atomic

– Atom

– Number

• Compound

Logical variables (technically referred to as meta-logical variables [Sterling; Shapiro,
1994, Chapter 10]) are omitted from the type system hierarchy, as they can ground to



SYNTAX AND TYPE SYSTEM 87

any type, depending on the context. In Figure 6.1 we give a diagrammatic representation
of the Prolog type system. Note that ProbLog uses a different nomenclature: atom
terms in ProbLog correspond to the union of atom terms and compound terms in the
Prolog nomenclature of [Sterling; Shapiro, 1994]. In a first step we are going to
change the Prolog type system to match the nomenclature of ProbLog.

Term

• Number

• Atom

In Table 6.1 we give a side by side comparison of the two type systems and in Figure 6.1
and 6.2 we give diagrammatic representations of both type systems.

Table 6.1: Comparison of the Prolog type system and the ProbLog type system.

example Term Prolog ProbLog
3 Number

Atomic
Number

foo Atom
Atom

bar(foo) Compound

Term

Atomic Compund

Atom Number

Integer Float

Term

Atom Number

Integer Float

Figure 6.1: Diagrammatic represen-
tation of the hierarchical Prolog type
system [Sterling; Shapiro, 1994]. The
Number type is further subtyped into
Integer and Float.

Figure 6.2: Diagrammatic representa-
tion of the hierarchical ProbLog type
system. The Number type is further
subtyped into Integer and Float.



88 DC-PROBLOG

Analogously to the just introduced type system of ProbLog, the base type for DC-
ProbLog is again the Term type. At this point we modify the ProbLog type system by
subtyping terms with a Distrbution type and a Symbol type. Dividing DC-ProbLog
terms into Distribution terms and Symbol terms reflects the characterization
of Poole [2010] of probabilistic programs as being constituted of independent choices
(Distribution) and a deterministic system (Symbol).

Definition 6.1. The DC-ProbLog type system is a hierarchical type system with each

type being a disjoint union of its subtypes.

Term

1. Distribution

• DiscreteD

• ContinuousD

• MixtureD

2. Symbol

• Arithmetic

– RandomVariable

– Number

• Atom

A diagrammatic overview of the DC-ProbLog type system is given in Figure 6.3.

Distribution Terms

As already seen in Examples 6.1 and 6.2, Distribution terms determine the
probability distribution according to which a random variable is distributed.

Definition 6.2 (Distribution). Terms of type Distribution are constructed by

using a reserved random function symbol and applying it to a (possibly empty) tuple of

input arguments, which maps the input tuple to a distribution term. Distribution terms

are only allowed to be invoked as a second argument to the reserved distribution

predicate is /2 . This also means that random function symbols are only used

there as well. DC-ProbLog subtypes the Distribution type into the DiscreteD,

ContinuousD, and MixtureD types.

poisson(6) and normal(20,5) are for instance of types DiscreteD and Contin-
uousD, respectively. Note that distributions of type ContinuousD denote absolutely



SYNTAX AND TYPE SYSTEM 89

Term

Distribution Symbol

DiscreteD ContinuousD MixtureD Arithmetic Atom

RandomVariable Number

DiscreteRV ContinuousRV MixtureRV Integer Float

Figure 6.3: Diagrammatic representation of the hierarchical DC-ProbLog type system.
Compared to Definition 6.1, the Number type is further subtyped into Integer
and Float types and the RandomVariable type is subtyped into DiscreteRV,
ContinuousRV, and MixtureRV. These subtypes of RandomVariable mimic the
subtypes of the Distribution type.

continuous probability distributions1. We give an example of a distribution of type
MixtureD in Example 6.13.

Symbol Terms

Symbol terms are the building blocks of the discrete structure that makes up a logic
program and as such determine also the deterministic system of a probabilistic logic
program. Beyond the reserved syntax, which is used to define the distribution terms,
the user is free to use any identifier (following Prolog conventions) to declare Symbol
terms – this includes standard Prolog terms such as lists.

Definition 6.3 (Arithmetic). Terms of type Symbol for which arithmetic operations

are defined are of type Arithmetic. Arithmetic terms can be used as second

argument to the builtin is /2 functor. Arithmetic terms are subtyped with

RandomVariable terms and Number terms.

1DC-ProbLog does not support singular continuous probability distributions such as the Cantor
distribution.



90 DC-PROBLOG

We talk in more detail about Arithmetic terms and their evaluation in Subsec-
tion 6.1.4.

Definition 6.4 (RandomVariable). RandomVariable terms are named by the

programmer using distributional facts with the binary infix predicate ~ /2 and inherit

their subtype from the distribution term. All random variables present in a DC-ProbLog

program are named. RandomVariable terms are a subtype of the Arithmetic type.

Examples of terms of type RandomVariable would be temperature and n_people
in Examples 6.1 and 6.2, where we declared the random variables through so-called
distributional facts:

temperature ~ normal(20,5).

n_people ~ poisson(6).

As mentioned in Defintion 6.4, RandomVariable terms inherit their type from the
associated Distribution term, e.g. a ContinuousD term induces a random variable
term of type ContinuousRV.

Note that not all probabilistic programming languages enforce the naming of random
variables. In the functional probabilistic programming language Anglican [Wood et al.,
2014], for instance, the user can declare anonymous random variables, much like
anonymous functions, i.e. λ-functions.

Definition 6.5 (Number). Terms of type Number are used to express numerical data

types such as integers and floating point numbers.

Definition 6.6 (Atom). An atom is of the form p(t1,... , tn ) where p is a

predicate of arity n and the ti are Symbol terms [Fierens et al., 2015]. Predicates

used to construct Atom terms must not clash with the builtin predicates and reserved

random function symbols used to declare Distribution terms. Terms of type Atoms

constitute the building blocks of the discrete structure of a probabilistic logic program.

Examples of atoms terms would be foo or bar(foo,42). The latter is constructed
using the predicate bar /2 and the tuple of Symbol terms (foo,42). foo is of type
Atom and 42 is a Number term.

6.1.2 Syntax

Definition 6.7 (Deterministic Rules and Facts). A (normal) logic program is a set of

rules. A rule is a universally quantified expression of the form

h:- b1, ..., bn.



SYNTAX AND TYPE SYSTEM 91

where h is an Atom term and {b1, . . . , bn} is a set of n literals. Literals are either Atom

terms, or their negation. The Atom term h is called the head of the rule and b1, ... ,

bn the body. The latter represents the conjunction b1 ∧ · · · ∧ bn. A fact is a rule that

has true as its body and is simply written as

h.

Definition 6.8 (Probabilistic Facts). Probabilistic facts are of the form p::fact. p is

a term of type Number or RandomVariable, with 0≤p≤1 and fact is a ground atom.

Definition 6.9 (Distributional Facts). Distributional facts introduce random variable

terms and associate them with a distribution using the reserved binary predicate

~ /2 in infix notation. A distributional fact is a ground fact of the form rand ~

distribution, where distribution is a well-typed distribution term with output

type DistributionX and rand is a ground term whose functor is not reserved. The

distributional fact introduces rand as a random variable of type RandomVariableX,

i.e. the type of the random variable term mimics the type of the distribution term. No

two distributional facts can introduce the same random variable (i.e., use the same term

as left hand side). Distributional facts are the link between the independent choices (in

the form of distributions) and the discrete structure (in the of rules and facts).

Definition 6.10 (Comparison predicates). DC-ProbLog (similar to Prolog and

ProbLog) uses a fixed set of builtin binary predicates whose truth values depend on the

evaluation of its arguments. For terms that can be evaluated (RandomVariable terms

and Number terms) we use the set ⊲⊳= {=:=, =\=, <, >, =<, >=} of binary predicates

written in infix notation. Each of these has the usual Prolog arithmetic interpretation

of evaluating each side and comparing the results. Just as for Prolog arithmetic, truth

values of atoms using these predicates are determined through an evaluation process

that is external to the (probabilistic) logic program. Such atoms can be used in clause

bodies, but never in clause heads (or as facts).

Example 6.3. Comparison predicates allow for the comparison of random variables

to numbers.

1 x ~ normal(0,3).

2 q:- x>0.

3 query(q).

A DC-ProbLog program consists of a countable set of ground distributional facts, a
countable set of ground probabilistic facts, and a logic program (i.e. a finite set of facts
and normal clauses), where bodies of normal clauses can use comparison predicates.

Definition 6.11. A DC-ProbLog program consists of three disjoint sets:



92 DC-PROBLOG

1. A countable set of rules and facts.

2. A countable set of ground probabilistic facts.

3. A countable set of ground distributional facts.

6.1.3 Multiple Dispatch

The attentive reader might have noticed that in Definition 6.10 we used the same
comparison predicates, for RandomVariable terms as well as Number terms. In
DC-ProbLog we resolve this clash through multiple dispatching [Castagna et al.,
1995]. Multiple dispatching is the process of dynamically selecting at run time2 a
specific implementation of a function based on the types of the arguments that are
fed as input to the corresponding function symbol. Such functions are referred to
as multimethods. An early example of multiple dispatch is the Common Lisp Object

System [Keene, 1989]. Multiple dispatch is also the programming paradigm on which
the Julia programming language is built [Bezanson et al., 2017]. We reuse this idea
in the context of probabilistic logic programming with random function symbols to
retain a simple and neat syntax. Consider, for instance, the declaration of the normal
distribution in Example 6.1. The definition of the function is the following:

normal : Number × Number→ ContinuousD

However, the arguments of a normal distribution (its mean and standard deviation)
might as well be random variables themselves. Multiple dispatching then allows us to
overload the normal function symbol by using arguments of a different type3:

normal : RandomVariable × Number→ ContinuousD

normal : Number × RandomVariable→ ContinuousD

normal : RandomVariable × RandomVariable→ ContinuousD

The exact implementation of these random function symbols is left to the designer of
the implementation of the language.

6.1.4 Arithmetic Evaluation

Prolog implementations reserve a set of predicate names for system-related procedures.
These system predicates are usually deployed when the goal is to perform efficient

2In the context of logic programming we understand as run time the time it takes to ground the logic
program part of a DC-ProbLog program.

3For simplicity we omit that the standard deviation has to be a strictly positive (real) number, which can
be enforced by extending the type system.



SYNTAX AND TYPE SYSTEM 93

arithmetic operations on numbers, either by using specialized algortihms or specialized
hardware. For example, when a user wants to add up the integers 3 and 5 they simply
write Sum is 3+5. The predicate is /2 takes the second argument, passes it to an
external evaluation engine, which performs integer addition, and unifies the result with
the logical variable Sum. It is rather obvious that the concept of multiple dispatch comes
in handy here: the same functors can be used to perform the same operations on terms
of different types. The correct functor is only dertermined during the grounding of the
logic program, i.e. during runtime.

The key difference between the external arithmetic engine of Prolog (or ProbLog) and
the external arithmetic engine of DC-ProbLog is that the external engine of the latter
is capable of performing arithmetic operations (perform evaluations) with random
variables. Combining this innovation with multiple dispatch allows us to retain the
same syntax (same functor) to perform arithmetic operations on RandomVariable
terms and/or Number terms.

Example 6.4. A DC-ProbLog code snippet showing how random variable terms can

be used in an arithmetic expression.

1 x ~ normal(0,3).

2 q:- X is x+3, X>3.

3 query(q).

Multiple dispatch allows DC-ProbLog to call specific implementations of the
comparison predicates in the external arithmetic engine. In other words, multiple
dispatch allows for using the same predicate for semantically different terms.
Comparing two terms of type Number, for example, materializes as a deterministic
fact, whereas a comparison between terms of types Number and RandomVariable
materializes as a probabilistic query. We will see how this extremely useful mechanism
works in the next Section 6.2, where we also introduce the semantics of DC-ProbLog.

6.1.5 Relationship of Multiple Dispatch to Typing in Prolog

Traditionally Prolog is weakly typed. This means that only at run time (grounding
time) it is checked whether a relation with certain arguments is present in the logic
database, which is a set of ground relations. If the relation is not present, Prolog
implementations do usually not throw an error but simply fail on the the goal that is
being proven. For builtin predicates such as is /2 or any comparison predicates, the
run time type system is more strict and the Prolog implementation might actually throw
an error. For instance, the presence of the relation three=:=3 in a proof would throw
an error. Such typed arithmetic relations can be thought of as multirelations, which
have a different interpretations based on their type at run time. In other words, they



94 DC-PROBLOG

are the logic programming equivalent to multimethods: their interpretation depends on
their predicate and the types of their arguments.

In DC-ProbLog we extend this idea of multirelations using the framework of multiple
dispatch. In comparison to Prolog style multirelations, typed relations in DC-ProbLog
can affect the structure of the probabilistic program – contrary to only selecting the
right computation in the external arithmetic engine (e.g. floating point addition vs.
integer addition). We will encounter examples in Section 6.2, where we rewrite a
DC-ProbLog program as a DC-PLP program and where we have rewrite rules that
do not only depend on the predicate of a relation but also on the types of a relation’s
arguments.

Note that in DC-ProbLog not only the builtin comparison predicates and the is2 have a
typed signature but also the random function symbols, e.g. normal/2. We can say that
interpreted predicated and functors, that is predicates and functors that have a system
internal meaning, possess a type signature. This results in a type dependent calculus.

Strongly Typed Prolog

While Prolog is traditionally not strongly/statically typed, there have been efforts to
extend Prolog with such a type system. The most interesting effort is probably the one
presented in Schrijvers et al. [2008], where the authors develop the idea of partially
typing a Prolog program, i.e. typing is optional and untyped code is interpreted instead
of compiled. Our efforts to utilize multiple dispatch within a (probabilistic) logic
programming language can be understood as an effort orthogonal to the efforts towards
statically typed Prolog. Introducing predicates with strongly typed signatures can also
be regarded as adding interpreted predicates to the internal Prolog engine.

6.2 DC-PLP

In this section we will briefly sketch the main ideas for defining the semantics of
DC-ProbLog. The semantics of DC-ProbLog are defined through the semantics of
DC-PLP, a probabilistic logic programming language with both discrete and continuous
random variables following Sato’s distribution semantics [Sato, 1995]. DC-PLP is
an assembly language with minimal syntax, whose main purpose is to define the
declarative semantics of the language independently of existing syntax, inference
algorithms or systems.

Poole [2010] has characterised probabilistic programming as independent choices
plus deterministic systems, with (discrete) probabilistic logic programming being
the case where the deterministic system is given by a logic program [Poole, 2010].



DC-PLP 95

DC-PLP builds upon this idea, but relaxes the independence assumption by explicitly
distinguishing two types of dependencies: 1) those expressed by the logic program (i.e.
deterministic system), and 2) those expressed by using random variables as parameters
of distributions for other random variables.

DC-PLP serves as a stepping stone towards DC-ProbLog: the semantics of DC-ProbLog
are defined through the semantics of DC-PLP and an additional unique deterministic
program transformation that takes DC-ProbLog programs and maps them to DC-PLP
programs.

The key idea behind DC-PLP is to build the semantics of a program in three steps:

1. Define a countable set of random variables and associate a unique parametric
distribution to each random variable through a logic program that defines terms
of the form rv(name,dist). We do not use the is /2 infix notation for
distributional clauses to make explicit that this is restricted to fully deterministic
bodies. We do not introduce syntax for probabilistic facts, as these can be
modeled through Boolean random variables and rules. For valid programs, this
will give us a unique joint probability measure over these random variables that
factors into the individual distributions.

2. Define a countable set of measurable Boolean queries over the random
variables. These correspond to the type of tests that are written with comparison
predicates (<, =<, >, >=, =:=, =\=). However, we here define these on the term
level and wrap them into a single predicate test/1 for ease of uniform notation.

3. Define a logic program that computes consequences of the Boolean queries. To
include a Boolean query q in the body of a clause, it gets wrapped into a term of
the form test(q).

The first step defines all random choices, while the second and third step form the
deterministic system. As the second and third step are deterministic functions of the
random variables, the measure defined in the first step extends to the Boolean queries
and from there to the terms in the logic program.

In contrast to the Distributional Clauses probabilistic programming language [Gutmann
et al., 2011], where several conditional distributional clauses can jointly define the
distribution of a single random variable through a complex logical factorization, DC-
PLP uses a single fact to define a random variable unconditionally and associates
a single parameterized distribution to it. As we still have the full power of normal
logic programs to model the deterministic system, this does not restrict expressivity,
but simplifies the formal definition of the semantics. When modeling conditional
distributions, users have a range of choices, from encoding the entire conditional
probability distribution into a single term within the defining rv/2 fact, all the way



96 DC-PROBLOG

to a set of individually named choice random variables with minimal use of random
variables as parameters tied together by a deterministic system, or any intermediate
factorisation. As already discussed by Poole [2010], not all choices work equally
well with all inference algorithms. DC-PLP provides these choices within the same
semantical framework, leaving it to system developers to focus the syntax towards
a subset of choices and/or to exploit the different choices when integrating different
inference approaches into their system.

6.2.1 From DC-ProbLog to DC-PLP

In order to illustrate DC-PLP we are now going to map a high-level probabilistic logic
program written in DC-ProbLog to DC-PLP, where we can then identify the three
components that constitute a DC-PLP program:

1. countable set of random variables

2. countable set of measurable Boolean queries

3. logic program computing consequences of Boolean queries

We will perform the transformation in two steps.

Example 6.5 (DC-ProbLog Program). This example program models the correct

working of a machine. The probability distribution of the temperature of the machine

depends on whether it is a hot day or not.

1 machine(1).

2

3 0.2::hot.

4 0.99::cooling(1).

5

6 temperature ~ normal(27,5):- hot.

7 temperature ~ normal(20,5):- \+hot.

8

9 works(N):- machine(N), cooling(N).

10 works(N):- machine(N), temperature<25.0.

11

12 query(works(1)).

Note that we introduced distributional clauses in this example, which let us write down

conditional probability distributions.



DC-PLP 97

Definition 6.12. Distributional clauses are syntactic sugar to concisely write down

conditional probability distributions of random variables. We necessitate the bodies

of distributional clauses with the same random variable in their heads to be pairwise

logically inconsistent. A DC-ProbLog program containing a random variable rand

involved in N distributional clauses

rand ~ disti :- bi

with mutually logically inconsistent bodies bi (1≤i≤N) is equivalent to a DC-ProbLog

program with N fresh random variables randi (1≤i≤N) involved in N distinct

distributional facts

randi ~ disti.

Each clause initially containing rand is replaced in the equivalent program that does

not contain distributional clauses for rand by N clauses, where rand is substituted by

randi and its body is conjoined with bi for every i with 1≤i≤N.

Example 6.6 (DC-ProbLog Program with Eliminated Distributional Clauses). In this

example we apply the definition of a distributional clause to reduce the program in

Example 6.5 to a DC-ProbLog program, according to Definition 6.11.

1 machine(1).

2

3 0.2::hot.

4 0.99::cooling(1).

5

6 temperature(hot) ~ normal(27,5).

7 temperature(not_hot) ~ normal(20,5).

8

9 works(N):- machine(N), cooling(N).

10 works(N):- machine(N), temperature(hot)<25.0, hot.

11 works(N):- machine(N), temperature(not_hot)<25.0, \+hot.

12

13 query(works(1)).

Note how the distributional clauses were rewritten as distributional facts with fresh

random variables, the clause involving the random variable temperature was

duplicated, and temperature was replaced with the fresh random variables. At

the same time the bodies of the duplicated clauses were conjoined with the respective

body of the initial distributional clauses (hot and \+hot).



98 DC-PROBLOG

Example 6.7 (DC-PLP Program). We rewrite the program in Example 6.6 as a DC-PLP

program.

1 rv(hot, flip(0.2)).

2 rv(cooling(1), flip(0.99)).

3 rv(temperature(hot), normal(27,5)).

4 rv(temperature(not_hot),normal(20,5)).

5

6

7 test(cooling(N)=:=1)

8 test(hot=:=1).

9 test(hot=:=0).

10 test(temperature(hot)<25.0).

11 test(temperature(not_hot)<25.0).

12

13

14

15 machine(1).

16 works(N):- machine(N), test(cooling(N)=:=1).

17 works(N):-

18 machine(N),

19 test(temperature(hot)<25.0),

20 test(hot=:=1).

21 works(N):-

22 machine(N),

23 test(temperature(not_hot)<25.0),

24 test(hot=:=0).

25

26 query(works(1)).

We are now able to clearly identify the three components of a DC-PLP program. In

the first part we see the random variables (representing independent choices). Here

we also also included the probabilistic facts from the intial DC-ProbLog program.

DC-PLP encodes probabilistic facts using the flip/2 random function symbol, which

returns either 1 or 0 with the probability given as the argument. In the second block

of code we see the countable set of measurable Boolean queries, and the last part

contains the logic program.

Multiple Dispatch and Comparison Predicates

As mentioned earlier, multiple dispatching is of outstanding usefulness when applying
comparison predicates to different type signatures that result in semantically different



DC-PLP 99

terms. We will illustrate this by example.

Example 6.8. Consider the following DC-ProbLog code snippet with no random

variables.

1 people(N):- N is 8.

2 large_group:- people(N), N>6.

During grounding, the comparison operator in the second line will dispatch to a

deterministic comparison, as both sides of the comparison are of type Number. The

arithmetic engine replaces the grounded comparison term with atom true.

Example 6.9. Consider now a DC-ProbLog code snippet where a comparison predi-

cate is present that receives as one of its arguments a term of type RandomVariable.

1 people ~ poisson(6).

2 large_group:- people>6.

During grounding the comparison predicate dispatches to a probabilistic comparison.

Instead of replacing the comparison by either true or false, the arithmetic engine

defers the evaluation and ultimately adds a test(people>6) term to the set of

measurable Boolean queries.

6.2.2 Valid DC-PLP Programs

Definition 6.13. A DC-PLP program P consists of:

1. A countable set P of random variables.

2. A countable set Q of measureable Boolean queries over the random variables.

3. A logic program L, which has access to the set of Boolean queries.

Definition 6.14. A DC-PLP P program is called valid if the following three conditions

hold.

1. The program P is distribution stratisfied, that is, there exists a function rank(·)
that maps ground random variables, of the form rv(rand,dist(d1,...,dn)),

to N and that satisfies rank(rand) > rank(di) for every i (1 ≤ i ≤ n).

2. The logic program L is sound [Riguzzi; Swift, 2013], i.e. every model of L is a

two-valued well-founded model [Van Gelder et al., 1991; Riguzzi; Swift, 2013].



100 DC-PROBLOG

3. Each model of L is derivable from a finite set of Boolean queries in Q.

The first condition ensures that programs do not exhibit cyclic functional dependencies,
disallowing programs of the form:

1 x ~ normal(y,1).

2 y ~ normal(x,1).

3 q:- y>3.

4 query(q).

The third condition is necessary to satisfy the finite support condition of the
distribution semantics [Sato, 1995]. Definition 6.14 follows closely the semantics
of ProbLog [Fierens et al., 2015], which guarantees that a DC-ProbLog program
without distributional facts is in fact a ProbLog program.

Negation

In order to add negation to the hybrid probabilistic logic programming language
Distributional Clauses, Nitti et al. [2016a] resorted to negation as failure within a
Selective Linear Definite (SLD) resolution [Sterling; Shapiro, 1994] inference scheme
to patch the initial (negation-free) semantics given in [Gutmann et al., 2011]. The
semantics then follow [Przymusinski, 1988]’s perfect model semantics.

The well-founded semantics already account for negation in logic programs and we do
not have to add any extra machinery to add negation. On a side note: in the absence of
negation the well-founded model of a logic program is identical to the least Herbrand

model.

Probability of a DC-PLP Program

Definition 6.15. Let MOD(L) be the set of all two-valued well-founded models of L,

which is the logic program of a valid DC-PLP program P, and Q(l) the set of Boolean

queries used to derive l ∈ MOD(L). Furthermore, let var(Q(l)) be the set of random

variables on which Q(l) depends. The probability of the model l is then given by:

p(l) =

∫




∏

q∈Q(l)

~q�









∏

xl∈var(Q(l))

Dl(xl)





︸               ︷︷               ︸

≕Dl(xl)





∏

xl∈var(Q(l))

dxl





︸            ︷︷            ︸

≕dxl

(6.1)

Dl(xl) is the probability distribution according to which the variable xl is distributed

and which is given by the countable set P.



DC-PLP 101

The probability of the DC-PLP program P is given by:

p(P) =
∑

l∈MOD(L)

p(l) =
∑

l∈MOD(L)

∫
∏

q∈Q(l)

~q�Dl(xl)dxl (6.2)

Let us compare the definition of the probability of a DC-PLP program to the definition
weighted model integration, and in particular the form of WMI given in Equation 4.4:

∑

〈φi,ωi〉∈W f

∑

b

∫

~φi(x,b)�ωi(x)dx (4.4)

We cannot but appreciate the striking similarity between both Equations. The only
substantial difference is that Equation 6.2 uses Lebesgue integration to marginalize out
Boolean random variables, whereas Equation 4.4 uses a summation. Other than that it
is straight forward to map one equation to the other:

• We associate the sum over the models l ∈ MOD(L) to the sum over different
SMT(LRA) formulas φi in weighted model integration

• We associate a specific product of Iverson brackets of Boolean queries
∏

q∈Q(l)~q�

to the Iverson bracket of a specific SMT(LRA) formula ~φi�, which is a
conjunction of atomic SMT(LRA) formulas.

• We associate the distributions in Dl with the weight function ωi.

Valid DC-ProbLog Programs with Distributional Clauses

Definition 6.16. A DC-ProbLog program P with distributional clauses is valid if it can

be mapped to an equivalent valid DC-PLP program. For such a mapping to exist the

following two criteria have to hold:

V1 The bodies of ground distributional clauses with the same random variable in

their heads are pairwise logically inconsistent.

V2 The program P is distribution stratisfied, that is, there exists a function rank(·)
that maps ground terms to N and that satisfies the following properties:

1. for each ground instance of a distributional clause of the form

rand~dist(d1,...,dn)):-b it holds that rank(rand) > rank(di) for

every i (1 ≤ i ≤ n).

2. for each ground instance of a distribution clause rand~dist:-b1,...,bn

it holds that rank(rand ~ dist) > rank(bi), for all i.



102 DC-PROBLOG

3. for each ground instance of another program clause h:- b1,...,bn it

holds that rank(h) ≥ rank(bi), for all i.

4. for each ground term b that contains a random variable rand, rank(b) ≥
rank(rand~dist) (with rand~dist the head of the distribution clause

defining rand).

The criterion V1 is equivalent to the validity criterion V1 given in [Gutmann et al.,
2011, Definition 3], which requires that there is a unique ground distribution for each
ground random variable rand. V2 is a carbon copy of the second validity criterion
of [Gutmann et al., 2011, Definition 3], with the exception of the first point of V2.
We added it, as distributional clauses with cyclic functional dependencies were not
disallowed in [Gutmann et al., 2011].

Mapping distributional clauses to distributional facts is akin to mapping intentional
probabilistic facts (e.g 0.2::a:- b.) to probabilistic facts (and deterministic rules).
Note that DC-ProbLog allows, just as ProbLog, the usage of intentional probabilistic
facts, with the same semantics as in ProbLog. In absence of any distributional facts
and clauses, a DC-ProbLog program reduces to a ProbLog program.

Difference to Distributional Clauses

This is also a good point to illustrate a major difference between the semantics of
random variables in Distributional Clauses and DC-ProbLog. Take the code snippet
below:

1 x ~ normal(20,2).

2

3 q(1):- x>20.

4 q(2):- y>20.

5

6 query(q(1)).

7 query(q(2)).

The first query succeeds and returns as an answer p(query(q(1)))) = 0.5. The
second query, however, throws an error as there is no term of type RandomVariable
declared that is named y. The second query would also fail if there were an Atom term
named y. In this case the lefthand side of y>20 would be ill-typed.

Let us now write the same program as a Distributional Clauses program:

x ~ normal ( 2 0 , 3 ) .



INFERENCE 103

q ( 1 ) ← ≃(x)<20.
q ( 2 ) ← ≃(y)<20.

que ry ( q ( 1 ) ) .
que ry ( q ( 2 ) ) .

The first query will again return p(query(q(1) )) = 0.5 (or an approximation thereof)
but the second query will not throw an error but return a probability of zero. How does
this work? The term ≃(y) tries to unify with the value of the random variable y. As
there is no such random variable, this silently fails and the body of the clause whose
head is q(2) is simply not satisfied.

If we were to negate the comparison predicate in the body of the q(2) clause, i.e. write:

q ( 2 ) ← ≃(y)<20.

we would obtain for the second query: p(query(q(1) )) = 1. Negating the corresponding
comparison predicate in DC-ProbLog would still result in an ill-typed term, i.e. an
error would be thrown.

The comparison we just performed does not only illustrate a semantic difference
between DC-ProbLog and Distributional Clauses but also a conceptual one. In DC-
ProbLog the values of of random variables never enter the realm of the logic program:
values of random variables only live in the external arithmetic engine of DC-ProbLog.
In contrast, random variables in Distributional Clauses are part of the logic program: the
values of random variables are stored in a logic data base and can be accessed through
logical unification. Distributional Clauses currently does this via SLD resolution.

6.3 Inference

Similar to following ProbLog when defining the semantics for DC-ProbLog (using
well-founded semantics), we will now also design an inference algorithm for our
implementation of DC-ProbLog, inspired by the inference mechanisms present in the
ProbLog2 system [Dries et al., 2015].

A ProbLog program is first converted into a ground (probabilistic) logic program. This
ground program is subsequently transformed into a deterministic and decomposable
weighted propositional logic formula. Evaluating this formula, i.e. computing the
weighted model count, yields the probability queried by the program. A diagrammatic
representation is given in Figure 6.4.

Inference in our implementation of DC-ProbLog follows a similar principle, with the
difference that a probabilistic program is transformed to a weighted and compiled



104 DC-PROBLOG

forward
compile

ground

ProbLog
Program

Ground
Program

Clark's
completion

compile

Acyclic
Ground
Program

evaluate

d-DNNF
compile

CNF

evaluateSDD Probability

break
cycles

Figure 6.4: Overview of the primary program transformation steps in the ProbLog2
system [Dries et al., 2015; Zuidberg DosMartires et al., 2019a].

SMT formula. The probability of a query query(q) in a DC-ProbLog program is
then obtained by computing the probability of an equivalent SMT formula φq using
weighted model integration:

p(query(q)) = p(φq) =WMI(φq,wq) (6.3)

In Algorithm 6.1 we outline the steps enabling inference. They closely follow the
steps presented in [Fierens et al., 2015, Section 5].The correctness of the algorithm
can be proven by again following [Fierens et al., 2015] and using abstractions of SMT
formulas, which are Boolean formulas, instead of Boolean formulas directly.

Algorithm 6.1 (DC-PLP Inference). The inference algorithm takes as input a

DC-PLP program P, consisting of a countable set P of random variables, a

countable set of measurable Boolean queries Q, and a purely logic program L.

The algorithm then maps P through the following steps to a WMI problem.

1. Ground out the purely logic program L of P and obtain the ground program

Lg. This will also ground the Boolean queries in Q, leading to Qg.

2. Convert the ground logic program consisting of Lg and the set of measurable

queries Qg to an equivalent SMT formula φq.

3. Define a weight function wq, which corresponds to the countable set of

random variables in P.

We just mapped the probability encoded by a DC-PLP program to a weighted model
integral. Inference in DC-PLP/DC-ProbLog can hence be performed by any algorithm
capable of computing the weighted model integral in question.

Example 6.10 (Mappint DC-PLP to WMI). Consider again the DC-PLP program in

Example 6.7. If we ground the purely logic component of the program we obtain the

ground program.

1 rv(hot, flip(0.2)).

2 rv(cooling(1), flip(0.99)).



INFERENCE 105

3 rv(temperature(hot), normal(27,5)).

4 rv(temperature(not_hot),normal(20,5)).

5

6

7 test(cooling(1)=:=1)

8 test(hot=:=1).

9 test(hot=:=0).

10 test(temperature(hot)<25.0).

11 test(temperature(not_hot)<25.0).

12

13

14 machine(1).

15 works(1):- machine(1), test(cooling(1)=:=1).

16 works(1):-

17 machine(1),

18 test(temperature(hot)<25.0),

19 test(hot=:=1).

20 works(1):-

21 machine(1),

22 test(temperature(not_hot)<25.0),

23 test(hot=:=0).

24

25 query(works(1)).

We are now able to map the grounded logic program and the Boolean queries to an

SMT formula φq:

φq ↔ machine(1) ∧ (cooling(1) = 1)∨

machine(1) ∧ (temperrature(hot) < 25.0) ∧ (hot = 1)∨

machine(1) ∧ (temperature(not_hot) < 25.0) ∧ (hot = 0)

↔ (cooling(1) = 1)∨

(temperrature(hot) < 25.0) ∧ (hot = 1)∨

(temperature(not_hot) < 25.0) ∧ (hot = 0) (6.4)

The weight function wq is simply obtained by multiplying together the functions

corresponding to the random variables declared in the DC-PLP program.



106 DC-PROBLOG

6.3.1 Conditional Probabilities

For DC-ProbLog programs that include evidence on Boolean random variables the
probability is simply obtained by computing two weighted model integrals, one for the
evidence φe and one for the conjunction of the evidence with the query φe ∧ φq:

p(φq|φe) =
p(φq, φe)

p(φe)
=

WMI(φq ∧ φe,wqe)

WMI(φe,we)
(6.5)

This lets us, for instance, compute the probability of the query in Example 6.1, where
we saw that we can express a conditional probability by using the reserved evidence/1
predicate. DC-ProbLog also has a binary predicate evidence/2, where the second
argument is either the true symbol or the false symbol. The former is equivalent to
using the unary version, while the latter allows one to express negative evidence. These
predicates are also present in ProbLog.

6.3.2 Zero Probability Events and Measurements

While the evidence predicate allows us to express conditional probabilities where
we condition on Boolean random variables, its semantics does not extend directly
to conditioning on continuous random variables: a continuous random variable can
neither be true nor false. In order to allow a user to condition on continuous random
variables in DC-ProbLog, we introduce the observation/2 predicate.

Example 6.11. We model the size of a ball as a mixture of different beta distributions,

depending on whether the ball is made out of wood or metal (Line 1)4. We would

now like to know the probability of the ball being made out of wood given that we

have a measurement of the size of the ball. In order to condition on a continuous

random variable we introduce the observation/2 predicate, which has an analogous

functionality as the evidence predicates for Boolean random variables.

1 3/10::material(wood);7/10::material(metal).

2

3 size~beta(2,3):-material(metal).

4 size~beta(4,2):-material(wood).

5

6 observation(size,4/10).

7 query(material(wood)).

4Annotated disjunctions are used to concisely write down mutually exclusive Boolean random variables.
Internally they are compiled down to probabilistic facts and deterministic rules.



INFERENCE 107

This DC-ProbLog program encodes the conditional probability:

p(material(wood)|size=4/10) (6.6)

In Example 6.11 we can see that the observation/2 predicate takes for its first
argument a named random variable and for its second argument a Term of type
Number. Restricting the signature of the observation/2 predicate in this way,
as opposed to many other probabilistic programming languages, has the benefit of
inducing unambiguous probability distributions. This problem is related to the Borel-
Kolomogorov paradox [Kolmogorov, 1950; Gyenis et al., 2017], which is caused by a
zero-division as the probability of the observation is zero:

p(observation(size,4/10)) = p(size=4/10) = 0 (6.7)

In other words, a random variable with infinitely many outcomes will take a specific
value with probability zero.

For a formal discussion we define the conditional probability p(φq|φe) following Kadane
[2011]. Let us also, for now, make the explicit disctinction between the probability P

and the probability density function p : d
dx

P(X ≤ x) = p(x) (analogously to Nitti et al.
[2016a]).

P(φq|φe) = P(φq|rv = v) (φe ↔ rv = v) (6.8)

= lim
∆v→0

P(φq, rv ∈ [v − ∆v/2, v + ∆v/2])

P(rv ∈ [v − ∆v/2, v + ∆v/2])
(6.9)

= lim
∆v→0

∫

~x |= φq�p(x, rv = v)dx✚✚∆v

p(rv = v)✚✚∆v
(6.10)

=

∫

~x |= φq�p(x, rv = v)dx

p(rv = v)
(6.11)

This means that we do not divide anymore by zero but by the number obtained when
evaluating the probability distribution at the observed point. For example, when
evaluating beta(2,3) (cf. Example 6.11, Line 3) at 4/10 we get 1.7280 instead of
zero. Note that this is not a probability between zero and one.

For a more general case, where we do not restrict the signature of the observation/2
predicate, it might be impossible to take the limit in Equation 6.9 as such a limit
might not exist. Nevertheless, some languages lift this restriction, which results in
possibly semantically ill-defined programs, such as in Distributional Clauses [Nitti
et al., 2016a, Section 3.2]. A more sophisticated method to tackle the non-uniqueness
of the conditional probability is disintegration [Shan; Ramsey, 2017], where instead



108 DC-PROBLOG

of returning a conditional probability, a family of conditional probabilities is returned
(representing an uncountable number of limits). Other languages, such as BLOG,
simply assume uniqueness of the limit [Wu et al., 2018].

At this point, the type signature we impose on the observation/2 predicate might
seem too restrictive. Take for example the following conditional probability [Nitti
et al., 2016a]:

P(nationality|height=160 ∨ height=180) (6.12)

This probability cannot be expressed using the observation/2 predicate. However,
if we think about what a conditioning set represents in a probabilistic programming
and machine learning context, the example above appears quite odd. The conditioning
set tells us which observations we have made about the world, i.e. data that we have
collected and we collected this data using a physical device (tape measure for the height
of a person). The example in Equation 6.12 now tells us that our measuring device
returned two numbers for a single measurement . . .

We just said that a measurement consists of retrieving a number from a measuring
device. This is not entirely correct. In natural sciences a measurement consists always of
a number and an upper and lower error bound, which effectively eliminates the problem
of zero probability events. However, given the ubiquity of single point measurement,
we feel that a probabilistic programming language that is not able to handle single point
measurements is greatly hurt in its expressivity. In Subsection 6.4.1, we will see an
example where zero probability events play an important role in computing the correct
probability.

To conclude, in DC-ProbLog, the observation/2 predicate allows a user to condition
on zero probability events, while at the same time the imposed restrictions ensure that
the encoded probability distribution is well defined.

6.3.3 Algebraic Likelihood Weighting

Probabilistic programming languages that successfully handle mixtures of discrete
and continuous random variables, including conditioning with zero probability events
deploy either purely symbolic inference algorithms [Gehr et al., 2016; Shan; Ramsey,
2017] or extend the likelihood weighting [Fung; Chang, 1990] algorithm leading to a
hybrid symbolic-approximate inference algorithm [Nitti et al., 2016a; Wu et al., 2018].

In this section we frame the lexicographic likelihood weighting (LLW) algorithm [Wu
et al., 2018] in an algebraic model counting context, which we dub ALW. LLW
is based on ideas presented by Nitti et al. [2016a] and combines sampling based
probabilistic inference with symbolic inference to correctly handle mixtures of discrete
and continuous random variables. The advantage of framing LLW in as an algebraic



INFERENCE 109

model counting problem is that the resulting algorithm becomes agnostic of the
underlying inference mechanism (e.g. Monte Carlo sampling). Moreover, we can
simply reuse algorithms already developed in the first part of the thesis in the context
of weighted model integration in order to perform inference in DC-ProbLog.

Following the steps taken in Section 3.2 we define again a labeling function and a
semiring.

Definition 6.17 (ALW labeling function). Let l be a literal. Then the label of the literal

l is given by:

αALW (l) ≔






(p(l), 0) if l is a Boolean variable

(~c(x)�, 0) if l is an atomic formula abstraction

(p(v), 1) if we make the observation (x = v)↔ l

In the first case, p(l) denotes the probability for l being true, in the second case, c(x)
denotes the condition of which l is the abstraction, and in the third case p(v) denotes

the value of the probability distribution evaluated at v.

The label of a negated literal ¬l is given by:

αALW (¬l) ≔






(1 − p(l), 0) if l is a Boolean variable

(~¬c(x)�, 0) if l atomic formula abstraction

(1, 0) if we make the observation (x = v)↔ l

Definition 6.18 (ALW semiring). The elements of the semiring SALW are given by the

set

AALW ≔ {(a, d)} (6.13)

where a denotes a real-valued weight and d the positive integer number of probability

densities (continuous probability distribution) that have contributed to a. The neutral

elements e⊕ and e⊗ are defined as:

e⊕ ≔ (0, 0) e⊗ ≔ (1, 0) (6.14)

For the addition and multiplication we define:

(a1, d1) ⊕ (a2, d2) ≔






(a1 + a2, d1) if d1 = d2

(a1, d1) if d1 < d2

(a2, d2) if d1 > d2

(6.15)

(a1, d1) ⊗ (a2, d2) ≔ (a1 × a2, d1 + d2) (6.16)

Lemma 6.1. The structure SALW = (AALW ,⊕,⊗, e⊕, e⊗) is a commutative semiring.



110 DC-PROBLOG

Lemma 6.2. The pair (⊕, αALW ) is neutral.

Assume now that the algebraic model count of φq ∧ φe and φe evaluate respectively to:

AMC(φq ∧ φe, αALW ) = (Ψqe, dqe) (6.17)

AMC(φe, αALW ) = (Ψe, de) (6.18)

The conditional probability is then given by:

p(φq|φe) =






WMI(φq∧φe,wqe)
WMI(φe,we) if dqe = de

0 if dqe > de

(6.19)

Note, in Equations 6.17 to 6.19 we have omitted the dependence of the algebraic model
counts and the weighted model integration on the Boolean and/or real variables.

6.4 Two Showcase Examples

We present now two showcase probabilistic programs expressed in DC-ProbLog.
The programs and the source code for the implementation of the language can be
found online5. The DC-ProbLog implementation uses the probabilistic programming
language Pyro [Bingham et al., 2018] in the backend to handle continuous random
variables.

6.4.1 The Indian GPA problem

The Indian GPA problem was initially proposed by Stuart Russell as an example
problem that contemporary probabilistic programming languages were not able to
handle, as they did not correctly perform probabilistic inference for probability
distributions that are mixtures of discrete and continuous random variables.

Example 6.12. The Indian GPA problem models US-American and Indian students

and their GPAs. Both receive scores on the continuous domain. From zero to four

(American) and from zero to 10 (Indian), cf. Line 10 and 16. With probability non-zero

both student groups can also obtain marks at the extremes of the respective scales

(Lines 11, 13, 17, 19). We observe now that a student has a GPA of four and we would

like to know the probability of this student being American or Indian. The correct

answer is p(american)=1 and p(indian)=0, which is what DC-ProbLog returns, too.

5https://github.com/ML-KULeuven/problog/tree/dcproblog_develop/problog/tasks/

dcproblog

https://github.com/ML-KULeuven/problog/tree/dcproblog_develop/problog/tasks/dcproblog
https://github.com/ML-KULeuven/problog/tree/dcproblog_develop/problog/tasks/dcproblog


TWO SHOWCASE EXAMPLES 111

1 1/4::american;3/4::indian.

2

3 19/20::isdensity(a).

4 99/100::isdensity(i).

5

6 17/20::perfect_gpa(a).

7 1/10::perfect_gpa(i).

8

9

10 gpa(a)~uniform(0,4):- isdensity(a), american.

11 gpa(a)~delta(4.0):-

12 \+isdensity(a), perfect_gpa(a), american.

13 gpa(a)~delta(0.0):-

14 \+isdensity(a), \+perfect_gpa(a), american.

15

16 gpa(i)~uniform(0,10):- isdensity(i), indian.

17 gpa(i)~delta(10.0):-

18 \+isdensity(i), perfect_gpa(i), indian.

19 gpa(i)~delta(0.0):-

20 \+isdensity(i), \+perfect_gpa(i), indian.

21

22 gpa(student)~delta(A):- A is gpa(a).

23 gpa(student)~delta(I):- I is gpa(i).

24

25 observation(gpa(student),4.0).

26 query(american).

27 query(indian).

DC [Nitti et al., 2016a] and BLOG [Wu et al., 2018] do return the correct probabilities
as well, however, the advantage of using Sampo in conjunction with ALW gives the
correct result without drawing any samples.

In Example 6.12 we wrote the probability distribution of gpa(a) and gpa(i) using
uniform and Dirac delta distributions. This allowed us to distribute the random
variables gpa(a) and gpa(i) according to a discrete-continuous mixture distribution.
Alternatively, we could also have handed off the discrete-continuous mixture completely
to the independent choice system, i.e. using a specific random function symbol for
mixture distributions.

Example 6.13. An alternative formulation of the program in Example 6.12, relying on

random variables rather than on logical rules.



112 DC-PROBLOG

1 1/4::american;3/4::indian.

2

3 gpa(student) ~ mixture(

4 (uniform(0,4),0.95),

5 (4,0.425),

6 (0,0.075)):- american.

7 gpa(student) ~ mixture(

8 (uniform(0,10),0.99),

9 (10,0.001),

10 (0,0.009)):- indian.

11

12 observation(gpa(student),4).

13 query(american).

14 query(indian).

The conditional random variables for gpa(student) are now of type MixtureD.

Comparing this Example 6.13 to Example 6.12 shows that there is a choice to be made
from the user’s perspective of how much one wants to encode in the deterministic
system (using logical rules) or in the independent choice system (random function
symbols).

6.4.2 Bayesian Learning

We are now also briefly going to show how Bayesian learning can be performed with
DC-ProbLog. To this end we also introduce the query_density/1 predicate, which
allows us to retrieve a mixture of probability density functions, instead of a probability.
When using Sampo, query_density/1 returns a list of weighted samples, for each
component of the mixture.

Example 6.14. We model a coin flip scenario where the prior probability of the coin

turning up heads is distributed according to a mixture of two beta distributions. DC-

ProbLog then allows us to learn the posterior distribution by taking into account the

data in Lines 6 to 8.

1 0.2::a.

2 b~beta(1,1):- a.

3 b~beta(1,2):- \+a.

4 B::coin_flip(N):- B is b.

5

6 evidence(coin_flip(1), true).



RELATED LANGUAGES 113

7 evidence(coin_flip(2), false).

8 evidence(coin_flip(3), true).

9

10 query_density(b).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 a prior
\+a prior

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 a posterior
\+a posterior

Figure 6.5: Prior (left) and posterior (right) for the coin flip scenario modeled in
Example 6.14. The stacked histograms were plotted using 20000 samples for each beta
distrbution.

6.5 Related Languages

In recent years a plethora of different probabilistic programming languages have been
developed. We will now discuss some related languages and point to similarities and
differences between them and DC-ProbLog.

From a semantics perspective the language closest related to DC-ProbLog is obviously
ProbLog. DC-ProbLog extends ProbLog with continuous random variables and reduces
to ProbLog in the absence of continuous random variables. In other words, valid
ProbLog programs are a strict subset of valid DC-ProbLog programs.

From the perspective of expressive power, DC-ProbLog is closely related to
Distributional Clauses (DC) [Gutmann et al., 2011; Nitti et al., 2016a], which inspired
DC-ProbLog. The main differences can be seen in the cleaned up syntax of DC-
ProbLog and a semantics that is based on sound well-founded models (instead of the TP

operator). Furthermore, contrary to DC, the inference algorithms in our implementation
of DC-ProbLog are based on knowledge compilation, combined with either exact
inference (Symbo) or approximate inference (Sampo). This is advantageous when a
probabilistic logic program exhibits a rich Boolean structure. The sampling algorithm
of DC might struggle to converge in presence of such rich Boolean structures.



114 DC-PROBLOG

An other probabilistic logic programming language with continuous random variables
is Extended PRISM [Islam et al., 2012]. Extended PRISM is again based on the
distribution semantics and restricts the language such that exact probabilistic inference
can be performed using normal and gamma distributions. Extended PRISM can
be regarded as logic programming+computer algebra system, which means that is
is closely related to DC-ProbLog using Symbo as its inference algorithm. A main
difference being that Extended PRISM, as it is based on PRISM, assumes that proofs
of logic formulas are mutually exclusive, therewith avoiding the disjoint sum problem.

Notable in the domain of probabilistic logic programming is also the BLOG
language [Milch et al., 2005; Wu et al., 2018]. Contrary to the aforementioned
probabilistic logic programming languages, BLOG’s semantics is not specified using
Sato’s distribution semantics but uses so-called measure-theoretic Bayesian networks.
BLOG’s default inference algorithm is similar to the one of Distributional Clauses
(importance sampling combined with likelihood weighting) but does also provide
alternatives, such as Metropolis-Hastings MCMC [Milch; Russell, 2006].

While, all probabilistic programming languages discussed so far in this section adhere
to the paradigm of logic programming, most probabilistic programming languages are
actually not logic-based. Many follow the functional programming paradigm [Goodman
et al., 2008; Wood et al., 2014] or are of an imperative nature [Gehr et al., 2016;
Salvatier et al., 2016; Carpenter et al., 2017; Bingham et al., 2018; Ge et al., 2018].
Generally speaking, functional and imperative probabilistic programming languages
target first and foremost continuous random variables, and discrete random variables
are only added as an afterthought. A notable exception is the imperative probabilistic
programming language Dice [Holtzen et al., 2020], which targets discrete random
variables exclusively.

Lastly, we would like to point a key feature of DC-ProbLog that sets it apart from any
other language incorporating discrete and continuous random variables. But first, let
us briefly talk about computing probabilities in probabilistic programming. Roughly
speaking, probabilities are computed summing and multiplying weights. These can
for example be floating point numbers or symbolic expressions. The collection of
all operations that were performed to obtain a probability is called the computation
graph of a probabilistic program. Now, the big difference between DC-ProbLog
and other languages lies in the structure of the computation graph. DC-ProbLog
represents the computation graph as a directed acyclic graph (DAG), while all other
languages, with the exception of some purely discrete languages [Fierens et al., 2015;
Holtzen et al., 2020], use a tree representation. DC-ProbLog is the first language in the
discrete-continuous domain to use DAGs! In cases where the computation graph can
be represented as a DAG the size of the representation might be exponentially smaller
compared to tree representations. Smaller computation graphs can also lead to faster
inference times and lower error rates for approximate solvers.



Conclusions

In this chapter we presented DC-ProbLog, a strict extension of the probabilistic logic
programming language (and SRL system) ProbLog. DC-ProbLog handles in addition
to discrete/Boolean random variables also continuous random variables. In comparison
to other probabilistic logic programming languages that are based on the distribution
semantics [Gutmann et al., 2010; Nitti et al., 2016a; Speichert; Belle, 2019], DC-
ProbLog’s syntax eliminates bloated language constructs by relying on the newly
introduced type system, leading to a more concise and intuitive syntax. To the best
of our knowledge, DC-ProbLog’s type system is the first type system that borrows
ideas from multiple dispatching and applies them to logic programming. In this context
it would be interesting to further investigate type systems that have already been
developed for logic programming [Schrijvers et al., 2008] and study their usefulness
for probabilistic logic programing.

Moreover, we exhibited an implementation of DC-ProbLog whose inference algorithms
are based on weighted model integration, which we presented in Chapter 3. This
constitutes an elegant analogue to the reduction of probabilistic inference in ProbLog
to weighted model counting. In order to correctly handle zero probability event we did
also develop the algebraic likelihood weighting inference algorithm. This answers the
second research question of the thesis.

RQ2: Can we develop a high-level probabilistic logic programming language for

which inference reduces to weighted model integration?

Immediate future work will have to focus on specifying the semantics DC-ProbLog
in more detail and formality. Investigating the semantics in the long run could consist
of exploring links of the distribution semantics in DC-ProbLog to the denotational
semantics of functional or imperative probabilistic programming languages [Staton
et al., 2016; Heunen et al., 2017; Holtzen et al., 2020], or links to the semantics
of the probabilistic logic programming lanugage BLOG, which is not based on the
distribution semantics [Wu et al., 2018].

115



116 DC-PROBLOG

From the viewpoint of a practitioner the expressive power of a language is more
important than the fine details of the semantics. At the moment, DC-ProbLog does
not natively support multivariate probability distributions and adding them would
indeed tremendously increase DC-ProbLog’s expressive power. Including support for
multivariate distributions is only one possible such extension.



Probabilistic Perceptual
Anchoring

117



Introduction

Example. Consider the classical shell game where a ball is hidden under one of three

identical cups. The performer of the game rapidly moves the cups and the task of the

observer is to follow the movement of the cups and to identify under which cup the ball

is located. For an observer to successfully identify the right cup, they must successfully

handle a number of subtasks. First, despite that each of the cups are visually similar,

the observer must create an individual notion of each cup as a unique object so that it

can be identified (e.g., "the cup in the middle"). Likewise, the observer must recognize

the ball as a unique object. Secondly, even though the ball is hidden under one of

the cups, the observer makes the assumption that although the ball is not perceived

it should still be present under the cup. Third, as the performer rapidly moves the

cups, the observer should track the cup under which the ball is hidden. And finally, the

observer also needs to realize that cups can contain balls, and therefore as the cup

moves, so does the ball. Depending on the level of skill of the performer (and perhaps

some additional tricks) the shell game can be a difficult one to solve.

How could an autonomous agent handle this task as the observer? For this
to be achieved, autonomous agents in real-world scenarios need to maintain a
consonance between the perceived world (through sensory capabilities) and their
internal representation of the world. One way to contend with this challenge is
perceptual anchoring. Perceptual anchoring, by definition, handles the problem of
creating and maintaining, in time and space, the correspondence between symbols and
sensor data that refer to the same physical object in the external world.

In this third part of the thesis we study the combination of perceptual anchoring and
probabilistic inference, which results in an anchoring system capable of reasoning
about the world. This will answer our third research question.

RQ3: Can we equip a cognitive robotics system with probabilistic reasoning

capacities?

118



RELATED LANGUAGES 119

In Chapter 8 we first propose an architecture to combine perceptual anchoring and
probabilistic inference based on the following paper 6:

Persson, Andreas; Zuidberg Dos Martires, Pedro; Loutfi, Amy; De Raedt, Luc
[2020b]. Semantic Relational Object Tracking. In: IEEE Transactions on Cognitive

and Developmental Systems 12.1, pp. 84–97.

In Chapter 9, we further develop the proposed architecture such that it can handle
multi-modal probability distributions and combine the anchoring system with statistical
relational learning methods. Chapter 9 is based on the paper below7.

Zuidberg Dos Martires, Pedro; Kumar, Nitesh; Persson, Andreas; Loutfi, Amy;
De Raedt, Luc [2020b]. Symbolic Learning and Reasoning with Noisy Data for
Probabilistic Anchoring. In: Frontiers in Robotics and AI 7, p. 100.

The anchoring system developed in the previous two publications is also presented in a
demo paper:

Persson, Andreas; Zuidberg Dos Martires, Pedro; De Raedt, Luc; Loutfi, Amy
[2020a]. ProbAnch: a Modular Probabilistic Anchoring Framework. In: Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI).

6Andreas Persson and I share first authorship. Andreas Persson was responsible for the design and
development of the perceptual anchoring framework, the definition of the proposed anchoring matching
function, and the collection of data and the evaluation of the proposed anchoring procedure. My contributions
are, jointly with Andreas Persson, the development of the architecture that combines perceptual anchoring
with probabilistic reasoning and the implementation thereof. Furthermore, I carried out the experimental
evaluation of the combined system. Jointly with the other authors I contributed to developing the problem
setup writing the text.

7Together with Andreas Persson, I outlined the extension of the anchoring framework to include
probabilistic properties and multi-modal states. Nitesh Kumar and I integrated SRL with perceptual anchoring.
Nitesh Kumar, Andreas Persson and I performed the experimental evaluation. With the other co-authors I,
furthermore contributed to the development of the notions and ideas in the paper as well as the writing of the
text.



Chapter 7

Background

In this section, we outline the general background of our used methods. We will both
present the traditional definition of perceptual anchoring, an overview of Dynamic

Distributional Clauses, as well as a brief overview of the literature on object occlusions.

7.1 Perceptual Anchoring

Perceptual anchoring, originally introduced by [Coradeschi; Saffiotti, 2000;
Coradeschi; Saffiotti, 2001], addresses a subset of the symbol grounding problem
in robotics and intelligent systems. The notion of perceptual anchoring has been
extended and refined since its first definition. Some notable refinements include the
integration of conceptual spaces [Chella et al., 2004], the addition of bottom-up

anchoring [Loutfi et al., 2005], extensions for multi-agent systems [LeBlanc; Saffiotti,
2008], considerations for non-traditional sensing modalities and knowledge based

anchoring given full scale knowledge representation and reasoning systems [Loutfi,
2006; Loutfi; Coradeschi, 2006; Loutfi et al., 2008], and perception and probabilistic

anchoring [Blodow et al., 2010]. All these approaches to perceptual anchoring
share, however, a number of common ingredients from [Coradeschi; Saffiotti, 2000;
Coradeschi; Saffiotti, 2001], including:

• A symbolic system (including: a set X = {x1, x2, . . . } of individual symbols; a set
P = {p1, p2, . . . } of predicate symbols).

• A perceptual system (including: a set Π = {π1, π2, . . . } of percepts; a set Φ =
{φ1, φ2, . . . } of attributes with values in the domain D(φi)).

120



PERCEPTUAL ANCHORING 121

PERCEPTUAL SYSTEM

ANCHORING 

SYMBOLIC SYSTEM

red
black

browngreen
yellow

small

big

Individual Symbols

Predicate Symbols

apple-3

banana-1 mug-2

apple-2

 3.

Percepts 

Measurments
(attributes) 

Predicate
grounding 

 2.

Streaming Camera Images

 1.

Figure 7.1: A graphical illustration of the anchoring components and their
interconnections. Illustrated components are further exemplified in Example 7.1.

• Predicate grounding relations g ⊆ P×Φ×D(Φ) that encode the correspondence
between unary predicates and values of measurable attributes (i.e., the relation g

maps a certain predicate to compatible attribute values).



122 BACKGROUND

Example 7.1. Consider the captured camera image with segmented image regions,

seen in Figure 7.1. Each segmented region corresponds to an individual percept

captured by the perceptual system, see Figure 7.1 –№ 1. We denote the percepts π1,

π2 and π3, which corresponds to observed physical objects banana, apple and mug,

respectively. Subsequently, a number of attributes is measured, e.g. color, size, etc.

One such attribute is a color attribute measured as a normalized color histogram over

the masked area of percept π2, illustrated in Figure 7.1 –№ 2. For clarity, we denote

the measured color attribute as attribute φcolor
2 , which have values in a domain that is

equal to the n number of histogram bins. Finally, the predicate grounding relation g,

illustrated in Figure 7.1 –№ 3, for the aforementioned color attribute can be seen as

the encoded correspondence between specific peeks in the color histogram and certain

predicate symbols, e.g.:

g(red, color, arg max
i=1...n

(φcolor
2,i )) iff i = 6

While the traditional definition of in [Coradeschi; Saffiotti, 2000; Coradeschi;
Saffiotti, 2001] assumes unary encoded perceptual-symbol correspondences, this
does not support the maintenance of anchors with different attribute values at different
times. To address this problem, Persson et al. [2017] distinguish two different types of
attributes:

• Static attributes φ, which are unary within the anchor according to the traditional
definition.

• Volatile attributes φt, which are individually indexed by time t, which are
maintained in a set of attribute instances ϕ, such that φt ∈ ϕ.

Without loss of generality, we assume from here on that all attributes stored in an

anchor are volatile, i.e., that they are indexed by a time step t. Static attributes are
trivially converted to volatile attributes by giving them the same attribute value in each
time step.

An anchor is, consequently, an internal data structure αx
t , indexed by time t and

identified by a unique individual symbol x (e.g., mug-4, apple-2, etc.), which
encapsulates and maintains the correspondences between percepts and symbols that
refer to the same physical object. Following the definition presented in [Loutfi et al.,
2005], the principle functionalities to create and maintain anchors in a bottom-up
fashion, i.e., functionalities triggered by a perceptual event, are:

• Acquire – initiates a new anchor whenever a candidate object is received that
does not match any existing anchor αx. This functionality defines a structure αx

t ,
index by time t and identified by a unique identifier x, which encapsulates and
stores all perceptual and symbolic data of the candidate object.



DYNAMIC DISTRIBUTIONAL CLAUSES 123

Figure 7.2: A conceptual illustration of the internal data structure that constitutes a
single anchor, and which is first initiated by a percept π from a raw image. The volatile
and static attributes are derived from this percept, while predicates such as red, are
derived from static attributes (which are not indexed by time), e.g. the static color
histogram attribute.

• Re-acquire – extends the definition of a matching anchor αx from time t − k to
time t. This functionality assures that the percepts pointed to by the anchor are
the most recent and adequate perceptual representation of the object.

Based on the functionalities above, it is evident that an anchoring matching function is
essential to decide whether a candidate object matches an existing anchor or not.

7.2 Dynamic Distributional Clauses

Dynamic Distributional Clauses (DDC) is probabilistic logic programming language;
an extension of the logic programming language Prolog [Sterling; Shapiro, 1994]1.
DDC is capable of representing discrete and continuous random variables and to
perform probabilistic inference. Moreover, DDC explicitly models time, which makes
it predestined to model dynamic systems. The underpinning concepts of DDC are
related to ideas presented in [Milch et al., 2005] but embedded in logic programming.
Programs written in DDC allow for high-level (discrete variables) reasoning with
low-level sensor input (continuous variables).

In logic programming, reasoning happens through the usage of symbols. These are
either terms or predicates. The latter are often referred to as relations. Terms can be
constants, logical variables or n-ary functors applied to an n-tuple of terms. Constants
can only have one assigned value to them, which means that only one interpretation is
possible. This is in contrast to logical variables, which have multiple interpretations.
More concretely, a logical variable X is a variable ranging over the set of all possible
ground terms. Lastly, we also have terms of the form p(t1, . . . , tn) with p/n being an

1A comprehensive treatise on the field of probabilistic logic programming can be found in [De Raedt;
Kimmig, 2015] and [Riguzzi, 2018].



124 BACKGROUND

n-ary predicate and all ti’s being terms themselves. This last kind of terms are dubbed
atoms.

In the static case, i.e., when there is no explicit dependency on time in the terms, DDC
programs reduce to Distributional Clauses (DC) [Gutmann et al., 2011; Nitti et al.,
2013] programs. A distributional clause is of the form h ∼ D ← b1, . . . , bn, where ∼
is a predicate in infix notation and bi’s are literals, i.e., atoms or their negation. h is
the name of a random variable andD tells us how the random variable is distributed –
both are formally terms. The meaning of such a clause is that each grounded instance
of a clause (h ∼ D ← b1, . . . , bn)θ defines a random variable hθ that is distributed
according toDθ. A grounding substitution θ = {V1/t1, . . . , Vn/tn} is a transformation
that simultaneously substitutes all logic variables Vi in a distributional clause with non-
variable terms ti. Here we see that random variables and distributions are themselves
not necessarily grounded by definition. The mean of a normal distribution can, for
instance, depend on random variables. For the atom hθ to be defined it is necessary
that all atoms biθ in the distributional clause evaluate to true. Labeling a distributional
clause with time indexes allows for declaring dynamic models via defining a transition
model from time step t to time step t + 1. DDC can be viewed as a language
that defines conditional probabilities for discrete and continuous random variables:
p(hθ|b1θ, . . . , bnθ) = Dθ.

Example 7.2. Consider the following DDC program:

n ~ p o i s s o n ( 6 ) .
pos ( P ) : 0 ~ un i fo rm ( 0 , 1 0 0 ) ← n~=N, between ( 1 ,N, P ) .
pos ( P ) : t+1 ~ g a u s s i a n (X+3 , Σ ) ← pos ( P ) : t ~=X.
l e f t ( O1 , O2 ) : t ~ f i n i t e ( [ 0 . 9 9 : t r u e , 0 . 0 1 : f a l s e ] ) ←

pos ( O1 ) : t ~=P1 , pos ( O2 ) : t ~=P2 , P1<P2 .

The first rule states that the number of objects n in the world is distributed according

to a Poisson distribution with mean 6. The second rule states that the position of the n

objects, which are identified by a number P between 1 and n, are distributed according

to a uniform distribution between 0 and 100. Here, the notation n~=N means that the

logical variable N takes the value of our random variable n. The label 0 (resp. t) in

the program denotes the point in time. So, pos ( P ) : 0 denotes the position of object

P at time 0. Next, the program describes how the position evolves over time: at each

time step the object moves three units of length, giving it a velocity of 3 [length]/[time].
Finally, the example program defines the l e f t predicate, through which a relationship

between each object is introduced at each time step. DDC then allows for querying

this program through its builtin predicate:

que ry ( ( l e f t ( 1 , 2 ) : t ~= t r u e , pos ( 1 ) : t >0) , P r o b a b i l i t y )

P r o b a b i l i t y in the second argument unifies with the probability of object 1 being

to the left of object 2 and having a positive coordinate position.



OCCLUSIONS 125

Example 7.3. One possible world of the uncountably many possible worlds encoded

by the program in Example 7.2. The sampled number n determines that 2 objects exists,

for which the ensuing distributional clauses then generate a position and the left /2
relationship:

n ~= 2 .
pos ( 1 ) : t ~= 3 0 . 5 . pos ( 2 ) : t ~= 6 3 . 2 .
pos ( 1 ) : t+1 ~= 3 2 . 4 . pos ( 2 ) : t+1 ~= 5 8 . 8 .
l e f t ( 1 , 2 ) : t ~= t r u e . l e f t ( 2 , 1 ) : t ~= f a l s e .

When performing inference within a specific time step, DDC deploys importance
sampling combined with backward reasoning (SLD-resolution), likelihood weighting
and Rao-Blackwellization [Nitti et al., 2016a]. Inferring probabilities in the next time
given the previous time step is achieved through particle filtering [Nitti et al., 2013].
If the DDC program does not contain any predicates labelled with a time index the
program represents a Distributional Clauses (DC) [Gutmann et al., 2011] program,
where filtering over time steps is not necessary.

7.3 Occlusions

Object occlusion is a challenging problem in visual tracking and a plethora of different
approaches exist that tackle different kinds of occlusions; a thorough review of the
field is given in [Meshgi; Ishii, 2015]. The authors use three different attributes of an
occlusion to categorize it: the extent (partial or full occlusion), the duration (short or
long), and the complexity (simple or complex)2. Another classification of occlusions
separates occlusions into dynamic occlusions, where objects in the foreground occlude
each other, and scene occlusions, where objects in the background model are located
closer to the camera and occlude target objects by being moved between the camera
and the target objects3.

Meshgi; Ishii [2015] report that the majority of research on occlusions in visual tracking
has been done on partial, temporal and simple occlusions. Furthermore, they report that
none of the approaches examined in the comparative studies of Smeulders et al. [2013]
and Wu et al. [2013], handle either partial complex occlusions or full long complex
occlusions.

In order to handle full, long and complex occlusions [Nitti et al., 2013] used a model-
based object tracking approach. They describe possible occlusions through a theory of

2An occlusion of an object is deemed complex if during the occlusion the occluded object considerably
changes one of its key characteristics, e.g. position, color, size). An occlusion is simple if it is not complex.

3Further categories exist, we refer the reader to [Vezzani et al., 2011; Meshgi; Ishii, 2015].



126 BACKGROUND

occlusions (ToO)4 expressed as dynamic distributional clauses. Declaring such a ToO
allowed the authors to perform occlusion reasoning and to track objects not by directly
observing them but by reasoning about relationships that occluded objects had entered
with detected objects (see Example 1.5).

Example 7.4. An excerpt from the set of clauses that constitute a ToO. The example

clause describes the conditions under which an object is considered a potential

Occluder of an other object Occluded.

o c c l u d e r ( Occluded , O c c l u d e r ) : t +1~ f i n i t e ( 1 . 0 : t r u e ) ←
o b s e r v e d ( Occluded ) : t ,
\+ o b s e r v e d ( Occluded ) : t +1 ,
p o s i t i o n ( Occluded ) : t ~= (X, Y, Z ) ,
p o s i t i o n ( O c c l u d e r ) : t+1 ~= (XH,YH, ZH) ,
D i s s q r t ( ( X−XH) ^2+(Y−YH) ^2 ) , Z<ZH, D<0 . 3 .

Out of all the potential Occluders the actual occluding object is then sampled uniformly:

occ luded_by ( Occluded , O c c l u d e r ) : t+1 ←
s a m p l e _ o c c l u d e r ( Occluded ) : t+1 ~= O c c l u d e r .

s a m p l e _ o c c l u d e r ( Occluded ) : t +1~ un i fo rm ( L i s t O c c l u d e r s ) ←
f i n d a l l (O, o c c l u d e r ( Occluded , O) : t +1 ,

L i s t O c c l u d e r s ) .

A limitation of Nitti et al.’s approach is them assuming the data association problem
to be solved (by using AR tags), i.e. each object is unambiguously identified through a
easily visible AR tag. We will show how to tackle the problem of handling full, long
and complex occlusions while at the same time tackling the data association problem
(by means of perceptual anchoring).

4The term theory of occlusion was coined in [Zuidberg DosMartires et al., 2020b].



Chapter 8

Semantic World Modeling
∗

This chapter addresses the topic of semantic world modeling by conjoining probabilistic
reasoning and object anchoring. The proposed approach uses a so-called bottom-up
object anchoring method that relies on rich continuous attribute values measured from
perceptual sensor data. A novel anchoring matching function learns to maintain object
entities in space and time and is validated using a large set of humanly annotated ground
truth data of real-world objects. For more complex scenarios, a high-level probabilistic
relational object tracker has been integrated with the anchoring framework and handles
the tracking of occluded objects via reasoning about the state of unobserved objects.

8.1 Introduction

Given the definition of anchoring in Section 7.1, it is evident that an initial matching
function is essential to determine if a candidate object is matching an existing anchor
or not. In prior work on perceptual anchoring, the problem of matching anchors has
mostly been addressed through a simplified approach based on the use of symbolic
values (or left out entirely), where the predicate grounding relation mapping between
symbolic predicate values and measured attribute values commonly is facilitated by
the use of conceptual spaces [Chella et al., 2004]. Conceptual spaces can be thought
of as a discretization of the continuous perceptual attribute space, which consequently
also result in a loss of information. The procedure of creating and maintaining anchors,
based on the discretized symbolic values, must accordingly either be handled by a
probabilistic system, as in the case of [Elfring et al., 2013], or through the use of
additional knowledge and the use of a reasoning system, as in the case of [Daoutis

∗
This chapter is based on [Persson et al., 2020b].

127



128 SEMANTIC WORLD MODELING

et al., 2012]. In this paper, we move the matching function down to the perceptual level
by presenting a novel matching approach that facilitates the rich information found
within the measured attribute values.

Moving the anchoring matching function to the perceptual level will, inevitably, also
introduce another level of complexity, since measured attributes must be compared
based on continuous attribute values. The system must, subsequently, both recognize
previously observed objects and detect (or anchor) new and previously unknown objects
based on the result of the initial matching function. In the case of open-world scenarios
without a fixed number of possible objects classes that the system might encounter,
this is undoubtedly a challenging issue. In this chapter, we address this issue in the
context of bottom-up perceptual anchoring, and present an evaluation that addresses
the problem of learning how to determine if an object has previously been perceived
(or not).

We present an approach to create a semantic world model where object entities are
maintained and tracked over time. We further integrate a probabilistic reasoning
component which is able to support the tracking of objects in case of occlusions due to
limitation in perception or due to interactions with other objects. Our approach is based
on perceptual anchoring. Perceptual anchoring, by definition, handles the problem
to create and maintain, in time and space, the correspondence between symbols and
sensor data that refer to the same physical object in the external world [Coradeschi;
Saffiotti, 2000]. This problem has, subsequently, been defined as the anchoring

problem [Coradeschi; Saffiotti, 2003]. We use bottom-up anchoring [Loutfi et
al., 2005], whereby anchors (object representations) can be created by perceptual
observations derived from interactions with the environment. For a practicable bottom-
up anchoring system it is essential to have a robust anchoring matching function that
accurately matches perceptual observations against the perceptual data of previously
maintained anchors. For this purpose, we introduce a novel method that replaces a
traditionally hand-coded anchoring matching function by a learned model (cf. [Persson
et al., 2017]).

Apart from the two anchoring functionalities in Section 7.1 (acquire and re-acquire),
there has also been a third anchoring functionality; a track functionality 1. This track
functionality has recently been revised and explored in the interest of integrating
object tracking into the concept of anchoring, introduced in [Persson et al., 2017],
which suggested a tracking functionality highly integrated with a point cloud-based
particle filter tracking approach on the lowest perceptual sensory level [Rusu; Cousins,
2011]. However, the performance of the previously suggested framework was heavily
affected by the computational load of the used object tracking approach, which requires
tracking of computational demanding 3-D point cloud data. In this paper, we further

1The track functionality was formally integrated with the re-acquire functionality for the extension
to sensor-driven bottom-up anchoring [Loutfi et al., 2005], such that no distinction was made between
extending the definition for an anchor from time t − 1 or t − k.



ANCHORING + INFERENCE 129

explore the integration between object tracking and perceptual anchoring, presented
in Section 8.2.4. This integration is based upon the belief that the integration should
be loosely coupled in order to sustain the benefits of both the ability to maintaining
individual instances on objects at a larger scale, as in the case of perceptual anchoring,
as well as efficiently and logically track object instances over time, as in the case of
probabilistic reasoning. In particular, we utilize Dynamic Distributed Clauses [Nitti
et al., 2016a] to facilitate reasoning about object entities at a symbolic level. DDC can
handle continuous random variables in addition to discrete ones, which predestines
DDC to be utilized for reasoning within robotics, where the world is inherently
continuous and uncertain. Integrating a reasoning system into the anchoring framework
allows us to dynamically feed back information to the anchoring system and update
the retained semantic world model with information stemming from our probabilistic
model of the world.

8.2 Anchoring + Inference

Our suggested combined framework architecture, seen in Figure 8.1, is a modularized
architecture that utilizes libraries and communication protocols available in the Robot
Operating System (ROS)2. Each module/sub-system (described in detail below) has
a dedicated task, while the overall goal of the combined framework is to create and
maintain coherent and accurate representations (anchors) of perceived real-world
objects. The same anchor representations also provides the historical background
information, i.e., information about objects last perceived at time t − kx, which is used
by the anchoring system to process and anchor objects perceived at the present time t,

illustrated in Figure 8.1– 2. . Furthermore, the framework utilizes an inference system,

illustrated in Figure 8.1– 3. , which aids the anchor system in complex dynamic scenes.
Finally, the architecture is a sensor-driven architecture that is triggered by perceptual
data, i.e. sensor readings, which initially are pre-processed by a perceptual pipeline,

illustrated in Figure 8.1– 1. .

8.2.1 Implementation Details: Pre-processing Pipeline

The overall background pre-processing pipeline, with the goal of detecting and
segmenting objects, extract features from detected objects, classifying and symbolically

grounding each object instances, is illustrated in Figure 8.1 – 1. . For this purpose, our
system setup relies upon publicly available core libraries and systems, including: the

2http://www.ros.org/



130 SEMANTIC WORLD MODELING

ANCHORING 
SYSTEM

INFERENCE 
SYSTEM

P
ro

b
a

b
il

is
ti

c
 

R
e

a
s

o
n

in
g

R
e
-A

c
q

u
ir

e

t–k

t

Track

3.2.

A
c

q
u

ir
e

Matching Function

ANCHOR-

SPACE

Predicate Grounding
+

Object Classification

O
b

je
c

t 
S

e
g

m
e
n

ta
ti

o
n

F
e
a
tu

re
 E

x
tr

a
c

ti
o

n

RGB-D Sensor Data
PERCEPTUAL PIPELINE 1.

Figure 8.1: Overview of our combined framework architecture. The overall framework
is modularized architecture that consist of three core sub-systems (each described
in further details in this section): 1) an initial perceptual pre-processing pipeline

with the purpose of detecting, segmenting and processing perceived objects, 2) an
anchoring system with the purpose of creating and maintaining updated and consistent
representations (anchors) of perceived objects, and 3) an inference system with the
purpose aiding the anchor system and track objects in complex dynamic scenarios.

Point Cloud Library3 (PCL), the Open Computer Vision library4 (OpenCV), and the

3http://pointclouds.org/
4http://opencv.org/



ANCHORING + INFERENCE 131

Robot Operating System (ROS). It should also be noted, all methods and techniques
covered in this section are considered to be replaceable black-box approaches that
are used for the means of providing background for the subsequent theoretical
Section 8.2.2. For example, the used object segmentation method could be replaced
with a convolutional network-based semantic segmentation approach [Long et al.,
2015]. This requires, however, an adequate dataset of pixel-wise mask annotations
for training the network to detect the objects of interest, which is something that is
not always publicly available and must, therefore, further be addressed, e.g., through
weakly supervised learning [Khoreva et al., 2017]. Nevertheless, the details on used
techniques, for the presented architecture, are here covered for completeness and
reproducibility.

More specifically, the initial step of our pre-processing pipeline is an object

segmentation method, which is performed with the purpose of detecting arbitrary
objects of interest in the scene. The deployed object segmentation method is based
on organized point cloud data (i.e., the organization of point cloud data is identical
to the rows and columns of the imagery data from which the point cloud originates),
which are given as input data by a Kinect2 RGB-D sensor. To establish the connection
between the ROS environment and the Kinect2 sensor, we integrated the ROS-Kinect2
bridge [Wiedemeyer, 2015] in the presented framework architecture. The segmentation
procedure can briefly be described using the following steps:

• Estimate 3-D surface normals based on integral images [Holzer et al., 2012].
This function uses the algorithm for calculating average 3-D gradients over six
integral images, where the horizontal and vertical 3-D gradients are used to
compute the normal as the cross-product between two gradients.

• Planar segmentation based on the calculated surface normals.

• Object segmentation through clustering of the remaining points (points that are
not part of the detected planar surfaces). This segmentation uses a connected
component segmentation, presented in [Trevor et al., 2013], where a Euclidean
comparison function is used to connect the components that constitute the cloud
cluster of an individual object.

Moreover, provided that object instances have been segmented based on the full
spectrum of available RGB-D data (as described above), we are further able to
exploit the advancements in deep learning for image classification in the final object

classification procedure of our pre-processing pipeline. The Convolutional Neural

Networks (CNN) architecture used in this case is based on the 1 K GoogLeNet model,
developed by Szegedy et al. [2015], and which originally was trained on the ILSVRC
2012 visual challenge dataset [Russakovsky et al., 2015]. For this work, we have,
however, extracted a subset of the ImageNet database [Deng et al., 2009] and fine-tuned



132 SEMANTIC WORLD MODELING

the model for 101 objects categories that are relevant for a household domain, e.g.,
mug, spoon, banana, tomato, etc., where the model was trained for a top-1 accuracy of
73.4% (and a top-5 accuracy of 92.0%).

8.2.2 Theoretical Aspects: Precepts, Attributes and Symbols

The resulting output of the object segmentation is m point cloud clusters (where m

varies between frames). For consistency with the definition of anchoring, we denote
segmented clusters as percepts: {πspatial

1 , π
spatial

2 , . . . π
spatial
m }, which each corresponds

to the spatial 3-D point cloud data of an individual object. Subsequent to the
segmentation of the point cloud clusters, the same RGB-D data is also used for
segmenting corresponding visual 2-D imagery data of each detected object. This
image segmentation is entirely based on the prior point cloud clusters and a projection
between the 3-D point cloud frame and the 2-D visual RGB frame of the RGB-D
sensor. Also, we denote visual data as percepts: {πvisual

1 , πvisual
2 , . . . πvisual

m }, which each
corresponds to the visual 2-D imagery data of a segmented object.

Next, both segmented perceptual 3-D point cloud data and 2-D visual data are further
forwarded to a feature extraction procedure. The first step of this feature extraction
procedure is to extract both a position attribute as the point at the geometrical center of
each segmented percept πspatial

y , and a size attribute as the 3-D bounding box around

each percept πspatial
y , where πspatial

y|y=1,2...m ∈ {π
spatial

1 , π
spatial

2 , . . . π
spatial
m }. The extracted

position attribute is here denoted φpos
y ∈ R3, while the corresponding size attribute is

denoted φsize
y ∈ R3. Furthermore, a color attribute φcolor

y is extracted for each visual

percept πvisual
y , which is measured as a color histogram (in the HSV color space).

Finally, extracted attributes together with the perceptual data are further forwarded to a
combined predicate grounding and object classification procedure. This procedure has
the purpose of both grounding and associating a symbolic value with each extracted
attribute, as well as classifying each object and further associating each object with an
object category label. The predicate grounder is here responsible for grounding each
measured attribute φy (of the set Φy, that originates from the same physical object) to
a predicate grounding symbol py. For example, a certain peek in a color histogram,
measured as a φcolor

y attribute, is grounded to the symbol red, such that pcolor
y =red (cf.

Example 7.1). In the context of anchoring, we further assume that all trained object
categories (e.g., mug, spoon, tomato, etc.) of used GoogLeNet model are part of the set
of possible predicate symbols P. The input for the object classification procedure are,
subsequently, the segmented visual percepts πvisual

y , while resulting object categories

together with predicted category probabilities are denoted by pclass
y ∈ P and φclass

y ,
respectively.



ANCHORING + INFERENCE 133

8.2.3 Anchoring Management

The entry point for the anchoring system, seen in Figure 8.1– 2. , is a matching function.
This function assumes a bottom-up approach to perceptual anchoring, described
in [Loutfi et al., 2005], where the system constantly receives candidate objects and
invokes a number of different matching algorithms (one matching algorithm for each
measured attribute in the set Φy = {φclass

y , φcolor
y , φsize,

y φ
pos
y }) in order to determine if an

anchor, αx, has previous been perceived or not.

Matching Function

More specifically, an unknown set of attributes Φy is compared against the set of
attributes Φx of an existing anchor αx. The combined result of all individual invoked
matching algorithm determines, subsequently, if an anchored object has previously
been perceived or not. In details, a classification attribute φclass

y and symbol pclass
y of a

candidate object is firstly compared against the classification attribute and symbol of a
previously stored anchor according to:

dclass
x,y (φclass

x , φclass
y )

=






exp
(

− |φ
class
x −φclass

y |
φclass

x +φclass
y

)

if pclass
x ≡ pclass

y

0 else
(8.1)

We interpret the dclass
x,y as the exponentially decaying relative L1-distance between the

two attribute values φclass
x and φclass

y . This means that we exponentially penalize the
distance between two objects in the class attribute space.

Secondly, the color histogram of a color attribute φcolor
y of a candidate object is

compared (assuming normalized color histograms) according to the color correlation:

dcolor
x,y (φcolor

x , φcolor
y )

=
1

2
+

n∑

i=1

(φcolor
x,i − µx)(φcolor

y,i − µy)

2

√√
n∑

i=1

(φcolor
x,i − µx)2

n∑

i=1

(φcolor
y,i − µy)2

(8.2)



134 SEMANTIC WORLD MODELING

Where n is the number of histogram bins, the index i gives the i-th histogram bin
value of φcolor

x and φcolor
y (respectively), and µx and µy are the color mean value of each

histogram, given according to:

µx =
1

n

n∑

i=1

φcolor
x,i , µy =

1

n

n∑

i=1

φcolor
y,i

Next, the distance between a position attribute φpos
y and the position φpos

x of a previously
stored anchor αx, is calculated according to the L2-distance (in 3-D spatial space).
Inspired by the work presented by Blodow et al. [2010], this distance is then mapped
to a normalized similarity distance according to:

d
pos
x,y (φpos

y , φ
pos
x ) = e−L2(φpos

y ,φ
pos
x ) (8.3)

Furthermore, the size attribute φsize
y of a candidate object is compared according to the

generalized Jaccard similarity (for the bounding boxes in 3-D space):

dsize
x,y (φsize

x , φ
size
y ) =

∑3
i=1 min(φsize

x,i , φ
size
y,i )

∑3
i=1 max(φsize

x,i , φ
size
y,i )

(8.4)

Motivated by the importance of the time within the concept of anchoring, the difference
in time since last recorded observation of a previously stored anchor αx, defined at
t − kx, is finally mapped to a similar normalized distance according to:

dtime
x,y (t, t − kx) =

2

1 + et−(t−kx)
=

2

1 + ekx
(8.5)

Consequently, all given matching distance values, Equations 8.1 to 8.5, are given in the
interval [0.0, 1.0], and all distance values are, therefore, also commensurable.

Creating and Maintaining Anchors

Combining all matching distance values, given by Equations 8.1 to 8.5, and determining
whether a candidate anchor has previously been perceived (or not), is not a trivial task.
Especially not in the context of bottom-up anchoring in real-world scenarios with
unlimited possibilities of objects together with continuous distance values given by
the initial matching function. The matching distance values can be combined in many
different ways, e.g.: through a min or max function, by the weighted average with
different weights, etc. Nonetheless, a threshold value is ultimately required in order to



ANCHORING + INFERENCE 135

determine if the combined result is to be considered as a match (or not). In this paper,
we will shed some light upon this issue and present our work on the topic of learning
the anchoring matching function, which determines if an object is a novel object or a
previously observed object.

At this point we would like to stress that the architecture of the anchoring system is
completely agnostic towards how the matching function was learned. This means that
the anchoring system considers the matching function to be an exchangeable black-box

approximation of the true anchor-percept matching. In Section 8.3.1 we compare
different classifiers to each other that could be potentially used to approximate the
matching.

Regardless of the used classification algorithm, the process of the anchoring is
to ultimately create or maintain anchors through either one of the two principal
functionalities: acquire or re-acquire, respectively. The anchor-space, in which the
anchors are maintained and stored, is in this case expressed as a permanent world

model (PWM). We further enhance the traditional acquire functionality by utilizing
the deep learning classifier such that a unique identifier x is further generated based on
the classification symbol pclass, e.g., for an object classified as a cup, a corresponding
unique identifier could be generated as x = cup-4.

8.2.4 Integration of the Inference System

In order to prevent the curse of dimensionality from propagating from a probabilistic
inference system into the perceptual anchoring system, we opt for only loosely
integrating the inference system with the anchoring system. This linkage has as a
consequence that we need to maintain two distinct databases for representing our belief
of the world.

The above-described anchoring system database plays the role of maintaining a
permanent world model (PWM), remembering all objects that have appeared over
time (t − kx). By contrast, the database of the inference system, implemented in DDC,
operates on a temporary world model (TWM). The latter does, however, not only retain
which objects are present in the scene but also how the single objects relate to each
other. A cup might, for example, be remembered as standing at a certain point in 3-D
space but also by the fact that it stands left to some other cup. This representation of
the real world is obviously a lot more expensive but adds valuable information to the
scene description when carrying out high-level object tracking. The relational nature
of the TWM enables us to reason about the world and additionally to track objects on a
high level.

By working with two distinct databases we take advantage of the databases for
specialized tasks, e.g., reasoning with a relational database. However, it also means



136 SEMANTIC WORLD MODELING

that we need to maintain two distinct databases, and more importantly, the databases
have to reflect the same world. Therefore, in order to retain the integrated framework in
a coherent state, we need to place the loosely coupled inference system and anchoring
system in a tight feedback loop. This feedback loop is represented by the incoming

and outgoing arrows in panel 3. , Figure 8.1. It hence consists of two distinct steps:

1. Sending anchor information from the anchoring system to the inference system

and initiating or updating the belief of the world in the inference system. More
specifically, the anchoring system tells the inference system whether

• a new anchor was acquired

• an anchored was re-acquired

• an anchor was deleted (this happens when a previously acquired anchor is
classified as a glitch)

When the anchoring system sends information about acquired and re-acquired
anchors, the properties of the anchors are sent along as well (e.g. position, color).

2. Sending back the updated belief of the world in the inference system and update
the belief of the world in the anchoring system, accordingly. More specifically,
the inference system tells the anchoring system whether

• an anchor that was not is being tracked by the inference system

When the inference system sends information about tracked anchors, the
properties of the (inferred) properties of the anchors are sent along as well.
As of now this is only the position of the tracked anchors.

When exchanging information between the two databases it is crucial that the two
databases are consistent. This means that both databases (of the anchoring system and
the inference system) talk about the same objects. Anchors in the two databases might
disagree on the properties of the anchors (this is actually unavoidable by design) but
they must not disagree on the existence of an anchor. We ensure this by limiting the
creation and deletion of anchors to the anchoring database. In the probabilistic database,
anchors are only created via information obtained from the anchoring database.

The initial belief in the TWM is initiated by the belief of the PWM of the scene. The
anchor information, originating from the PWM, is treated as observations in the TWM.
For each initial observation, DDC clauses are added to the TWM database, which
constitutes the temporary internal representation of the world. For a cup in the scene,
for example, a rule is added that describes the initial belief of its position and velocity:

pos ( cup ) : 0 ~ normal (~R , ~0 , ~Σ ) ←
obs ( p e r c e p t _ p o s ( cup ) ) : 0 ~= ~R .



ANCHORING + INFERENCE 137

Where ~R is the observed 3-D position of the geometric center of the spatial percept of
an object (the cup in this case). ~Σ is the covariance matrix that specifies the Gaussian
and the ~0 corresponds to the initial velocity which is set to 0 in each dimension. For
all the following time steps, we define an observation model that takes into account
uncertainty in the measurement process itself. We adopt the approach of Nitti et al.
[2014] of expressing the measurement model as the product of Gaussian densities
around the position of each object. Assuming independently and identically distributed
measurements of the objects allows for this factorization. This idealization assumes
that observing an object does not depend on the observation of any other object (in the
same time step). For the an object with cup this means:

obs ( p e r c e p t _ p o s ( cup ) ) : t+1 ~ normal (~R , Σobs ) ←
pos ( cup ) : t ~= ~R

In the case that all objects in the scene are observed, i.e., none of the objects is occluded
by another one, the TWM and PWM are now in a state of cognitive consonance, as
we used the anchor information as observations for the inference system. If, however,
objects get occluded due to manipulations of the world, the occluded objects do
not produce any perceptual data anymore. Hence, the perceptual anchoring system
can no longer update its belief of the world, and no updated belief is sent to the
inference system. In this case, the inference system needs to reason about what might
have happened to the object that is not perceived anymore by the anchoring system.
Considering the world at time step t−1, and the observations of the world at time step t,
we can speculate about the world in time step t. We infer the state of an occluded object
through its relations with perceived objects in the world. This inferred updated belief
of the world is then sent back to the anchoring system where the state of occluded
objects is also updated.

This approach allows us to propose a modified high-level anchoring track functionality
(cf. [Persson et al., 2017]), such that:

• Track – extends the definition of an anchor αx from time t − 1 to time t. This
functionality is directly responding to the state of the probabilistic object tracker,
which assures that the percepts pointed to by the anchor are the adequate
perceptual representation of the object, even though the object is currently
not perceived.

With the (re)introduction of the anchoring track functionality, we also need to ensure
cognitive consonance at the anchoring side by updating the PWM based on the updated
belief of the world, established by the inference system. More specifically, the 3-D
position attribute φpos

x of an anchor αx
t is updated according to the inferred position

of the corresponding object maintained in the TWM of the inference system. This



138 SEMANTIC WORLD MODELING

exchange of information between both systems, as described in this section, is further
facilitated by sharing the unique identifier x of an anchored object. Hence, we are able
to differentiate between specific instances of objects and we can express the rules for
an object instance that is identified by the unique symbol, e.g., cup-1, apple-4, etc.

The details on how the probabilistic inference is carried out are given in [Nitti
et al., 2013; Nitti et al., 2016a]. Our contribution lies in coupling a probabilistic
inference system with an anchoring system, which enables the conjoined system to
probabilistically reason on low-level sensor data. This is for example not the case in
[Nitti et al., 2014], where they used AR-tags to observe objects in the world.

8.3 Evaluation and Results

Evaluating a real-world operating anchoring framework, with several interacting
components as described in Section 8.2, is undoubtedly a challenging task. Noisy sensor
readings and erroneous attribute measurements are inevitably present and will propagate
through the components of the processing pipeline. The evaluation presented in this
section is, therefore, limited to: 1) the performance of the suggested anchoring matching
approach (presented in Section 8.3.1), and 2) the integrated combined anchoring and
reasoning system (presented in Section 8.3.2).

8.3.1 Learning the Anchoring Matching Function

The evaluation presented in this section has a two-folded purpose: 1) collect annotated
ground truth data about objects in dynamic scenarios, and 2) learning to determine
which of the the two anchoring functionalities acquire or re-acquire (cf. Section 8.2.3

and Figure 8.1– 2. , to initiate based on the matching distances values given of the
initial anchoring matching function (given by Equations 8.1 to 8.5, as described in
Section 8.2.3).

Data Collection

A benefit of using perceptual anchoring is that the percepts pointed to by the anchor are
the most recent and adequate perceptual representation of an object. For the evaluation
presented in this paper, we have exploited these updated and maintained representations,
found in anchors, in order to collect human-annotated ground truth data. This data
collection was conducted through a human-annotation interface that was queued with
segmented perceptual sensor data given by the perceptual pre-processing pipeline,
presented in Section 8.2.1. By utilizing this interface, all data about unknown candidate



EVALUATION AND RESULTS 139

objects, together with the perceptual data of possible matching anchored objects, could
be presented and visualized for the human user. Hence, the human was able to provide
feedback about the action that the human counterpart would consider as the appropriate
anchoring action for each presented candidate object (i.e., acquire a new anchor for
a queued object, or re-acquire an existing anchor). The procedure for collecting our
ground truth data is further described and exemplified in Figure 8.2.

1. 2. 3.

4. 5. 6.

Figure 8.2: A depiction of our human-annotation interface that was used in order
to collect ground truth data of anchored objects. In conjunction with changes in the

scene, as illustrated by 1. to 3. , the human user has the possibility to freeze the
execution of the framework and providing feedback about what he/she would consider
as the appropriate anchoring action for a candidate objects. Once the execution is
frozen, the human user can select segmented candidate objects, e.g., the moved apple

as illustrated in 4. , after which the framework is responding by displaying an updated

representation of a number of already anchored objects, shown in 5. , which best
(attribute-wise) corresponds to the selected object. The human user can then provide
positive feedback about a matching anchored object (by selecting the representation
of the matching anchored object), or negative feedback (simply by clicking anywhere
else on the screen). Also, to covering the time aspect, and to suggest possible matching
anchored objects that have not been perceived recently, we have further added a time

slider, illustrated in the top part of 6. . Through this time slider can the user adjust
the time factor k for the purpose of selecting a matching anchored object that was last
observed at a time t − k.

Behind the scene of proposed human-annotation interface, exemplified in Figure 8.2,
the data that in reality was collected and stored was matching distance values, provided
by Equations 8.1 to 8.5. Together with each set of distance values (as result of
comparing the attributes of an unknown candidate object against the attributes of
an existing anchored object), was further an annotated label of 1 stored if the user



140 SEMANTIC WORLD MODELING

considered an existing object as a matching object, or 0 otherwise. Worth noting is that
the collected data purely represent that the human user was considering as the most
appropriate action for each presented scene. Hence, we were also able to gather samples
of objects in, for example, ambiguous situations where an identical (but physically
different) instance of an object was introduced while the similar counterpart was still
observed. Furthermore, given such ambiguous situations with a number of possible
matching anchored objects that could match a selected candidate object, as depicted in

Figures 8.2– 5. and 8.2– 6. , we assumed that there could only exist one true match
(labeled 1), while the reaming candidates were non-matching candidates (labeled 0).
As a result, we were able to collect several samples for each human action.

Experimental Evaluation

With the use of the human-annotation interface, as described in the previous section,
we were able to collect a dataset of a total of 5400 samples5. A dataset that we,
subsequently, have used for this particular evaluation in order to train the anchoring
system to initiate proper anchoring functionality for different situations. During the data
collection, several typical problematic anchoring scenarios, e.g., scenarios there new
ambiguous objects are introduced in the scene, scenarios with partly occluded objects,
scenarios where existing objects were disappearing and reappearing in the scene, etc.,
were executed in order to cover a broad range of different situations. Moreover, the data
collection was conducted on several occasions for the purpose of capturing changes in
the environmental conditions, e.g., changes in light conditions.

Given the collected data, which was comprised of sets of matching distance values
together with corresponding labels (with a label of 1 for a matching set of distance
values, or a label of 0 for a non-matching set), our approach for learning how to correctly
anchoring objects, and thereby learn to invoke correct anchoring functionality (acquire

or re-acquire), was through the evaluation of different classification algorithms. More
specifically, for this evaluation we have tested and trained the following classification
algorithms (parameters used for each classifier were, initially, determined through
trial-and-error):

• Support Vector Machine (SVM) [Burges, 1998], with ν-Support Vectors (trained
with ν = 0.1), and with a Histogram intersection kernel function

• Multi Layer Perceptron (MLP), with back-propagation training, two hidden
layers and a layer configuration, according to: x − 10 − 15 − 2

5The collected data set is available under: http://reground.cs.kuleuven.be, and the human-annotation

interface is available under:
https://bitbucket.org/reground/anchoring.



EVALUATION AND RESULTS 141

• k-Nearest Neighbor (k-NN), trained and tested with k = 3

• Normal Bayes Classifier (Bayes) [Fukunaga, 2013]

Collected dataset was randomly divided 70/30 into training/test samples, giving
us a total of 3780 training samples and 1620 testing samples. Resulting average
classification accuracy and F1 score for each trained classifier is listed in Figure 8.3.

A. E
qs.

 (1
) to

 (4
)

B. E
qs.

 (1
) to

 (5
)

Bayes

MLP

SVM

k-NN

Al
go

rit
hm

0.927 0.939

0.957 0.962

0.960 0.964

0.956 0.956

Accuracy

A. E
qs.

 (1
) to

 (4
)

B. E
qs.

 (1
) to

 (5
)

0.894 0.909

0.932 0.941

0.938 0.944

0.931 0.931

F1 Score

0.87

0.90

0.93

0.96

0.99

Figure 8.3: Resulting average classification accuracy together with F1 score for each
used model for our approach to learn the anchoring functionalities.

Given the result, presented in Figure 8.3, it is seen that the best average classification

accuracy of 96.4% was achieved by the use of the SVM classifier. The highest average
F1 score (for a true match) of 94.4% was, likewise, achieved with the same SVM
classifier. By the results seen in Figure 8.3, it should, however, also be noted that
the differences in accuracy between the MLP classifier and the SVM classifier are
close to insignificant (only 0.2%). Nevertheless, the best trained resulting SVM model
was formally integrated as a part of the initial matching function of the anchoring
system such that the predicted result of the SVM model was used to determine if an
unknown candidate object was matching an existing anchor (i.e., if the object should
be re-acquired as an existing matching anchor), or if no current anchors were matching
the candidate object (i.e., if a new anchor should be acquired for the object). Integrated
classification approach was, subsequently, used for the remaining experiments presented
in the following Section 8.3.2.

By comparing the results between omitting (column A) or considering (column B)
the time difference as an additional attribute (mapped to a time distance according
to Equation 8.5), it is also evident that the time t, in fact, is a relevant factor for the
concept of anchoring. The intuition behind including this additional time attribute in
the evaluations presented in this section was to capture time-dependent changes in the
environment while learning how to anchor objects, e.g., the position of an object can
only change with a limited velocity between sequential frames. Through examining



142 SEMANTIC WORLD MODELING

the results for the best resulting SVM models, it is seen that our intuition was correct
and that we achieved 0.4% better classification accuracy and 0.6% better F1 score, as
a result of including the time difference as a feature. Worth noted, it can further be
seen by the results in Figure 8.3, that the k-NN classifier was the only classifier that
did not benefit from increasing the dimensionality of the input data by including the
time difference as an additional attribute.

Finally, it should also be noted that the integrated classification approach can, in some
cases, returning several matching candidate anchors (i.e., a candidate object can be
re-acquired as more than one existing matching anchor). It is, therefore, important to
globally consider all possible candidates for all observed objects in each frame in order
to determine the best matching candidate anchor for each observed object. For the
work presented in this paper, we used an SVM classifier with continuous output values
such that the globally best matching candidate anchor was determined in a winner takes

all manner.

8.3.2 Tracking of Occluded Objects

Despite the accuracy of the anchoring system, presented in previously Section 8.3.1,
there are scenarios where the pure anchoring system fails to correctly acquire or re-

acquire an object, e.g., when an object is occluded and moved by another object. For
a changing and adaptable system to handle the world modeling of such scenarios,
the system must further incorporate model-based object tracking in order to maintain
objects that are not perceived by the input sensors. We achieve this by expressing a
theory of occlusion in form of dynamic distributional clauses. In this section, we will
exemplify how our approach of integrating DDC into the anchoring framework (cf.

Section 8.2.4 and Figure 8.1– 2. and 3. ) can handle such scenarios with occluded
objects, and as a subsequent result further improve the anchoring accuracy.

Proof of Concept

To demonstrate how the anchoring system benefits from the feedback of the inference

system (and consequently how the inference system benefits from the same integration),
we plot the particles in form of point positions (representing the belief of the world in
the inference system, as described in Section 8.2.4), concurrently with the output of the
anchoring system, as exemplified in Figure 8.4. The mean position in 3-D space of the
particles for each object that was not directly perceived at time t, e.g., objects occluded
by another object, was subsequently fed back to the reinstated track functionality of
the anchoring system such that the position of an anchor (even though the anchored
object was not observed), was updated to the most probable position according to the
inference system.



EVALUATION AND RESULTS 143

1.

3.

2.

4.

Figure 8.4: A depiction of how suggested system benefits of combined object anchoring
and probabilistic object tracking. Rows in order from the top: 1st) representing screen-
shots of a scenario where a human hand is occluding an apple while the apple is
moved, 2nd) corresponding resulting anchored objects while only using the anchoring

system (note that the original apple-1 object is lost while it is occluded and moved
by the skin-1 object, and a new apple-3 object is, therefore, acquired in the end of
the scenario), 3rd) plotted particles given by the inference system during execution of
suggested integrated approach, and 4th) corresponding resulting anchored objects of
the anchoring system supported by the feed back of the inference system (note that in
this case is the position of apple-1 object tracked while it is occluded and moved by
the skin-1 object, and the apple-1 object is, accordingly, re-acquired in the end of the
scenario).

Comparing the resulting anchored objects, seen in Figure 8.4, it is evident that there is a
significant difference in resulting anchors. In the case where only the anchoring system

was used (Figure 8.4 – 2nd row from top), it can be seen that the initial apple-1 object

(seen in Figure 8.4– 1. ) is lost while the object is occluded and moved by the skin-1

object. Consequently, when the apple object reappears in the scene, the anchoring
system cannot determine if the object is a new apple or the previously anchored

apple-1, and as a result acquire an new anchor apple-3 (seen in Figure 8.4– 2. ).
However, in the case where both the anchoring system and the inference system are
used (Figure 8.4 – bottom row), and where the position of the tracked apple-1 object

(seen in Figure 8.4 – 3. ) is fed back to anchoring system while the object is moved,



144 SEMANTIC WORLD MODELING

it can seen that the apple object, instead, is correctly re-acquired as apple-1 once the

object reappears in the scene (seen in Figure 8.4– 4. ). Note that, rather than using
a dedicated classifier for recognizing different human body parts, we have, instead,
fine-tuned our object classification GoogLeNet model to recognize human skin objects
as one of the object categories.

Exemplifying Scenarios

Given the exemplified proof-of-concept (presented in the previous Section 8.3.2), we
will in this section further demonstrate a number of scenarios where our suggested
integrated system excels (compared to an anchoring approach that exclusively is based
on perceptual observations of objects):

1. Simple occlusion – we start with two objects (among other objects) that are both
visible. We then hide the smaller one of the objects behind the bigger one. The
occluded object does not produce any sensor data. We can, however, reason
about it. Then the smaller object reappears in the scene, we should be able to
associate the reappearing object with the one from before (same anchor with
high probability).

2. Moving an occluded object – we now want to track an object for which no sensor
data is available. We start again with two objects that are both visible. We then
hide the smaller object underneath the bigger object, move the bigger object
and, subsequently, reveal the smaller object. We should be able to associate the
reappearing object with the one from before.

3. Moving occluded objects with unexpected revealing – similar scenario as before
only this time we start out with also having an unknown object hidden which the
observer initially does not know about. We now hide again the (visible) smaller
object underneath the bigger object, move the bigger object, but this time reveal
the initially unknown hidden object. The system should recognize this as a new
object. Then the other (initially visible) smaller object is revealed, the system
should recognize this object as the previously anchored object.

4. Shell game – we start with three identical containers and a smaller object. We
then hide the smaller object underneath one of the three containers and start
shuffling the containers around. We should now be able to ask the system under
which of the three containers the hidden objects is located.

In Figure 8.5, we exemplify our results of stated scenarios with a number of screen-
shots during the execution of each scenario6. The scenarios were performed in near

6Full videos are available under: http://reground.cs.kuleuven.be/



EVALUATION AND RESULTS 145

real-time (8-10 frames per second) on a laptop Intel(R) i7 CPU 2.60GHz with 16 GB
memory and an NVIDIA Quadro M1000M. This constitutes a promising feature of
our approach as we do not need access to high-performance machines to deploy our
system.

In the first example with simple occlusion (Figure 8.5 – 1st row from top), it can be
seen that as soon as the cup occludes the smaller ball object, the object is immediately

tracked and maintained by the probabilistic reasoner (seen in Figure 8.5– 1. ). Opposite,
once the ball objects reappear in the scene, it is no longer any need to probabilistically
track the object, and the object is, once again, maintained through anchoring (seen in

Figure 8.5– 2. ).

Through the second example (Figure 8.5 – 2nd row from top), it is illustrated how
the combined system handles movements during occlusions. In this example, a glove

object (a human hand) is occluding while moving an apple object. As soon as the apple
object is occluded by the glove, the apple object is tracked and maintained though

probabilistic reasoning (seen in Figure 8.5– 3. ). The tracked position of the occluded
object is continuously fed back to the anchoring system (through the newly instated
anchoring track functionality), and the apple object is, consequently, re-acquired as

the same apple-1 once the object reappears in the scene (seen in Figure 8.5– 4. ).

In the third example (Figure 8.5 – 3rd row from top), we demonstrate how our combined
systems truly works in symbiosis. In this case, a similar scenario of moving an

occluded object is exemplified where a ball (ball-1) is occluded while moved by a
glove. However, another unknown ball is initially also hidden underneath the glove

(in the human hand). This hidden ball is later introduced in the scene during the

execution of the scenario (seen in Figure 8.5– 5. ). Nevertheless, since the second
ball is different in appearance (compared to ball-1), this newly introduced object
is correctly acquired as an new ball-2 object, while the first ball-1 object correctly
remains tracked, and is subsequently re-acquired as the same ball-1 object once

reappearing in the scene (seen in Figure 8.5– 6. ).

Finally, in the fourth example (Figure 8.5 – 4th-6th row from top), we reconnect
with our initial motivation statement, through presented screen-shots captured during
execution of a shell game scenario. In this example, a smaller block object (block-3)
is hidden underneath one of three identical larger block objects (block-1), seen in

Figure 8.5– 7. . All the larger block objects are, subsequently, moved around and
shuffled. Nevertheless, during all movements is the hidden block-3 object tracked
though the relation with the occluding counterpart (block-1), i.e., the inference system
is repeatedly speculating about the position of the hidden block-3, and the tracked
position of is continuously fed back to the anchoring system. Consequently, once the

hidden object is revealed and reappear in the scene (seen in Figure 8.5– 8. ), the object



146 SEMANTIC WORLD MODELING

5. 6.

3. 4.

7.

8.

1. 2.

Figure 8.5: Examples of screen-shots captured during the execution of stated scenarios.
Visual perceived anchored objects are symbolized with the unique anchor id (e.g.,
ball-2), while occluded hidden objects are depicted by plotted particles that represent
possible positions of the occluded object in the inference system. Rows in order

from the top: 1st) example of simple occlusion where a ball is hidden behind a cup,
2nd) depicts the movement of an occluded object where a glove (or human hand) is
occluding while moving an apple, 3rd) similar example of moving an occluded object

where a glove is occluding while moving a ball (ball-1), but in this case is also
another ball object (ball-2) introduced during the execution of the scenario, 4-6th)

illustrate a shell game scenario where a smaller object (block-3) is hidden under one
of three identical containers (block-2), and where the containers, subsequently, are
shuffled around.



RELATED WORK 147

is correctly re-acquired as the same block-3 object.

8.4 Related Work

The importance of data association and object tracking in relation to perceptual
anchoring was widely discussed by LeBlanc in his Ph.D. thesis on the topic of
cooperative anchoring [LeBlanc, 2010]. Around the same time, and as an alternative
to traditional anchoring, early work on perceptual and probabilistic anchoring was
presented by Blodow et al. [2010]. The history of objects was maintained as
computationally complex scene instances and the approach was, therefore, mainly
intended for solving the problem of anchoring and maintaining coherent instances of
objects in object kidnapping scenarios, i.e., when an object disappears from the scene
and later reappears in a different location.

The idea of probabilistic anchoring was subsequently further explored by Elfring et al.,
which introduced probabilistic multiple hypothesis anchoring [Elfring et al., 2013].
This approach utilizes Multiple Hypothesis Tracking-based data association [Reid,
1979], in order to maintain changes in anchored objects, and thus, maintain an
adaptable world model. In similarity with their work, we acknowledge that a proper
data association is important for object anchoring, and we support the requirements
identified by the authors for a changing and adaptable world modeling algorithm,
which are formulated to include: 1) appropriate anchoring, 2) data association, 3)
model-based object tracking, and 4) real-time execution. However, contrary to the work
of Elfring et al., we address the tasks of appropriate anchoring and data association in a
holistic fashion by introducing a learned anchoring matching function that administers
both tasks. Moreover, in contrast to the work presented in [Elfring et al., 2013], we do
not encourage a highly integrated approach that supports a tight coupling between object
anchoring/probabilistic data association and object tracking. Instead, our approach
maintains a loose coupling, which is motivated by the fact that a MHT procedure
will inevitably suffer from the curse of dimensionality [Bellman, 1957]. A purely
probabilistic anchoring approach, as presented in [Elfring et al., 2013], will, therefore,
further propagate the curse of dimensionality into the concept of anchoring.

The limitation in the use of MHT for world modeling has also been acknowledged in a
recent publication on the topic of data association for semantic world modeling [Wong
et al., 2015]. While this work inherits the same problem formulation, it substantially
differs in approach. The authors discuss and exemplify issues related to the use of a
tracking-based approach for world modeling, such as intractable branching of the tree-
structured tracks of possible hypothesis, and instead, suggests a clustering approach
based on Markov Chain Monte Carlo Data Association [Oh et al., 2009]. In the
same work on data association for semantic world modeling, Wong et al. also pointed



148 SEMANTIC WORLD MODELING

out some characteristics that differentiate world modeling from target tracking. For
example, an appropriate world modeling algorithm should take into consideration that
the state of most objects do not change between frames, while a tracking algorithm
must consider unchanged objects as possible valid targets. For the approach presented
in this paper, we are assuming similar characteristics through high-level tracking of
objects (and those objects only) that are not directly perceived by the sensory input
data.

From the relational point of view, which enables us to carry out reasoning, some
research has been conducted on utilizing relations to improve the tracking of real
world entities and state estimation ([Manfredotti, 2009; Mösenlechner; Beetz, 2009;
Tenorth; Beetz, 2013; Nitti et al., 2014]). The most expressive of theses approaches is
by Nitti et al. in [Nitti et al., 2014]. They utilize a relational particle filter, expressed
in DDC, to carry out the tracking of objects and handle occlusions. In a box packaging
scenario, where boxes are placed inside each other, they showed that binary predicates
like inside/2 are helpful when tracking objects that are not directly observable.
However, Nitti et al. assumed the data association problem to be solved by identifying
the objects (boxes) by augmented reality (AR) tags – hence, very strictly limiting the
usage of their framework in real-world scenarios.

In another recently published work on anchoring, Ruiz-Sarmiento et al. [2017] focus
on spatial features and distinguish unary object features, e.g., the position of an object,
from pairwise object features, e.g., the distance between two objects, in order to
build a graph-based world model that can be exploited by a probabilistic graphical

model [Koller; Friedman, 2009] in order to leverage contextual relations between
objects to support 3-D object recognition. Günther et al. [2018] have further exploited
this graph-based model on spatial features and propose, in addition, to learning the
matching function through the use of a Support Vector Machine (trained on samples of
object pairs manually labeled as "same or different object"), in order to approximate
the similarity between two objects. The assignment of candidate objects to existing
anchors is, subsequently, calculated using prior similarity values and a Hungarian

method [Kuhn, 1955]. However, in contrast to Günther et al. [2018], the matching
function that we introduced does not only rely upon spatial features (or attributes),
but can also take into consideration visual features (such as color features), as well as
semantic object categories, in order to approximate the anchoring matching problem.

Conclusions

In this chapter we presented an anchoring approach that combines bottom-up anchoring
and probabilistic reasoning. Coupling a probabilistic inference system to the anchoring
system enables the tracking of objects that are not directly observed. The presented



RELATED WORK 149

system is, however, not fully probabilistic but provides only an approximation of the
entire probability distribution by enforcing certain assumptions. For instance, the design
of the anchoring system assumes that the object segmentation and object classification
are independent of each other. Furthermore, the design of the anchoring system does
also assume that the object segmentation and classification are deterministic and that
there is no noise. Obviously this is not true, there is always noise. One could argue
now, as our model of the world (in form of the anchoring system) is wrong, that our
anchoring approach is wrong as well. Here we would like to quote Box "all models

are wrong, but some are useful" [Box, 1976; Box, 1979]. The question now becomes
not whether we have a correct model of the world but whether we have a useful
model. We have shown in this chapter that we can answer the latter of the two question
affirmatively. More precisely, we presented an anchoring system able of performing
object anchoring in (near) real-time. For situations where, real-time anchoring is not
necessary but where, for example, more robustness towards uncertainty in the sensors
is needed our model of the world, i.e the anchoring system will not be a good fit, in the
sense that it won’t be useful. In such situations the world has to be represented through
other models.



Chapter 9

A Two-Fold Extension
∗

The anchoring system as described in Chapter 8 is not capable of handling probabilistic
states, which means that the theory of occlusion has to describe unimodal probability
distributions. In this chapter, we repair this deficiency (cf. Section 9.2.2). Moreover,
the theory of occlusion had to be hand-coded (also the case for [Nitti et al., 2013]).
We replace the hand-coded theory of occlusion by a learned one (cf. Section 9.3).

9.1 Introduction

In the previous chapter, we coupled the probabilistic logic programming language DDC
to a perceptual anchoring system [Persson et al., 2020b], which endowed the perceptual
anchoring system with probabilistic reasoning capabilities. A major challenge in
combining perceptual anchoring with a high-level probabilistic reasoner, and which
is still an open research question, is the administration of multi-modal probability
distributions in anchoring1. In this chapter, we extend the anchoring notation in order
to handle additionally multi-modal probability distributions.

A second point that we have not addressed in the previous chapter (based on [Persson
et al., 2020b]), is the learning of probabilistic rules that are used to perform probabilistic

∗
This chapter is based on [Zuidberg DosMartires et al., 2020b].

1A multi-modal probability distribution is a continuous probability distribution with strictly more than
one local maximum. The key difference to a uni-modal probability distribution, such as a simple normal
distribution, is that summary statistics do not adequately mirror the actual distribution. In perceptual
anchoring these multi-modal distributions do occur, especially in the presence of object occlusions, and
handling them appropriately is critical for correctly anchoring objects. This kind of phenomenon is well
known when doing filtering and is the reason why particle filters can be preferred over Kalman filters.

150



ANCHORING OF OBJECTS IN MULTI-MODAL STATES 151

logic reasoning. We show that, instead of hand-coding these probabilistic rules, we
can adapt existing methods present in the SRL literature to learn them from raw sensor
data. In other words, instead of providing a model of the world to a robotic agent, it
learns this model in form of probabilistic logical rules. These rules are then used by
the robotic agent to reason about the world around it, i.e. perform inference. More
concretely: we learn the theory of occlusion instead of hand-coding it.

We evaluate the these two extensions of perceptual anchoring on three showcase
examples that exhibit the following characteristics: 1) object occlusion induces a
multi-modal probability distributions 2) the theory of occlusion is learned.

9.2 Anchoring of Objects in Multi-Modal States

In this section, we present a probabilistic anchoring framework that can handle multi-
modal probability distributions. An overview of our proposed framework, which is
implemented utilizing the libraries and communication protocols available in the Robot
Operating System, can be seen in Figure 8.1. Note, our previous anchoring system,

seen in Figure 8.1– 2. , was unable to handle probabilistic states of objects. While the

probabilistic reasoning module, seen in Figure 8.1– 3. , was able to model the position
of an object as a probability distribution over possible positions, the anchoring system
only kept track of a single deterministic position: the expected position of an object.
Therefore, we extend the anchoring notion towards a probabilistic anchoring approach
in order to enable the anchoring system to handle multi-modal probability distributions.

9.2.1 Requirements

Before presenting our proposed probabilistic anchoring approach, we first introduce
the necessary requirements and assumptions (which partly originate in the previous
chapter):

1. We assume that unknown anchor representations, αy
t , are supplied by a black-box

perceptual processing pipeline, as exemplified in Figure 8.1– 1. . They consist of
extracted attribute measurements and corresponding grounded predicate symbols.
We further assume that for each perceptual representation of an object, we have
the following attribute measurements: 1) a color attribute (φcolor

y ), 2) a position

attribute (φpos
y ), and 3) a size attribute (φsize

y ).

Example 9.1. In this paper we use the combined Depth Seeding Network (DSN)

and Region Refinement Network (RNN), as presented by Xie et al. [2019], for



152 A TWO-FOLD EXTENSION

the purpose of segmenting arbitrary object instances in tabletop scenarios. This

two-stage approach leverages both RGB and depth data (given by a Kinect V2

RGB-D sensor), in order to first segment rough initial object masks (based on

depth data), followed by a second refinement stage of these object masks (based

on RGB data). The resulting output for each segmented object, is then both a

3-D spatial percept (φ
spatial
y ), as well as a 2-D visual percept (φvisual

y ). For each

segmented spatial percept, and with the use of the Point Cloud Library (PCL),

are both a position attribute measured as the 3-D geometrical center, and a

size attribute measured as the 3-D geometrical bounding box. Similarly, using

the Open Computer Vision Library (OpenCV), a color attribute is measured as

the discretized color histogram (in HSV color-space) for each segmented visual

percept, as depicted in Figure 9.1.

2. In order to semantically categorize objects, we further assume that a Convolu-
tional Neural Network (CNN), such as the GoogLeNet model [Szegedy et al.,
2015], is available. In the context of anchoring, the inputs for this model are
segmented visual percepts (πvisual

y ), while resulting object categories, denoted by

the predicate p
category
y ∈ P, are given together with the predicted probabilities

φ
category
y .

Example 9.2. For this work, we have used the same fine-tuned model as used

in [Persson et al., 2020b], which is based on the network architecture of the 1 K
GoogLeNet model, developed by Szegedy et al. We have, however, fine-tuned the

model to classify 101 objects categories that are only relevant for a household

domain, e.g., mug, ball, box, etc., where the model was trained for a top-1

accuracy of 73.4% (and a top-5 accuracy of 92.0%). An example of segmented

objects together with the 3-top best object categories, given by the integrated

GoogLeNet model, is illustrated in Figure 9.2.

In addition, this integrated model is also used to enhance the traditional acquire

functionality such that a unique identifier x is generated based on the object
category symbol pcategory. For example, if the anchoring system detects an object
it has not seen before and classifies it as a cup, a corresponding unique identifier
x = cup-4 could be generated (where the 4 means that this is the forth distinct
instance of a cup object perceived by the system).

3. We require the presence of a probabilistic inference system coupled to the

anchoring system, as illustrated in Figure 8.1– 3. . The anchoring system is
responsible for maintaining objects perceived by the sensory input data and for
maintaining the observable part of the world model. Maintained anchored object
representations are then treated as observations in the inference system, which
uses relational object tracking to infer the state of occluded objects through their
relations with perceived objects in the world. This inferred belief of the world is



ANCHORING OF OBJECTS IN MULTI-MODAL STATES 153

Figure 9.1: Examples of measured color

attribute (measured as the discretized

color histogram over each segmented
object).

Figure 9.2: Examples of semantically

categorized objects (depicted with the
3-top best object categories for each
segmented object).

then sent back to the anchoring system, where the state of occluded objects is
updated. The feedback-loop between the anchoring system and the probabilistic
reasoner results in an additional anchoring functionality [Persson et al., 2020b]:

• Track – extends the definition of an anchor αx from time t − 1 to time t.
This functionality is directly responding to the state of the probabilistic
object tracker, which ensures that the percepts pointed to by the anchor are
the adequate perceptual representation of the object, even though the object
is currently not perceived.

9.2.2 Probabilistic Anchoring System

The entry point for the anchoring system, seen in Figure 8.1– 2. , is a learned matching

function. This function assumes a bottom-up approach to perceptual anchoring,
described in [Loutfi et al., 2005], where the system constantly receives candidate
anchors and invokes a number of attribute specific matching similarity formulas (i.e.,
one matching formula for each measured attribute). More specifically, a set of attributes
Φy of an unknown candidate anchor αy

t (given at current time t) is compared against the
set of attributes Φx of an existing anchor αx

t−k
(defined at time t − k) through attribute

specific similarity formulas. For instance, the similarity between the positions attributes

φ
pos
y of an unknown candidate anchor, and the last updated position φpos

t−k,x
of an existing

anchor, is calculated according to the L2-norm (in 3-D space), which is further mapped
to a normalized similarity value [Blodow et al., 2010]:



154 A TWO-FOLD EXTENSION

dpos(φpos

t−k,x
, φ

pos
t,y ) = e−L2(φpos

t−k,x
,φ

pos
t,y ) (9.1)

Hence, the similarity between two positions attributes is given in interval [0, 1], where
a value of 1 is equivalent with perfect correspondence. Likewise, the similarity between
two color attributes are calculated by the color correlation, while the similarity between
size attributes is calculated according to the generalized Jaccard similarity (for further
details regarding similarity formulas, we refer to our previous work [Persson et al.,
2020b]). The similarities between the attributes of a known anchor and an unknown
candidate anchor are then fed to the learned matching function to determine whether
the matching function classifies the unknown anchor to be acquired as a new anchor,
or re-acquired as an existing anchor. This matching function is utilized by a support
vector machine, which has been trained with the use of 5400 samples of humanly

annotated data (i.e., human users have provided feedback about what they think is
the appropriate anchoring action for objects in various scenarios), to a classification

accuracy of 96.4%. It should, however, be noted that the inputs for this classifier
are the various similarity values between attributes (cf. Equation 9.1), and that the
classifier learns to interpret, combine and weight different similarity values between
attributes in order to correctly determine whether a new anchor should be acquired, or
if an existing anchor should be re-acquired. By omitting similarity values of specific
attributes during training, we can also estimate the importance of different attributes.
For example, excluding the similarity values between color attributes during training
reduces the classification accuracy to 92.5%, while excluding the similarity values
between position attributes, instead, decreases the accuracy to 72.8%. This illustrating
example of the importance of the position of an object, in the context of anchoring, is a
further motivation for reasoning about possible states once the position of an object
changes during the absence of observations (e.g., in the case of movements during
occlusions).

In our prior work on anchoring, the attribute values have, in addition, always been
assumed to be deterministic within a single time step. This assumption keeps the
anchoring system de facto deterministic even though it is coupled to a probabilistic
reasoning module. We, therefore, extend the anchoring notation with two distinct
specifications of (volatile) attributes:

1. An attribute φt ∈ ϕ is deterministic at time t if it takes a single value from the
domain D(φt).

2. An attribute φt ∈ ϕ is probabilistic at time t if it is distributed according to a
probability distribution Pr(φt) over the domain D(φt) at time step t.

Having a probabilistic attribute value φt (e.g., φpos

t−k,x
in Equation 9.1), means that the

similarity calculated with the probabilistic attribute values (e.g., the similarity value



ANCHORING OF OBJECTS IN MULTI-MODAL STATES 155

dpos), will also be probabilistic. Next, in order to use an anchor matching function
together with probabilistic similarity values, two extensions are possible: 1) extend
the anchor matching function to accept random variables (i.e., probabilistic similarity
values), or 2) retrieve a point estimate of the random variable.

We chose the second option as this allows us to reuse the anchor matching function
learned in [Persson et al., 2020b] without the additional expense of collecting data and
re-training the anchor matching function. The algorithm to produce the set of matching
similarity values that are fed to the anchor matching function is given in Algorithm 9.1,
where lines 4-5 are the extension proposed in this work.

Algorithm 9.1 Attribute Compare

Input: Φx, Φy – sets of anchor attribute values

Output: Dx,y – set of matching similarity values

1: function AttributeCompare(Φx, Φy)
2: Dx,y ← empty set

3: for each φt,x ∈ Φx and φt,y ∈ Φy do

4: if φt−1,x is probabilistic then

5: Dx,y
+← point_estimate

φt−1,x

(d(φt−1,x, φt,y))

6: else ⊲ deterministic case
7: Dx,y

+← d(φt−k,x, φt,y)

8: returnDx,y

The point_estimate function in Algorithm 9.1 (line 5) is attribute specific (indicated
by the subscript (φt−1,x)), i.e. we can chose a different point estimation function for
color attributes than for position attributes. An obvious attribute upon which reasoning
can be done is the position attribute, for example, in the case of possible occlusions.
In other words, we would like to perform probabilistic anchoring while taking into
account the probability distribution of an anchor’s position. A reasonable goal is
then to match an unknown candidate anchor with the most likely anchor, i.e., with the
anchor whose position attribute value is located at the highest mode of the probability
distribution of the position attribute values. This is achieved by replacing Line 5 in
Algorithm 9.1 with:

F pos
x ←

{

φ
pos

t−1,x

∣
∣
∣
∣
∣
∣

∂Pr(φpos

t−1,x)

∂φ
pos

t−1,x

= 0

}

(9.2)

Dx,y
+← max
φpos∈F pos

x

(dpos(φpos, φ
pos
t,y )) (9.3)

F pos
x is the set of positions situated at the modes of the probability distribution Pr(φpos

t−1,x).
In Equation 9.3 we take the max as the co-domain of the position similarity value dpos



156 A TWO-FOLD EXTENSION

is in [0, 1], where 1 reflects perfect correspondence (cf. Equation 9.1).

In [Persson et al., 2020b], we approximated the probabilistic state of the world in the

inference system (cf. Figure 8.1– 3. ) by N particles, which are updated by means of
particle filtering. The precise information that is passed from the inference system to
the anchoring system is a list of N particles that approximate a (possible) multi-modal
belief of the world. More specifically, an anchor αx

t is updated according to the N

particles of possible states of a corresponding object, maintained in the inference
system, such that N possible 3-D positions are added to the volatile position attributes

ϕ
pos
x . In practice we assume that samples are only drawn around the modes of the

probability distribution, which means that we can replace line 5 of Algorithm 9.1 with:

Dx,y
+← max

i

(

dpos(φpos

t−1,x,i, φ
pos
t,y )

)

= max
i

(

e−L2(φpos

t−1,x,i,φ
pos
t,y )

)

(9.4)

Where φt−1,x,i is a sampled position and i ranges from 1 to the number of samples N.

Performing probabilistic inference in the coordinate space is a choice made in the
design of the probabilistic anchoring system. Instead, the probabilistic tracking could
also be done in the HSV color space, for instance. In this case, the similarity measure
used in Algorithm 9.1 would have to be adapted accordingly. It is also conceivable to
combine the tracking in coordinate space and color space. This introduces, however,
the complication of finding a similarity measure that works on the coordinate space
and the color space at the same time. A solution to this would be to, yet again, learn
this similarity function from data [Persson et al., 2020b].

9.3 Learning Dynamic Distributional Clauses

While several approaches exist in the SRL literature that learn probabilistic relational
models, most of them focus on parameter estimation [Sato, 1995; Friedman et al.,
1999; Taskar et al., 2002; Neville; Jensen, 2007] and structure learning has been
restricted to discrete data. Notable exceptions include the recently proposed hybrid
relational formalism by Ravkic et al. [2015], which learns relational models in a
discrete-continuous domain but has not been applied to dynamics or robotics, and the

related approach of Nitti et al. [2016b], where a relational tree learner DDC-TL
learns both the structure and the parameters of distributional clauses. DDC-TL has
been evaluated on learning action models (pre- and post-conditions) in a robotics
setting from before and after states of executing the actions. However, there were
several limitations of the approach. It simplified perception by resorting to AR tags
for identifying the objects, it did not consider occlusion, and it could not deal with
uncertainty or noise in the observations.



LEARNING DYNAMIC DISTRIBUTIONAL CLAUSES 157

A more general approach to learning distributional clauses, extended with statistical

models proposed in [Kumar et al., 2020]2. Such a statistical model relates continuous
variables in the body of a distributional clause to parameters of the distribution in the
head of the clause. The approach simultaneously learns the structure and parameters
of (non-dynamic) distributional clauses, and estimates the parameters of the statistical
model in clauses. A DC program consisting of multiple distributional clauses is capable
of expressing intricate probability distributions over discrete and continuous random
variables. A further shortcoming of DDC-TL (also tackled by Kumar et al.) is the
inability of learning in the presence of background knowledge — that is, additional
(symbolic) probabilistic information about objects in the world and relations (such
as spatial relations) among the objects that the learning algorithm should take into
consideration.

However, until now, the approach presented in [Kumar et al., 2020] has only been
applied to the problem of autocompletion of relational databases by learning a (non-
dynamic) DC program. We now demonstrate with an example of how this general
approach can also be applied for learning dynamic distributional clauses in a robotics
setting. A key novelty in the context of perceptual anchoring is that we learn a DDC
program that allows us to reason about occlusions.

Example 9.3. Consider again a scenario where objects might get fully occluded by

other objects. We would now like to learn the ToO that describes whether an object is

occluded or not given multiple observations of the before and after state. In DDC we

represent observations through facts as follows

pos ( o1_exp1 ) : t ~= 2 . 3 .
pos ( o1_exp1 ) t+1 ~= 9 . 3 .
pos ( o2 ) : t ~= 2 . 2 .
pos ( o2 ) : t+1 ~= 9 . 2 .
occ luded_by ( o1_exp1 , o2_exp1 ) : t +1.
pos ( o3_exp1 ) : t ~= 8 . 3 .
...

For the sake of clarity, we have considered only one-dimensional positions in this

example.

Example 9.4. Given the data in form of dynamic distributional clauses, we are now

interested in learning the ToO instead of relying on a hand-coded one, as in Example 7.4.

An excerpt from the set of clauses that constitute a learned ToO is given below. As in

Example 7.4, the clauses describe the circumstances under which an object (Occluded)

is potentially occluded by another object (Occluder).

2https://github.com/niteshroyal/DreaML

https://github.com/niteshroyal/DreaML


158 A TWO-FOLD EXTENSION

o c c l u d e r ( Occluded , O c c l u d e r ) : t+1 ~ f i n i t e ( 1 . 0 : f a l s e ) ←
occ luded_by ( Occluded , O c c l u d e r ) : t ,
o b s e r v e d ( Occluded ) : t +1.
o c c l u d e r ( Occluded , O c c l u d e r ) : t+1 ~ f i n i t e ( 0 . 9 2 : t r u e

, 0 . 0 8 : f a l s e ) ←
occ luded_by ( Occluded , O c c l u d e r ) : t ,
\+ o b s e r v e d ( Occluded ) : t +1.

o c c l u d e r ( Occluded , O c c l u d e r ) : t+1 ~ f i n i t e ( P1 : t r u e , P2 :
f a l s e ) ←

\+ occ luded_by ( Occluded , O c c l u d e r ) : t ,
\+ o b s e r v e d ( Occluded ) : t +1 ,
d i s t a n c e ( Occluded , O c c l u d e r ) : t ~=D i s t a n c e ,
l o g i s t i c ( [ D i s t a n c e ] , [ − 1 6 . 9 , 0 . 8 ] , P1 ) ,
P2 i s 1−P1 .

Note that, in the second but last line of the last clause above the arbitrary threshold

on the Distance is superseded by a learned statistical model, in this case a logistic

regression, which maps the input parameter Distance to the probability P1:

P1 =
1

1 + e16.9×D-0.8
(9.5)

Replacing the hand-coded occluder rule with the learned one in the theory of occlusion

allows us to track occluded objects with a partially learned model of the world.

In order to learn dynamic distributional clauses, we first map the predicates with
subscripts that refer to the current time step t and the next time step t+1 to standard
predicates, which gives us an input DC program. For instance, we map pos(o1_exp1)
:t to pos_t(o1_exp1), and occluder (o1_exp1,o2_exp2):t+1 to occluder_t1 (o1_exp1
,o2_exp2). The method introduced in [Kumar et al., 2020] can now be applied for
learning distributional clauses for the target predicate occluder_t1 (o1_exp1,o2_exp2)
from the input DC program.

Clauses for the target predicate are learned by inducing a distributional logic tree. An
example of such a tree is shown in Figure 9.3. The key idea is that the set of clauses for
the same target predicate are represented by a distributional logic tree, which satisfies
the mutual exclusiveness property of distributional clauses. This property states that
if there are two distributional clauses defining the same random variable, their bodies
must be mutually exclusive. Internal nodes of the tree correspond to atoms in the
body of learned clauses. A leaf node corresponds to a distribution in the head and to
a statistical model in the body of a learned clause. A path beginning at the root node
and proceeding to a leaf node in the tree corresponds to a clause. Parameters of the
distribution and the statistical model of the clause are estimated by maximizing the



LEARNING DYNAMIC DISTRIBUTIONAL CLAUSES 159

Figure 9.3: A distributional logic tree that represents learned clauses for the target
occluder (Occluded,Occluder): t+1. The leftmost path corresponds to the first clause,
the rightmost path corresponds to the last clause for occluder (Occluded,Occluder): t+1
in Example 9.3. Internal nodes such as occluder (Occluded,Occluder): t and observed
(Occluded): t+1 are discrete features, whereas, internal nodes such as distance (
Occluded,Occluder): t+1~=Distance is a continuous feature.

expectation of the log-likelihood of the target in partial possible worlds. The worlds are
obtained by proving all possible groundings of the clause in the input DC program. The
structure of the induced tree defines the structure of the learned clauses. The approach
requires declarative bias to restrict the search space while inducing the tree. Note that
the fragment of programs that can be learned by the algorithm described in [Kumar
et al., 2020] does not include recursive programs, as only tree structured programs can
be learned.

In summary, the input to the learner of Kumar et al. [2020] is a DC program consisting
of

• background knowledge, in the form of DC clauses;

• observations, in the form of DC clauses — these constitute the training data;

• the declarative bias, which is necessary to specify the hypothesis space of the
DC program [Adé et al., 1995];

• the target predicates for which clauses should be learned.



160 A TWO-FOLD EXTENSION

The output is:

• a set of DC clauses represented as a tree for each target predicate specified in the
input.

In contrast to learning algorithms that tackle discrete data, the declarative bias used
to learn rules with continuous random variables has to additionally specify whether
a random variable is distributed according to a discrete probability distribution or a
continuous probability distribution. In other words, the declarative bias specifies
whether a leaf in the learned tree represents continuous or a discrete probability
distribution. Currently the algorithm of Kumar et al. [2020] only supports normal
distributions for continuous random variables and finite categorical distributions for
discrete random variables.

Once the clauses are learned, predicates are mapped back to predicates with subscripts
to obtain dynamic distributional clauses. For instance, occluder_t1 (Occluded,
Occluder) in the learned clauses is mapped back to occluder (Occluded,Occluder)
: t+1.

The data used for the learning of the theory of occlusion consists of training points of
before-after states of two kinds. The first kind are pairs describing a transition of an
object from being observed to being occluded. Here, the data set contained 58 data
point pairs, with 13 pairs describing the transition of an object from being observed
to being occluded and the remaining 45 describing situations with an object being
observed in the before state, as well as in the after state. Examples of two raw data
points for the first kind can be seen in Figure 9.4. The second kind of data pairs describe
an object being occluded in the before state as well as in the after state. Here we had
425 positively labeled data pairs, i.e. an object was occluded in the after state. For
416 of these pairs the labeling was correct while the remaining were mislabeled (the
occluded object in the after state was labeled as observed in the before state). For
negative data points (objects not occluded in the after state) we had 1152 data pairs.
For 473 of these pairs the non-occluded object was labeled as not occluded in the
before state as well, for 2 it was labeled as occluded and for the remaining there was
no label in the before state. While for the first kind we did not have any mislabeled
data, the data points for the second kind did exhibit a small percentage of inaccurately
labeled data pairs, for example approximately ≈ 3% for positive data pairs. Noise in
the data was also present in the position of the objects – originating from the perceptual
anchoring system.

The predicate specifying whether an object is occluded in the after state or not was
the target predicate of the learner. In the declarative bias we specified the predicates
to be used as features. These included predicates specifying whether an object is
occluded in the before state, position predicates, and distance predicates between
objects. Furthermore, the rule learner automatically decides on which statistical models,



EVALUATION 161

Figure 9.4: Depicted are two training points in the data set that were used to learn
the transition rule of an object to another object. The panels on the left show a ball

that is being occluded by a box, and on the right, the same ball that is being grabbed
by a hand (or a skin object, as we have only trained our used GoogLeNet model
to recognize general human skin objects instead of particular human body parts, cf.
Section 9.2.1). The plotted dots on top of the occluding object represent samples drawn
from the probability distribution of the occluded object, in other words the object that
is labeled in the data set to transition into the occluding counterpart.

if any, to use in the learned rules. The available statistical models are linear, softmax,
and logistic models.

The processed data that was fed to the distributional clauses learner is available online3

as well as models with the learned theory of occlusion4. The learned theory of
occlusions is conceptually close to the one shown in Example 9.4. The first-order nature
of the learned rules enable the usage of the rules in situations of object occlusions with
specific objects that were not present in the training data set.

9.4 Evaluation

A probabilistic anchoring system that is coupled to an inference system (cf.
Section 9.2.2) is comprised of several interacting components. This turns the evaluation
of such a combined framework, with many integrated systems, into a challenging task.
We, therefore, evaluate the integrated framework as a whole on representative scenarios
that demonstrate our proposed extensions to perceptual anchoring. In Section 9.4.1, we
demonstrate how the extended anchoring system can handle probabilistic multi-modal
states (described in Section 9.2). In Sections 9.4.2 and 9.4.3, we show that semantic
relational object tracking can be performed with the probabilistic logic rules (in form
of a DDC program) instead of handcrafted ones.

3https://bitbucket.org/reground/anchoring/downloads/
4https://bitbucket.org/reground/anchoring

https://bitbucket.org/reground/anchoring/downloads/
https://bitbucket.org/reground/anchoring


162 A TWO-FOLD EXTENSION

9.4.1 Multi-Modal Occlusions

We present the evaluation in the form of screenshots captured during the execution of a
scenario where we obscure the stream of sensor data. We start out with three larger
objects (two mug objects and one box object), and one smaller ball object. During the

occlusion phase, seen in Figure 9.5– 1. , the RGB-D sensor is covered by a human hand

and the smaller ball is hidden underneath one of the larger objects. In Figure 9.5– 1. ,
it should also be noted that the anchoring system preserves the latest update of the
objects, which is here illustrated by the outlined contour of each object. At the time that
the sensory input stream is uncovered, and there is no longer any visual perceptual input
of the ball object, the system can only speculate about the whereabouts of the missing
object. Hence, the belief of the ball’s position becomes a multi-modal probability

distribution, from which we draw samples, as seen in Figure 9.5– 2. . At this point, we
are, however, able to track the smaller ball through its probabilistic relationships with
the other larger objects. During all the movements of the larger objects, the probabilistic
inference system manages to track the modes of the probability distribution of the
position of the smaller ball. The probability distribution for the position of the smaller
ball (approximated by N samples) is continuously fed back to the anchoring system.
Consequently, once the hidden ball is revealed and reappears in the scene, as seen in

Figures 9.5– 3. and 9.5– 4. , the ball is correctly re-acquired as the initial ball-1
object. This would not have been possible with a non-probabilistic anchoring approach.

9.4.2 Uni-Modal Occlusions with Learned Rules

The conceptually easiest ToO is one that describes the occlusion of an object by another
object. Using the method described in Section 9.3, we learned such a ToO, which we
demonstrate in Figure 9.6. Shown are two scenarios. In the one in the upper row a can

gets occluded by a box — shown in the second screenshot. The can is subsequently
tracked through its relation with the observed box and successfully re-anchored as
can-1 once it is revealed. Note that in the second screenshot, the mug is also briefly
believed to be hidden under box, shown through the black dots, as the mug is temporally
obscured behind the box and not observed by the vision system. However, once the
mug is again observed the black dots disappear.

In the second scenario, we occlude one of two ball objects with a box and track the
ball again through its relation with the box. Note that some of the probability mass
accounts for the possibility for the occluded ball to be occluded by the mug. This is
due to the fact that the learned rule is probabilistic.

In both scenarios, we included background knowledge that specifies that a ball cannot
be the an occluder of an object (it does not afford to be the occluder). This is also



EVALUATION 163

 1.  2.

 3.  4.

Figure 9.5: Screen-shots captured during the execution of a scenario where the stream
of sensor data is obscured. Visually perceived anchored objects are symbolized by a
unique anchor identifiers (e.g., mug-1), while occluded hidden objects are depicted by
plotted particles that represent possible positions of the occluded object in the inference
system. The screenshots illustrate a scenario where the RGB-D sensor is covered and
a ball is hidden under either one of three larger objects. These larger objects are
subsequently shuffled around before the whereabouts of the hidden ball is revealed.

why we see a probability mass of the occluded ball at the mug’s location and not at the
observed ball’s location in the second scenario.

9.4.3 Transitive Occlusions with Learned Rules

occ luded_by ( Occluded , O c c l u d e r ) : t+1 ←
occ luded_by ( Occluded , O c c l u d e r ) : t ,
\+ o b s e r v e d ( Occluded ) : t +1 ,
\+ o b s e r v e d ( O c c l u d e r ) : t +1 ,
occ luded_by ( Occ luder , _ ) : t +1.

Extending the ToO from Section 9.4.2 with the above rule, enables the anchoring system
to handle recursive occlusions. We demonstrate such a scenario in Figure 9.7. Initially,
we start this scenario with a ball, a mug and a box object (which in the beginning is
miss-classified as block object, cf. Figure 9.2). In the first case of occlusion, seen in



164 A TWO-FOLD EXTENSION

Figure 9.6: The two scenario show how a learned ToO is used to perform semantic
relational object tracking. In both scenarios, an object is occluded by a box and
successfully tracked before the occluded object is being revealed and again re-acquired

as the same initial object.

Figures 9.7– 1. , we have the same type of uni-modal occlusion as described in the
previous Section 9.4.2, where the mug occludes the ball and, subsequently, triggers the
learned relational transition (where plotted yellow dots represent samples drawn from
the probability distribution of the occluded ball object). In the second recursive case

of occlusion, seen in Figure 9.7– 2. , we proceed by also occluding the mug with the
box. Above rule administers this transitive occlusion — triggered when the ball is still
hidden underneath the mug and the mug is occluded by the box. This is illustrated here by
both yellow and black plotted dots that represent samples drawn from the probability
distributions of occluded mug and the transitively occluded ball object, respectively.
Consequently, once the box is moved, both the mug and the ball are tracked through the

transitive relation with the occluding box. Reversely, it can be seen, in Figure 9.7– 3. ,
that once the mug object is revealed the object is correctly re-acquired as the same
mug-1 object, while the relation between the mug and the occluded ball object is still

preserved. Finally, as the ball object is revealed, in Figure 9.7– 4. , it can be also seen
that the object is, likewise, correctly re-acquired as the same ball-1 object.

9.5 Future Work

With the approach presented in this chapter for probabilistic anchoring we are merely
able to perform MAP inference. In order to perform full probabilistic anchoring, one
would need to render the anchor matching function itself fully probabilistic, i.e. the
anchor matching function would need to take as arguments random variables and again



FUTURE WORK 165

 1.

 2.  3.

 4.

Figure 9.7: A scenario that demonstrates transitive occlusions based on learned rules
for handling the theory of occlusions. First the ball is occluded by the mug (indicated
by the yellow dots) and subsequently the mug is occluded in turn by the box (indicated
by the black dots). Once the mug is observed again the ball is still believed to be
occluded by the mug.

output probability distributions instead of point estimates — ideas borrowed from
multi-hypothesis anchoring [Elfring et al., 2013] might, therefore, be worthwhile to be
considered in future work.

Conclusions

In this chapter we presented a two-fold extension to the work in the previous,
where we proposed an approach that couples an anchoring system to a probabilistic
inference system. Firstly, we extended the notions of perceptual anchoring towards
the probabilistic setting by means of probabilistic logic programming. Secondly, we
have deployed methods from statistical relational learning to the field of anchoring.
While we have shown in a set of showcase scenarios that both extensions improve our
approach presented in Chapter 8, it can be criticized that the experimental evaluation
is not very extensive. This is in fact a criticism that can be made more generally
to research in robotics and related fields, such as object anchoring. Additionally the
experimental evaluation is also often lacking reproducibility. A possible avenue forward



166 A TWO-FOLD EXTENSION

is the use of simulators for the experimental evaluation. Simulators are already being
used for machine learning in robotics, e.g. [Tobin et al., 2017; Peng et al., 2018]. This is
referred to as sim2real. A similar approach could be used for reproducible experimental
set-ups. An important feature of such as set-up will have to be the faithful simulation
of uncertainty of the real-world. For example, when simulating an anchoring system
the simulated camera through which the simulated world is observed has to match
faithfully the noise of the real-world camera.



Conclusions

In the last part of the thesis we tackled our thirds research question:

RQ3: Can we equip a cognitive robotics system with probabilistic reasoning

capacities?

In Chapter 8, we presented how we are able to improve the overall anchoring
process by introducing a post-anchoring high-level probabilistic reasoning procedure
with the purpose of predicting the state of objects that are not directly perceived
through the perceptual sensor data, e.g., in case of object occlusions. To retain the
integrated framework in a coherent cognitive state, we have suggested a loosely coupled
integration between proposed inference system and anchoring system, while a tight
feedback loop is preserved in order to maintain consented tracked positions of objects.
We have presented the proof-of-concept of how this integrated framework is used to
model and manage a consistent semantic world model of perceived objects in dynamic
scenarios. To the best of our knowledge this constitutes the first system capable of
handling occlusions that are full, long and complex.

Furthermore, we introduced a novel anchoring matching approach based on
classification of humanly annotated ground truth data of real-world objects for
determining whether a perceived object has previously been observed (or not), and,
subsequently, invoke correct anchoring functionality (acquire or re-acquire) in order
to correctly anchor perceived objects. Through the presented results, we have shown
that our learned anchoring matching approach is able to accurately anchor objects and
maintain consistent representations of objects.

In Chapter 9, we presented a two-fold extension to our previous work on semantic
world modelling [Persson et al., 2020b] (presented in Chapter 8). Firstly, we extended
the notions of perceptual anchoring towards the probabilistic setting by means of
probabilistic logic programming. This allowed us to maintain a multi-modal probability
distribution of the positions of objects in the anchoring system and to use it for matching
and maintaining objects at the perceptual level. We illustrated the benefit of this

167



168 A TWO-FOLD EXTENSION

approach with the scenario in Section 9.4.1, which the anchoring system was able
to resolve correctly only due to its ability of maintaining a multi-modal probability
distribution.

Secondly, we have deployed methods from statistical relational learning to the field of
anchoring. This approach allowed us to learn, instead of handcraft, rules needed in the
reasoning system. A distinguishing feature of the applied rule learner [Kumar et al.,
2020] is its ability to handle both continuous and discrete data. We then demonstrated
that combining perceptual anchoring and SRL is also feasible in practice by performing
relational anchoring with a learned rule. This scenario did also exhibit a further strength
of using SRL in anchoring domains, namely that the resulting system becomes a highly
modularizable. In our evaluation, for instance, we were able to integrate an extra rule
into the ToO, which enabled us to resolve recursive occlusions. A possible future
direction of this work is to exploit how anchored objects and their spatial relationships
facilitate the learning of both the function of objects, as well as object affordances
– similar to previously presented work on learning objects affordances from visual
data [Kjellström et al., 2011; Moldovan et al., 2012; Koppula et al., 2013; Koppula;
Saxena, 2014].



Conclusions

169



Conclusions

The first step in successfully embarking on the voyage of scientific inquiry is often
choosing the right level of abstraction for one’s problem. Finding the right level of
abstractions that fit one’s problem setting is of tremendous help for finding the correct
answer and even more importantly asking the right question in the first place. Of course,
the scientific process of finding abstractions, questions, and answers is not linear in
nature but iterative.

In this thesis we investigated probabilistic modeling with discrete and continuous
random variables at three levels of abstractions.

1. the microscopic level

2. the macroscopic level

3. the cognitive level

These three different levels of abstraction allowed us to ask different questions and
give answers adequate to the level of abstraction that we were operating at. We would
like to stress that even though we present these three instances of abstraction, question,
and answer in a linear fashion, arriving at this formulation took many iterations and
revisions.

For the remainder of this concluding chapter, we will first briefly summarize the
contributions presented in the thesis along the three levels of abstraction. Secondly, we
will give an outlook on future work that has not yet been mentioned in intermediate
concluding chapters.

170



FUTURE WORK 171

Summary

Inference at the Microscopic Level

In the first part of the thesis we focused, on the one hand, on a clean and stringent
formulation of weighted model integration, which resulted in the introduction of the
λ-SMT problem. This allowed us to compare the zoo of existing weighted model
integration solvers on a conceptual level.

On the other hand, we developed a series of state-of-the-art weighted model integration
solvers, exact as well as approximate (summarized in Table 9.1). To this end we
combined techniques from various different fields of computer science and artificial
intelligence, such as knowledge compilation, satisfiability modulo theories, symbolic
computer algebra systems, Monte Carlo techniques, dynamic programming, and GPU
parallelization.

Table 9.1: Summary of developed WMI solvers.

exact approximate
Symbo X

Sampo X

F-XSDD(BR) X

F-XSDD(MCAD) X

A Probabilistic Logic Programming Language at the Macroscopic Level

The second part is concerned with extending the probabilistic logic programming
language ProbLog with continuous random variables. With DC-ProbLog we introduced
a probabilistic logic programming language in the discrete-continuous domain with a
strict superset of ProbLog. More concretely, we made the following contributions.

Furthermore, we linked probabilistic inference in DC-ProbLog back to techniques
that we developed for weighted model integration. As a consequence, inference in
DC-ProbLog is reduced to weighted model integration, which constitutes a compilation
of DC-ProbLog programs to weighted SMT formulas.

1. We introduced a type system for DC-ProbLog, which allows us to introduce a
neat and clean syntax to extend ProbLog with function symbols for continuous
random variables.



172 A TWO-FOLD EXTENSION

2. We sketched a purely declarative semantics for DC-ProbLog based on
distribution semantics.

3. We reduced inference in DC-ProbLog to weighted model integration in the
algebraic model counting setting.

4. We presented an implementation of DC-ProbLog, which reduces naturally to
ProbLog in the absence of function symbols.

The presented inference algorithm is the first algorithm for the discrete-continuous
domain that uses directed acyclic graphs instead of trees as an underlying data structure
– potentially leading to exponentially faster inference times.

Finalizing the specification of the semantics of DC-ProbLog remains to be the last
considerable task to accomplish.

Intelligent Agents at the Cognitive Level

In the third part we demonstrated that ideas from cognitive robotics and probabilistic
programming can successfully be combined. We developed a cognitive robotics system
that is capable of resolving intricate object occlusion scenarios in the presence of
a considerable amount of uncertainty. We introduced a systems architecture that
combines perceptual anchoring and probabilistic programming.

Additionally, we showed that techniques from statistical relational learning can be
deployed in such a probabilistic cognitive system. This means that, instead of explicitly
providing a model that describes an autonomous agent’s uncertainty of the world, such
a model can also be learned from data.

Our probabilistic perceptual anchoring system constitutes a neuro-symbolic approach
for tackling the challenging problem of equipping autonomous agents that have to
perceive the real world through raw sensor data, while at the same time being capable
of reasoning about the world and the objects present.

Future Work

While the intermediate concluding chapters did mention future work, those were of
a rather technical nature. We would like now to briefly mention possible future work
with a broader scope, with a more visionary taste to it.



FUTURE WORK 173

Approximate Weighted Model Integration

Solving weighted model integration problems exactly is a computationally hard task
and trying to develop efficient, general and exact inference algorithms is hopeless. In
the first part of the thesis we proposed, inter alia, two approximate inference algorithms.
This constitutes, however, only a first step. An interesting avenue for future research
would be to further explore approximate inference techniques. The goal would be, on
the one hand, to adapt techniques for approximate weighted model counting and on
the other hand techniques from approximate Monte Carlo estimation. In the former
case, first promising results have already been presented by Belle et al. [2015b] and
Abboud et al. [2020]. In the latter case, our own efforts and the work by Afshar et al.
[2016] constitute first steps in this direction. What is left is to further explore the space
of approximate WMI inference algorithms and combine approximation schemes that
originate in these two different schools of thought.

Probabilistic Programming and Compilation

Modern high-performance programming languages rely heavily on compiling down
code written in a high-level language such as C++ or Julia to efficient machine code.
Nowadays, compilers do generally write more efficient machine code than trained
experts. This is made possible through compiler toolchain technologies such as LLVM
or GCC.

Even though first attempts exist to develop compilers for probabilistic programming, a
holistic approach to compilation for probabilistic programming is as of now an open
question. In the second part of this thesis we introduced one specific compilation
technique: rewriting DC-ProbLog programs to weighted model integration problems
and perform probabilistic inference for the latter. Further, complementary techniques
exist, see for example [Li et al., 2015] or [Huang et al., 2017]. However, a lot of
work lies still ahead before producing a modern and mature compiler toolchain for
probabilistic programs. It seems unavoidable that the probabilistic programming
community and the programming languages community will need to join forces on this
endeavor.

In this context it is noteworthy that there has recently also been a surge in work that aims
at compiling down data structures, which represent probability distribution, to specific
hardware designs. such as FPGAs [Sommer et al., 2018], tailor made chips [Shah et al.,
2020], or GPUs [Peharz et al., 2020]. Actually running probabilistic inference on
silicon can be considered as an additional level of abstraction, a physical level.



174 A TWO-FOLD EXTENSION

Dynamic Probabilistic Programming

In the third part of the thesis we encountered the the probabilistic programming
language Dynamic Distributional Clauses (DDC) [Nitti et al., 2013], which allows
users to explicitly model time. Given the importance of time in modeling the world,
it should not come as a surprise that also other probabilistic programming languages
have been developed that do also allow one to model time explicitly, either as discrete
time steps such as Dynamic BLOG [Erol et al., 2013], or as continuous time as in
CTPL [Pfeffer, 2009].

Performing inference in a probabilistic programming language with discrete and
continuous random variables, which has native support for time, is an exceptionally
hard problem. Therefore, specific probabilistic programming languages usually
tackle specific problems for which they provide efficient inference algorithms.
Consequentially, the implementation of probabilistic programming languages ends
often up to be rather tightly linked to the provided inference algorithms.

Future work could consists of disentangling the specifications of a high-level temporal
probabilistic programming language and the underlying inference algorithms, rendering
the high-level language agnostic of the deployed inference mechanisms. A promising
research avenue to this end seems to be investigating and combining already
existing ideas such as the structural interface algorithm [Vlasselaer et al., 2016]
and ordinary/partial/stochastic differential equations in a setting with discrete and
continuous random variables.

Neuro-Symbolic Cognitive Robotics

Although neuro-symbolic techniques [Garcez et al., 2019], which aim at bridging
the symbolic/sub-symbolic divide, have experienced a recent uptake in interest from
artificial intelligence researchers, these techniques have so far only been applied
to (cognitive) robotics in a limited fashion. Our work on probabilistic perceptual
anchoring, presented in the third part of this theses, is a first step in the direction of
exploring neuro-symbolic AI being deployed to cognitive robotics. Recent work by
Manhaeve et al. [2018] that combines SRL and neural methods might lead to a fully

differentiable perceptual anchoring system. This would allow us to propagate back
symbolic information to sub-symbolic representations of the world.

Opportunities for future research are plentiful and span from learning, to planning, to
actually building cognitive robots. At this point, we would especially like to stress
the challenge of building cognitive robotics systems. At the moment the challenge in
cognitive robotics is not to be found on the theoretical side, producing yet an other
theoretical cognitive robotics framework, but getting started with delivering actual



FUTURE WORK 175

systems that interact with the world through raw and noisy data. We presented one
possible research avenue to follow but a lot of work has yet to happen.





Bibliography

Abadi, Martıén; Barham, Paul; Chen, Jianmin; Chen, Zhifeng; Davis, Andy; Dean,
Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Irving, Geoffrey; Isard, Michael, et al.
(2016). Tensorflow: A system for large-scale machine learning. In: 12th USENIX

Symposium on Operating Systems Design and Implementation OSDI16).

Abboud, Ralph; Ceylan, Ismail Ilkan; Dimitrov, Radoslav (2020). On the Approx-
imability of Weighted Model Integration on DNF Structures. In: arXiv preprint

arXiv:2002.06726.

Adé, Hilde; De Raedt, Luc; Bruynooghe, Maurice (1995). Declarative bias for specific-
to-general ILP systems. In: Machine Learning 20.1-2, pp. 119–154.

Afshar, H.; Sanner, S.; Abbasnejad, Ehsan (2015). Linear-Time Gibbs Sampling in
Piecewise Graphical Models. In: AAAI.

Afshar, Hadi Mohasel; Domke, Justin (2015). Reflection, Refraction, and Hamiltonian
Monte Carlo. In: Advances in neural information processing systems, pp. 3007–3015.

Afshar, Hadi Mohasel; Sanner, Scott; Webers, Christfried (2016). Closed-form Gibbs
sampling for graphical models with algebraic constraints. In: Proceedings of the

AAAI Conference on Artificial Intelligence.

Antanas, Laura; Can, Ozan Arkan; Davis, Jesse; De Raedt, Luc; Loutfi, Amy;
Persson, Andreas; Saffiotti, Alessandro; Unal, Emre; Yuret, Deniz; Martires,
Pedro Zuidberg dos (2017). Relational Symbol Grounding through Affordance
Learning: an Overview of the ReGround Project. In: International Workshop on

Grounding Language Understanding @ INTERSPEECH.

Barrett, Clark; Tinelli, Cesare (2018). Satisfiability modulo theories. In: Handbook

of Model Checking. Springer.

Belle, Vaishak; Passerini, Andrea; Van den Broeck, Guy (2015a). Probabilistic
Inference in Hybrid Domains by Weighted Model Integration. In: Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI).

177



178 BIBLIOGRAPHY

Belle, Vaishak; Van den Broeck, Guy; Passerini, Andrea (2015b). Hashing-based
approximate probabilistic inference in hybrid domains. In: In P.

Belle, Vaishak; Van den Broeck, Guy; Passerini, Andrea (2016). Component Caching
in Hybrid Domains with Piecewise Polynomial Densities. In: Proceedings of the

AAAI Conference on Artificial Intelligence.

Bellman, Richard (1957). Dynamic Programming. Princeton University Press.

Beltagy, Islam; Roller, Stephen; Cheng, Pengxiang; Erk, Katrin; Mooney, Raymond J
(2016). Representing meaning with a combination of logical and distributional
models. In: Computational Linguistics 42.4, pp. 763–808.

Bezanson, Jeff; Edelman, Alan; Karpinski, Stefan; Shah, Viral B (2017). Julia: A fresh
approach to numerical computing. In: SIAM review.

Bingham, Eli; Chen, Jonathan P.; Jankowiak, Martin; Obermeyer, Fritz; Pradhan,
Neeraj; Karaletsos, Theofanis; Singh, Rohit; Szerlip, Paul; Horsfall, Paul;
Goodman, Noah D. (2018). Pyro: Deep Universal Probabilistic Programming. In:
Journal of Machine Learning Research.

Birnbaum, Elazar; Lozinskii, Eliezer L (1999). The Good Old Davis-Putnam Procedure
Helps Counting Models. In: Journal of Artificial Intelligence Research.

Blodow, Nico; Jain, Dominik; Marton, Zoltan-Csaba; Beetz, Michael (2010).
Perception and probabilistic anchoring for dynamic world state logging. In: 2010

10th IEEE-RAS International Conference on Humanoid Robots. IEEE.

Box, George EP (1976). Science and statistics. In: Journal of the American Statistical

Association 71.356, pp. 791–799.

Box, George EP (1979). Robustness in the strategy of scientific model building. In:
Robustness in statistics. Elsevier, pp. 201–236.

Bryant, Randal E. (1986). Graph-Based Algorithms for Boolean Function Manipula-
tion. In: IEEE Transactions on Computers.

Burges, Christopher JC (1998). A tutorial on support vector machines for pattern
recognition. In: Data mining and knowledge discovery 2.2, pp. 121–167.

Can, Ozan Arkan; Zuidberg Dos Martires, Pedro; Persson, Andreas; Gaal, Julian;
Loutfi, Amy; De Raedt, Luc; Yuret, Deniz; Saffiotti, Alessandro (2019).
Learning from Implicit Information in Natural Language Instructions for Robotic
Manipulations. In: Combined Workshop on Spatial Language Understanding and

Grounded Communication for Robotics @ NAACL.

Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D; Lee, Daniel; Goodrich,
Ben; Betancourt, Michael; Brubaker, Marcus; Guo, Jiqiang; Li, Peter; Riddell,



BIBLIOGRAPHY 179

Allen (2017). Stan: A probabilistic programming language. In: Journal of statistical

software 76.1.

Castagna, Giuseppe; Ghelli, Giorgio; Longo, Giuseppe (1995). A calculus for
overloaded functions with subtyping. In: Information and Computation 117.1,
pp. 115–135.

Ceylan, Ismail Ilkan; Darwiche, Adnan; Van den Broeck, Guy (2016). Open-World
Probabilistic Databases. In: Description Logics. Citeseer.

Chavira, Mark; Darwiche, Adnan (2008). On probabilistic inference by weighted
model counting. In: Artificial Intelligence.

Chella, Antonio; Coradeschi, Silvia; Frixione, Marcello; Saffiotti, Alessandro (2004).
Perceptual anchoring via conceptual spaces. In: Proceedings of the AAAI workshop

on anchoring symbols to sensor data.

Chistikov, Dmitry; Dimitrova, Rayna; Majumdar, Rupak (2015). Approximate
counting in SMT and value estimation for probabilistic programs. In: International

Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer.

Choi, Arthur; Darwiche, Adnan (2013). Dynamic Minimization of Sentential Decision
Diagrams. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Choi, Arthur; Kisa, Doga; Darwiche, Adnan (2013). Compiling probabilistic graphical
models using sentential decision diagrams. In: European Conference on Symbolic

and Quantitative Approaches to Reasoning and Uncertainty. Springer.

Cimatti, Alessandro; Griggio, Alberto; Schaafsma, Bastiaan Joost; Sebastiani, Roberto
(2013). The mathsat5 SMT Solver. In: International Conference on Tools and

Algorithms for the Construction and Analysis of Systems.

Coradeschi, Silvia; Saffiotti, Alessandro (2000). Anchoring symbols to sensor data:
preliminary report. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 129–135.

Coradeschi, Silvia; Saffiotti, Alessandro (2001). Perceptual anchoring of symbols for
action. In: Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), pp. 407–416.

Coradeschi, Silvia; Saffiotti, Alessandro (2003). An introduction to the anchoring
problem. In: Robotics and autonomous systems.

Cousins, Ben; Vempala, Santosh (2016). A practical volume algorithm. In: Mathemati-

cal Programming Computation.

Daoutis, Marios; Coradeschi, Silvia; Loutfi, Amy (2012). Cooperative knowledge
based perceptual anchoring. In: International Journal on Artificial Intelligence Tools.



180 BIBLIOGRAPHY

Darwiche, Adnan (1999). Compiling knowledge into decomposable negation normal
form. In: Proceedings of the 16th international joint conference on Artifical

intelligence.

Darwiche, Adnan (2001). On the tractable counting of theory models application to
truth maintenance and belief revision. In: Journal of Applied Non-Classical Logics.

Darwiche, Adnan (2003). A differential approach to inference in Bayesian networks.
In: Journal of the ACM (JACM).

Darwiche, Adnan; Marquis, Pierre (2002). A knowledge compilation map. In: Journal

of Artificial Intelligence Research.

De Campos, Cassio Polpo; Cozman, Fabio Gagliardi (2005). The inferential complexity
of Bayesian and credal networks. In: IJCAI. Vol. 5. Citeseer, pp. 1313–1318.

De Loera, Jesús A; Dutra, Brandon; Koeppe, Matthias; Moreinis, Stanislav; Pinto,
Gregory; Wu, Jianqiu (2013a). Software for exact integration of polynomials over
polyhedra. In: Computational Geometry.

De Loera, Jesus; Dutra, Brandon; Koeppe, Matthias; Moreinis, Stanislav; Pinto,
Gregory; Wu, Jianqiu (2013b). Software for Exact Integration of Polynomials over
Polyhedra. In: Comput. Geom.

De Moura, Leonardo; Bjørner, Nikolaj (2008). Z3: An efficient SMT solver. In:
International conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer.

De Raedt, Luc; Dumančić, Sebastijan; Manhaeve, Robin; Marra, Giuseppe (2020).
From Statistical Relational to Neuro-Symbolic Artificial Intelligence. In: Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of

Systems.

De Raedt, Luc; Kersting, Kristian; Natarajan, Sriraam; Poole, David (2016).
Statistical relational artificial intelligence: Logic, probability, and computation. In:
Synthesis Lectures on Artificial Intelligence and Machine Learning 10.2, pp. 1–189.

De Raedt, Luc; Kimmig, Angelika (2015). Probabilistic (logic) programming concepts.
In: Machine Learning.

De Raedt, Luc; Kimmig, Angelika; Toivonen, Hannu (2007). ProbLog: A Probabilistic
Prolog and Its Application in Link Discovery. In: Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI). Vol. 7. Hyderabad, pp. 2462–
2467.

De Salvo Braz, Rodrigo; O’Reilly, Ciaran; Gogate, Vibhav; Dechter, Rina (2016).
Probabilistic Inference Modulo Theories. In: Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI).



BIBLIOGRAPHY 181

Deng, Jia; Dong, Wei; Socher, Richard; Li, Li-Jia; Li, Kai; Fei-Fei, Li (2009). Imagenet:
A large-scale hierarchical image database. In: 2009 IEEE conference on computer

vision and pattern recognition. Ieee, pp. 248–255.

Derkinderen, Vincent; Heylen, Evert; Pedro, Zuidberg Dos Martires; Kolb, Samuel;
De Raedt, Luc (2020). Ordering Variables for Weighted Model Integration. In:
Proceedings of the Uncertainty in Artificial Intelligence (UAI) Conference.

Dries, Anton; Kimmig, Angelika; Meert, Wannes; Renkens, Joris; Van den Broeck,
Guy; Vlasselaer, Jonas; De Raedt, Luc (2015). Problog2: Probabilistic logic
programming. In: Joint european conference on machine learning and knowledge

discovery in databases. Springer.

Dyer, Martin E.; Frieze, Alan M. (1988). On the complexity of computing the volume
of a polyhedron. In: SIAM Journal on Computing 17.5, pp. 967–974.

Dyer, Martin; Frieze, Alan; Kannan, Ravi (1991). A random polynomial-time
algorithm for approximating the volume of convex bodies. In: Journal of the ACM

(JACM).

Elfring, Jos; Dries, Sjoerd van den; Van DeMolengraft, MJG; Steinbuch, Maarten
(2013). Semantic world modeling using probabilistic multiple hypothesis anchoring.
In: Robotics and Autonomous Systems.

Emiris, Ioannis Z; Fisikopoulos, Vissarion (2014). Efficient random-walk methods for
approximating polytope volume. In: Proceedings of the thirtieth annual symposium

on Computational geometry. ACM.

Emiris, Ioannis Z; Fisikopoulos, Vissarion (2018). Practical polytope volume
approximation. In: ACM Transactions on Mathematical Software (TOMS).

Erol, Yusuf Bugra; Li, Lei; Ramsundar, Bharath; Stuart, Russell (2013). The extended
parameter filter. In: International Conference on Machine Learning, pp. 1103–1111.

Fierens, Daan; Van den Broeck, Guy; Renkens, Joris; Shterionov, Dimitar; Gutmann,
Bernd; Thon, Ingo; Janssens, Gerda; De Raedt, Luc (2015). Inference and learning
in probabilistic logic programs using weighted Boolean formulas. In: Theory and

Practice of Logic Programming.

Friedman, Nir; Getoor, Lise; Koller, Daphne; Pfeffer, Avi (1999). Learning
probabilistic relational models. In: Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI). Vol. 99, pp. 1300–1309.

Fubini, Guido (1907). Sugli integrali multipli. In: Rend. Acc. Naz. Lincei.

Fukunaga, Keinosuke (2013). Introduction to statistical pattern recognition. Elsevier.



182 BIBLIOGRAPHY

Fung, Robert; Chang, Kuo-Chu (1990). Weighing and integrating evidence for
stochastic simulation in Bayesian networks. In: Machine Intelligence and Pattern

Recognition. Elsevier.

Gao, Wei; Lv, Hengyi; Zhang, Qiang; Cai, Dunbo (2018). Estimating the Volume
of the Solution Space of SMT (LIA) Constraints by a Flat Histogram Method. In:
Algorithms.

Garcez, Artur d’Avila; Gori, Marco; Lamb, Luis C; Serafini, Luciano; Spranger,
Michael; Tran, Son N (2019). Neural-symbolic computing: An effective method-
ology for principled integration of machine learning and reasoning. In: Journal of

Applied Logics.

Gardner, Matt; Talukdar, Partha; Krishnamurthy, Jayant; Mitchell, Tom (2014).
Incorporating vector space similarity in random walk inference over knowledge
bases. In: Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pp. 397–406.

Ge, Hong; Xu, Kai; Ghahramani, Zoubin (2018). Turing: A language for flexible
probabilistic inference. In:

Gehr, Timon; Misailovic, Sasa; Vechev, Martin (2016). PSI: Exact symbolic inference
for probabilistic programs. In: International Conference on Computer Aided

Verification. Springer.

Getoor, Lise (2013). Probabilistic soft logic: a scalable approach for markov random
fields over continuous-valued variables. In: International Workshop on Rules and

Rule Markup Languages for the Semantic Web. Springer, pp. 1–1.

Getoor, Lise; Taskar, Ben (2007). Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning). In:

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). Deep learning. MIT
press.

Goodman, Noah D; Mansinghka, Vikash K; Roy, Daniel; Bonawitz, Keith; Tenenbaum,
Joshua B (2008). Church: a language for generative models. In: Proceedings of the

Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 220–229.

Graf, Susanne; Saïdi, Hassen (1997). Construction of Abstract State Graphs with PVS.
In: International Conference on Computer Aided Verification. Springer.

Günther, Martin; Ruiz-Sarmiento, JR; Galindo, Cipriano; Gonzalez-Jimenez, Javier;
Hertzberg, Joachim (2018). Context-aware 3D object anchoring for mobile robots.
In: Robotics and Autonomous Systems.



BIBLIOGRAPHY 183

Gutmann, Bernd; Jaeger, Manfred; De Raedt, Luc (2010). Extending ProbLog
with continuous distributions. In: International Conference on Inductive Logic

Programming. Springer.

Gutmann, Bernd; Thon, Ingo; Kimmig, Angelika; Bruynooghe, Maurice; De Raedt, Luc
(2011). The magic of logical inference in probabilistic programming. In: Theory and

Practice of Logic Programming.

Gyenis, Zalán; Hofer-Szabó, Gábor; Rédei, Miklós (2017). Conditioning using
conditional expectations: the Borel–Kolmogorov Paradox. In: Synthese.

Hailperin, Theodore et al. (1984). Probability logic. In: Notre Dame Journal of Formal

Logic.

Heunen, Chris; Kammar, Ohad; Staton, Sam; Yang, Hongseok (2017). A convenient
category for higher-order probability theory. In: 2017 32nd Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS). IEEE, pp. 1–12.

Holtzen, Steven; Broeck, Guy Van den; Millstein, Todd (2020). Dice: Compil-
ing Discrete Probabilistic Programs for Scalable Inference. In: arXiv preprint

arXiv:2005.09089.

Holzer, Stefan; Rusu, Radu Bogdan; Dixon, Michael; Gedikli, Suat; Navab, Nassir
(2012). Adaptive neighborhood selection for real-time surface normal estimation
from organized point cloud data using integral images. In: 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, pp. 2684–2689.

Howson, Colin (2003). Probability and logic. In: Journal of Applied Logic.

Huang, Daniel; Tristan, Jean-Baptiste; Morrisett, Greg (2017). Compiling Markov
chain Monte Carlo algorithms for probabilistic modeling. In: Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 111–125.

Huang, Jinbo; Darwiche, Adnan (2005). DPLL with a Trace: from SAT to Knowledge
Compilation. In: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI).

Hüllermeier, Eyke; Waegeman, Willem (2019). Aleatoric and epistemic uncertainty in
machine learning: A tutorial introduction. In: arXiv preprint arXiv:1910.09457.

Islam, Muhammad Asiful; Ramakrishnan, CR; Ramakrishnan, IV (2012). Inference in
Probabilistic Logic Programs with Continuous Random Variables. In: Theory and

Practice of Logic Programming.

Iverson, Kenneth E (1962). A programming language. In: Proceedings of the May 1-3,

1962, spring joint computer conference.



184 BIBLIOGRAPHY

Jackson, Peter (1998). Introduction to expert systems. Addison-Wesley Longman
Publishing Co., Inc.

Kadane, Joseph B (2011). Principles of uncertainty. CRC Press.

Keene, Sonya E (1989). Object-Oriented programming in Common Lisp; a program-
mer’s guide to clos. Tech. rep.

Khoreva, Anna; Benenson, Rodrigo; Hosang, Jan; Hein, Matthias; Schiele, Bernt
(2017). Simple does it: Weakly supervised instance and semantic segmentation. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.

Kimmig, Angelika; Van den Broeck, Guy; De Raedt, Luc (2011). An algebraic Prolog
for reasoning about possible worlds. In: Proceedings of the AAAI Conference on

Artificial Intelligence.

Kimmig, Angelika; Van den Broeck, Guy; De Raedt, Luc (2017). Algebraic model
counting. In: Journal of Applied Logic.

Kjellström, Hedvig; Romero, Javier; Kragić, Danica (2011). Visual object-action
recognition: Inferring object affordances from human demonstration. In: Computer

Vision and Image Understanding.

Knuth, Donald E. (1992). Two Notes on Notation. In: American Mathematical Monthly.

Kolb, Samuel; Mladenov, Martin; Sanner, Scott; Belle, Vaishak; Kersting, Kristian
(2018). Efficient Symbolic Integration for Probabilistic Inference. In: Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI).

Kolb, Samuel; Morettin, Paolo; Zuidberg Dos Martires, Pedro; Sommavilla,
Francesco; Passerini, Andrea; Sebastiani, Roberto; De Raedt, Luc (2019a). The
pywmi Framework and Toolbox for Probabilistic Inference using Weighted Model
Integration. In: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI).

Kolb, Samuel; Zuidberg DosMartires, Pedro; De Raedt, Luc (2019b). How to Exploit
Structure while Solving Weighted Model Integration Problems. In: Proceedings of

the Uncertainty in Artificial Intelligence (UAI) Conference.

Koller, Daphne; Friedman, Nir (2009). Probabilistic graphical models: principles and

techniques. MIT press.

Kolmogorov, AN (1950). Foundations of the theory of probability. In:

Koppula, Hema S; Saxena, Ashutosh (2014). Physically grounded spatio-temporal
object affordances. In: European Conference on Computer Vision. Springer, pp. 831–
847.



BIBLIOGRAPHY 185

Koppula, Hema Swetha; Gupta, Rudhir; Saxena, Ashutosh (2013). Learning human
activities and object affordances from rgb-d videos. In: The International Journal of

Robotics Research.

Koutis, Ioannis (2003). On the hardness of approximate multivariate integration. In:
Approximation, Randomization, and Combinatorial Optimization.. Algorithms and

Techniques. Springer, pp. 122–128.

Kuhn, Harold W (1955). The Hungarian method for the assignment problem. In: Naval

research logistics quarterly.

Kumar, Nitesh; Kuzelka, Ondrej; De Raedt, Luc (2020). Learning Distributional
Programs for Relational Autocompletion. In: arXiv:2001.08603.

Lafitte, Frédéric (2018). CryptoSAT: a tool for SAT-based cryptanalysis. In: IET

Information Security.

LeBlanc, Kevin (2010). Cooperative anchoring: sharing information about objects in
multi-robot systems. PhD thesis. Örebro universitet.

LeBlanc, Kevin; Saffiotti, Alessandro (2008). Cooperative anchoring in heterogeneous
multi-robot systems. In: 2008 IEEE International Conference on Robotics and

Automation. IEEE.

Levesque, Hector J (1986). Knowledge representation and reasoning. In: Annual review

of computer science.

Li, Lei; Wu, Yi; Russell, Stuart J (2015). SWIFT: Compiled inference for probabilistic
programs. In: EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2015-12.

Long, Jonathan; Shelhamer, Evan; Darrell, Trevor (2015). Fully convolutional
networks for semantic segmentation. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3431–3440.

Loutfi, Amy (2006). Odour recognition using electronic noses in robotic and intelligent

systems. Universitetsbiblioteket.

Loutfi, Amy; Coradeschi, Silvia (2006). Smell, think and act: A cognitive robot
discriminating odours. In: Autonomous Robots.

Loutfi, Amy; Coradeschi, Silvia; Daoutis, Marios; Melchert, Jonas (2008). Using
knowledge representation for perceptual anchoring in a robotic system. In:
International Journal on Artificial Intelligence Tools.

Loutfi, Amy; Coradeschi, Silvia; Saffiotti, Alessandro (2005). Maintaining coherent
perceptual information using anchoring. In: Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI).



186 BIBLIOGRAPHY

Lovász, László; Vempala, Santosh (2006). Fast algorithms for logconcave functions:
Sampling, rounding, integration and optimization. In: 2006 47th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’06). IEEE, pp. 57–68.

Ma, Feifei; Liu, Sheng; Zhang, Jian (2009). Volume computation for boolean
combination of linear arithmetic constraints. In: International Conference on

Automated Deduction. Springer.

Manfredotti, Cristina (2009). Modeling and inference with relational dynamic
Bayesian networks. In: Canadian Conference on Artificial Intelligence. Springer,
pp. 287–290.

Manhaeve, Robin; Dumancic, Sebastijan; Kimmig, Angelika; Demeester, Thomas;
De Raedt, Luc (2018). Deepproblog: Neural probabilistic logic programming. In:
Advances in Neural Information Processing Systems, pp. 3749–3759.

Meshgi, Kourosh; Ishii, Shin (2015). The state-of-the-art in handling occlusions for
visual object tracking. In: IEICE TRANSACTIONS on Information and Systems.

Michels, Steffen; Hommersom, Arjen; Lucas, Peter J. F. (2016). Approximate
Probabilistic Inference with Bounded Error for Hybrid Probabilistic Logic
Programming. In: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI).

Milch, Brian; Marthi, Bhaskara; Russell, Stuart; Sontag, David; Ong, Daniel L;
Kolobov, Andrey (2005). BLOG: Probabilistic models with unknown objects. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

Milch, Brian; Russell, Stuart (2006). General-Purpose MCMC inference over relational
structures. In: Proceedings of the Twenty-Second Conference on Uncertainty in

Artificial Intelligence, pp. 349–358.

Minka, Tom; Winn, John; Guiver, J; Webster, S; Zaykov, Y; Yangel, B; Spengler, A;
Bronskill, J (2014). Infer .NET 2.6. Microsoft Research Cambridge. In: URL

http://research. microsoft. com/infernet.

Miosic, Ivan; Zuidberg Dos Martires, Pedro (2020). Measure Theoretic Weighted
Model Integration. In: (in preparation).

Moldovan, Bogdan; Moreno, Plinio; Van Otterlo, Martijn; Santos-Victor, José;
De Raedt, Luc (2012). Learning relational affordance models for robots in multi-
object manipulation tasks. In: 2012 IEEE International Conference on Robotics and

Automation. IEEE, pp. 4373–4378.

Molina, Alejandro; Vergari, Antonio; Di Mauro, Nicola; Natarajan, Sriraam;
Esposito, Floriana; Kersting, Kristian (2018). Mixed sum-product networks: A
deep architecture for hybrid domains. In: Proceedings of the AAAI Conference on

Artificial Intelligence.



BIBLIOGRAPHY 187

Morettin, Paolo; Kolb, Samuel; Teso, Stefano; Passerini, Andrea (2020). Learning
Weighted Model Integration Distributions. In: AAAI, pp. 5224–5231.

Morettin, Paolo; Passerini, Andrea; Sebastiani, Roberto (2017). Efficient Weighted
Model Integration via SMT-Based Predicate Abstraction. In: Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI).

Mösenlechner, Lorenz; Beetz, Michael (2009). Using Physics-and Sensor-based
Simulation for High-Fidelity Temporal Projection of Realistic Robot Behavior. In:
ICAPS.

Muggleton, Stephen; De Raedt, Luc (1994). Inductive logic programming: Theory
and methods. In: The Journal of Logic Programming.

Narayanan, Praveen; Carette, Jacques; Romano, Wren; Shan, Chung-chieh; Zinkov,
Robert (2016). Probabilistic Inference by Program Transformation in Hakaru
(System Description). In: International Symposium on Functional and Logic

Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan, March

4-6, 2016, Proceedings. Springer.

Neville, Jennifer; Jensen, David (2007). Relational dependency networks. In: Journal

of Machine Learning Research 8.Mar, pp. 653–692.

Nilsson, Nils J (1994). Probabilistic logic revisited. In: Artificial intelligence 59.1-2,
pp. 39–42.

Nilsson, Nils J. (1986). Probabilistic logic. In:

Nitti, Davide; De Laet, Tinne; De Raedt, Luc (2013). A particle filter for hybrid
relational domains. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ

International Conference on. IEEE, pp. 2764–2771.

Nitti, Davide; De Laet, Tinne; De Raedt, Luc (2014). Relational object tracking and
learning. In: Robotics and Automation (ICRA), 2014 IEEE International Conference

on. IEEE, pp. 935–942.

Nitti, Davide; De Laet, Tinne; DeRaedt, Luc (2016a). Probabilistic logic programming
for hybrid relational domains. In: Machine Learning.

Nitti, Davide; Ravkic, Irma; Davis, Jesse; De Raedt, Luc (2016b). Learning the
structure of dynamic hybrid relational models. In: Proceedings of the Twenty-second

European Conference on Artificial Intelligence. IOS Press, pp. 1283–1290.

Nori, Aditya V; Hur, Chung-Kil; Rajamani, Sriram K; Samuel, Selva (2014). R2: An
Efficient MCMC Sampler for Probabilistic Programs. In: Proceedings of the AAAI

Conference on Artificial Intelligence.



188 BIBLIOGRAPHY

Oh, Songhwai; Russell, Stuart; Sastry, Shankar (2009). Markov chain Monte Carlo
data association for multi-target tracking. In: IEEE Transactions on Automatic

Control.

Oztok, Umut; Darwiche, Adnan (2018). An Exhaustive DPLL Algorithm for Model
Counting. In: Journal of Artificial Intelligence Research.

Park, James D; Darwiche, Adnan (2004). Complexity results and approximation
strategies for MAP explanations. In: Journal of Artificial Intelligence Research 21,
pp. 101–133.

Parzen, Emanuel (1962). On estimation of a probability density function and mode. In:
The annals of mathematical statistics.

Pearl, Judea (1988). Probabilistic reasoning in intelligent systems: networks of

plausible inference. Elsevier.

Peharz, Robert; Lang, Steven; Vergari, Antonio; Stelzner, Karl; Molina, Alejandro;
Trapp, Martin; Van den Broeck, Guy; Kersting, Kristian; Ghahramani, Zoubin
(2020). Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits. In: Proceedings of the 37th International Conference on Machine Learning

(ICML).

Peng, Xue Bin; Andrychowicz, Marcin; Zaremba, Wojciech; Abbeel, Pieter (2018).
Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE

international conference on robotics and automation (ICRA). IEEE, pp. 1–8.

Persson, Andreas (2019). Studies in Semantic Modeling of Real-World Objects using
Perceptual Anchoring. PhD thesis. Örebro University.

Persson, Andreas; Längkvist, Martin; Loutfi, Amy (2017). Learning actions to
improve the perceptual anchoring of objects. In: Frontiers in Robotics and AI.

Persson, Andreas; Zuidberg Dos Martires, Pedro; De Raedt, Luc; Loutfi, Amy
(2020a). ProbAnch: a Modular Probabilistic Anchoring Framework. In: Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI).

Persson, Andreas; Zuidberg Dos Martires, Pedro; Loutfi, Amy; De Raedt, Luc
(2020b). Semantic Relational Object Tracking. In: IEEE Transactions on Cognitive

and Developmental Systems 12.1, pp. 84–97.

Pfeffer, Avi (2009). CTPPL: A continuous time probabilistic programming language.
In: Twenty-First International Joint Conference on Artificial Intelligence.

Phan, Quoc-Sang; Malacaria, Pasquale (2014). Abstract model counting: a novel
approach for quantification of information leaks. In: Proceedings of the 9th ACM

symposium on Information, computer and communications security.



BIBLIOGRAPHY 189

Poole, David (1993). Probabilistic Horn abduction and Bayesian networks. In: Artificial

intelligence 64.1, pp. 81–129.

Poole, David (1997). The independent choice logic for modelling multiple agents under
uncertainty. In: Artificial intelligence.

Poole, David (2010). Probabilistic programming languages: Independent choices and
deterministic systems. In: Heuristics, probability and causality: A tribute to Judea

Pearl, pp. 253–269.

Przymusinski, Teodor C (1988). Perfect Model Semantics. In: ICLP/SLP. Vol. 88,
pp. 1081–1096.

Rainforth, Tom; Cornish, Robert; Yang, Hongseok; Warrington, Andrew (2018). On
Nesting Monte Carlo Estimators. In: ICML.

Ram, Parikshit; Gray, Alexander G (2011). Density estimation trees. In: KDD. ACM.

Ravkic, Irma; Ramon, Jan; Davis, Jesse (2015). Learning relational dependency
networks in hybrid domains. In: Machine Learning 100.2-3, pp. 217–254.

Reid, Donald (1979). An algorithm for tracking multiple targets. In: IEEE transactions

on Automatic Control.

Richardson, Matthew; Domingos, Pedro (2006). Markov logic networks. In: Machine

learning 62.1-2, pp. 107–136.

Riguzzi, Fabrizio (2018). Foundations of Probabilistic Logic Programming. River
Publishers.

Riguzzi, Fabrizio; Swift, Terrance (2013). Well-definedness and efficient inference for
probabilistic logic programming under the distribution semantics. In: Theory and

practice of logic programming 13.2, p. 279.

Rosenblatt, Murray (1956). Remarks on some nonparametric estimates of a density
function. In: The Annals of Mathematical Statistics.

Ruiz-Sarmiento, Jose-Raul; Günther, Martin; Galindo, Cipriano; González-Jiménez,
Javier; Hertzberg, Joachim (2017). Online context-based object recognition for
mobile robots. In: 2017 IEEE International Conference on Autonomous Robot

Systems and Competitions (ICARSC). IEEE.

Russakovsky, Olga; Deng, Jia; Su, Hao; Krause, Jonathan; Satheesh, Sanjeev; Ma,
Sean; Huang, Zhiheng; Karpathy, Andrej; Khosla, Aditya; Bernstein, Michael, et al.
(2015). Imagenet large scale visual recognition challenge. In: International journal

of computer vision 115.3, pp. 211–252.

Russell, Stuart (2015). Unifying logic and probability. In: Communications of the

ACM 58.7, pp. 88–97.



190 BIBLIOGRAPHY

Rusu, Radu Bogdan; Cousins, Steve (2011). 3d is here: Point cloud library (pcl). In:
2011 IEEE international conference on robotics and automation. IEEE, pp. 1–4.

Salvatier, John; Wiecki, Thomas V; Fonnesbeck, Christopher (2016). Probabilistic
programming in Python using PyMC3. In: PeerJ Computer Science 2, e55.

Sanner, Scott; Abbasnejad, Ehsan (2012). Symbolic variable elimination for discrete
and continuous graphical models. In: Proceedings of the AAAI Conference on

Artificial Intelligence.

Sanner, Scott; Delgado, Karina Valdivia; Barros, Leliane Nunes de (2011). Symbolic
dynamic programming for discrete and continuous state MDPs. In: Proceedings of

the Uncertainty in Artificial Intelligence (UAI) Conference.

Sato, Taisuke (1995). A Statistical Learning Method for Logic Programs with
Distribution Semantics. In: In proceedings of the 12TH international conference on

logic programming (ICLP’95. Citeseer.

Sato, Taisuke; Kameya, Yoshitaka (1997). PRISM: a language for symbolic-statistical
modeling. In: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI).

Sato, Taisuke; Kameya, Yoshitaka (2001). Parameter learning of logic programs for
symbolic-statistical modeling. In: Journal of Artificial Intelligence Research 15,
pp. 391–454.

Schrijvers, Tom; Costa, Vítor Santos; Wielemaker, Jan; Demoen, Bart (2008). Towards
Typed Prolog. In: ICLP.

Shah, Nimish; Olascoaga, Laura I Galindez; Meert, Wannes; Verhelst, Marian (2020).
Acceleration of probabilistic reasoning through custom processor architecture. In:
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
pp. 322–325.

Shan, Chung-chieh; Ramsey, Norman (2017). Exact Bayesian inference by symbolic
disintegration. In: ACM SIGPLAN Notices. ACM.

Silver, David; Huang, Aja; Maddison, Chris J; Guez, Arthur; Sifre, Laurent; Van Den
Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam,
Veda; Lanctot, Marc, et al. (2016). Mastering the game of Go with deep neural
networks and tree search. In: nature.

Smeulders, Arnold WM; Chu, Dung M; Cucchiara, Rita; Calderara, Simone;
Dehghan, Afshin; Shah, Mubarak (2013). Visual tracking: An experimental survey.
In: IEEE transactions on pattern analysis and machine intelligence.

Sommer, Lukas; Oppermann, Julian; Molina, Alejandro; Binnig, Carsten; Kersting,
Kristian; Koch, Andreas (2018). Automatic mapping of the sum-product network



BIBLIOGRAPHY 191

inference problem to fpga-based accelerators. In: 2018 IEEE 36th International

Conference on Computer Design (ICCD). IEEE, pp. 350–357.

Sorensson, Niklas; Een, Niklas (2005). Minisat v1. 13-a sat solver with conflict-clause
minimization. In: SAT.

Speichert, Stefanie; Belle, Vaishak (2019). Learning Probabilistic Logic Programs over
Continuous Data. In: International Conference on Inductive Logic Programming.

Staton, Sam; Wood, Frank; Yang, Hongseok; Heunen, Chris; Kammar, Ohad (2016).
Semantics for probabilistic programming: higher-order functions, continuous
distributions, and soft constraints. In: 2016 31st Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS). IEEE.

Sterling, Leon; Shapiro, Ehud Y (1994). The art of Prolog: advanced programming

techniques. MIT press.

Szegedy, Christian; Liu, Wei; Jia, Yangqing; Sermanet, Pierre; Reed, Scott; Anguelov,
Dragomir; Erhan, Dumitru; Vanhoucke, Vincent; Rabinovich, Andrew (2015). Going
deeper with convolutions. In: Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 1–9.

Taskar, Ben; Abbeel, Pieter; Koller, Daphne (2002). Discriminative probabilistic mod-
els for relational data. In: Proceedings of the Eighteenth conference on Uncertainty

in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 485–492.

Tenorth, Moritz; Beetz, Michael (2013). KnowRob: A knowledge processing
infrastructure for cognition-enabled robots. In: The International Journal of Robotics

Research 32.5, pp. 566–590.

Tobin, Josh; Fong, Rachel; Ray, Alex; Schneider, Jonas; Zaremba, Wojciech;
Abbeel, Pieter (2017). Domain randomization for transferring deep neural networks
from simulation to the real world. In: 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, pp. 23–30.

Tran, Dustin; Kucukelbir, Alp; Dieng, Adji B.; Rudolph, Maja; Liang, Dawen; Blei,
David M. (2016). Edward: A Library for Probabilistic Modeling, Inference, and
Criticism. In: arXiv preprint arXiv:1610.09787.

Trevor, Alexander JB; Gedikli, Suat; Rusu, Radu B; Christensen, Henrik I (2013).
Efficient organized point cloud segmentation with connected components. In:
Semantic Perception Mapping and Exploration (SPME).

Valiant, Leslie G (1979). The complexity of computing the permanent. In: Theoretical

Computer Science.



192 BIBLIOGRAPHY

Van Gelder, Allen; Ross, Kenneth A; Schlipf, John S (1991). The well-founded
semantics for general logic programs. In: Journal of the ACM (JACM) 38.3, pp. 619–
649.

Vennekens, Joost; Verbaeten, Sofie; Bruynooghe, Maurice (2004). Logic programs
with annotated disjunctions. In: International Conference on Logic Programming.
Springer.

Vezzani, Roberto; Grana, Costantino; Cucchiara, Rita (2011). Probabilistic people
tracking with appearance models and occlusion classification: The ad-hoc system.
In: Pattern Recognition Letters.

Vlasselaer, Jonas; Meert, Wannes; Van den Broeck, Guy; De Raedt, Luc (2016).
Exploiting local and repeated structure in dynamic Bayesian networks. In: Artificial

Intelligence 232, pp. 43–53.

Wiedemeyer, Thiemo (2015). IAI kinect2. In: Institute for artificial intelligence,

University Bremen, pp. 2014–2015.

Wong, Lawson LS; Kaelbling, Leslie Pack; Lozano-Pérez, Tomás (2015). Data
association for semantic world modeling from partial views. In: The International

Journal of Robotics Research.

Wood, Frank; Meent, Jan Willem van de; Mansinghka, Vikash (2014). A New
Approach to Probabilistic Programming Inference. In: Proceedings of the 17th

International conference on Artificial Intelligence and Statistics.

Wu, Yi; Lim, Jongwoo; Yang, Ming-Hsuan (2013). Online object tracking: A
benchmark. In: Proceedings of the IEEE conference on computer vision and pattern

recognition.

Wu, Yi; Srivastava, Siddharth; Hay, Nicholas; Du, Simon; Russell, Stuart (2018).
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics
and Inference Algorithms. In: International Conference on Machine Learning.

Xie, Christopher; Xiang, Yu; Mousavian, Arsalan; Fox, Dieter (2019). The Best of
Both Modes: Separately Leveraging RGB and Depth for Unseen Object Instance
Segmentation. In: Conference on Robot Learning (CoRL).

Zeng, Zhe; Morettin, Paolo; Yan, Fanqi; Vergari, Antonio; Van den Broeck, Guy
(2020). Scaling up Hybrid Probabilistic Inference with Logical and Arithmetic
Constraints via Message Passing. In: ICML.

Zeng, Zhe; Van den Broeck, Guy (2019). Efficient Search-Based Weighted Model
Integration. In: Proceedings of the Uncertainty in Artificial Intelligence (UAI)

Conference.



BIBLIOGRAPHY 193

Zhou, Min; He, Fei; Song, Xiaoyu; He, Shi; Chen, Gangyi; Gu, Ming (2015). Estimating
the volume of solution space for satisfiability modulo linear real arithmetic. In:
Theory of Computing Systems.

Zuidberg DosMartires, Pedro (2019). Differentiation and Weighted Model Integration.
In: The 1st Workshop on Deep Continuous-Discrete Machine Learning@ ECML,

Location: Würzburg.

Zuidberg Dos Martires, Pedro; Derkinderen, Vincent; Manhaeve, Robin; Meert,
Wannes; Kimmig, Angelika; De Raedt, Luc (2019a). Transforming Probabilistic
Programs into Algebraic Circuits for Inference and Learning. In: Program

Transformations for Machine Learning @ NeurIPS 2019.

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc (2018). Knowledge
Compilation with Continuous Random Variables and its Application in Hybrid
Probabilistic Logic Programming. In: Eigth International Workshop on Statistical

Relational AI @ IJCAI.

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc (2019b). Exact and
Approximate Weighted Model Integration with Probability Density Functions Using
Knowledge Compilation. In: Proceedings of the AAAI Conference on Artificial

Intelligence.

Zuidberg DosMartires, Pedro; Dumancic, Sebastijan (2018). Reactive Probabilistic
Programming. In: The International Conference on Probabilistic Programming,

Location: Boston, United States of America.

Zuidberg DosMartires, Pedro; Kimmig, Angelika; De Raedt, Luc (2020a). Extending
ProbLog with Random Function Symbols. In: (in preparation).

ZuidbergDosMartires, Pedro; Kolb, Samuel (2020). Monte Carlo Anti-Differentiation
for Approximate Weighted Model Integration. In: Ninth International Workshop on

Statistical Relational AI @ AAAI.

Zuidberg Dos Martires, Pedro; Kumar, Nitesh; Persson, Andreas; Loutfi, Amy;
De Raedt, Luc (2020b). Symbolic Learning and Reasoning with Noisy Data for
Probabilistic Anchoring. In: Frontiers in Robotics and AI 7, p. 100.





List of Publications

Journal Papers

Persson, Andreas; Zuidberg Dos Martires, Pedro; Loutfi, Amy; De Raedt, Luc
[2020b]. Semantic Relational Object Tracking. In: IEEE Transactions on Cognitive

and Developmental Systems 12.1, pp. 84–97.

Zuidberg Dos Martires, Pedro; Kumar, Nitesh; Persson, Andreas; Loutfi, Amy;
De Raedt, Luc [2020b]. Symbolic Learning and Reasoning with Noisy Data for
Probabilistic Anchoring. In: Frontiers in Robotics and AI 7, p. 100.

Conference Papers

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc [2019b]. Exact and
Approximate Weighted Model Integration with Probability Density Functions Using
Knowledge Compilation. In: Proceedings of the AAAI Conference on Artificial

Intelligence.

Kolb, Samuel; Zuidberg DosMartires, Pedro; De Raedt, Luc [2019b]. How to Exploit
Structure while Solving Weighted Model Integration Problems. In: Proceedings of the

Uncertainty in Artificial Intelligence (UAI) Conference.

Derkinderen, Vincent; Heylen, Evert; Pedro, Zuidberg Dos Martires; Kolb, Samuel;
De Raedt, Luc [2020]. Ordering Variables for Weighted Model Integration. In:
Proceedings of the Uncertainty in Artificial Intelligence (UAI) Conference.

195



196 LIST OF PUBLICATIONS

Demo Papers

Kolb, Samuel; Morettin, Paolo; Zuidberg Dos Martires, Pedro; Sommavilla,
Francesco; Passerini, Andrea; Sebastiani, Roberto; De Raedt, Luc [2019a]. The pywmi
Framework and Toolbox for Probabilistic Inference using Weighted Model Integration.
In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

Persson, Andreas; Zuidberg Dos Martires, Pedro; De Raedt, Luc; Loutfi, Amy
[2020a]. ProbAnch: a Modular Probabilistic Anchoring Framework. In: Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI).

Workshop Papers

Antanas, Laura; Can, Ozan Arkan; Davis, Jesse; De Raedt, Luc; Loutfi, Amy;
Persson, Andreas; Saffiotti, Alessandro; Unal, Emre; Yuret, Deniz; Martires,
Pedro Zuidberg dos [2017]. Relational Symbol Grounding through Affordance
Learning: an Overview of the ReGround Project. In: International Workshop on

Grounding Language Understanding @ INTERSPEECH.

Zuidberg Dos Martires, Pedro; Dries, Anton; De Raedt, Luc [2018]. Knowledge
Compilation with Continuous Random Variables and its Application in Hybrid
Probabilistic Logic Programming. In: Eigth International Workshop on Statistical

Relational AI @ IJCAI.

Can, Ozan Arkan; Zuidberg DosMartires, Pedro; Persson, Andreas; Gaal, Julian;
Loutfi, Amy; De Raedt, Luc; Yuret, Deniz; Saffiotti, Alessandro [2019].
Learning from Implicit Information in Natural Language Instructions for Robotic
Manipulations. In: Combined Workshop on Spatial Language Understanding and

Grounded Communication for Robotics @ NAACL.

Zuidberg Dos Martires, Pedro; Kolb, Samuel [2020]. Monte Carlo Anti-
Differentiation for Approximate Weighted Model Integration. In: Ninth International

Workshop on Statistical Relational AI @ AAAI.

Abstracts

Zuidberg DosMartires, Pedro; Dumancic, Sebastijan [2018]. Reactive Probabilistic
Programming. In: The International Conference on Probabilistic Programming,

Location: Boston, United States of America.



LIST OF PUBLICATIONS 197

Zuidberg DosMartires, Pedro [2019]. Differentiation and Weighted Model Integration.
In: The 1st Workshop on Deep Continuous-Discrete Machine Learning@ ECML,

Location: Würzburg.

Zuidberg Dos Martires, Pedro; Derkinderen, Vincent; Manhaeve, Robin; Meert,
Wannes; Kimmig, Angelika; De Raedt, Luc [2019a]. Transforming Probabilistic
Programs into Algebraic Circuits for Inference and Learning. In: Program

Transformations for Machine Learning @ NeurIPS 2019.

In Preparation

Miosic, Ivan; Zuidberg Dos Martires, Pedro [2020]. Measure Theoretic Weighted
Model Integration. In: (in preparation).

Zuidberg DosMartires, Pedro; Kimmig, Angelika; De Raedt, Luc [2020a]. Extending
ProbLog with Random Function Symbols. In: (in preparation).







FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

DTAI

Celestijnenlaan 200A box 2402

B-3001 Leuven

pedro.zudo@kuleuven.be

https://pedrozudo.github.io/


	Abstract
	Beknopte samenvatting
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Logic, Probability and Programming
	The Symbolic and the Subsymbolic
	Thesis Contributions
	Structure of the Thesis


	Weighted Model Integration
	Introduction
	Background
	Logic and Satisfiability
	Boolean Satisfiability
	Satisfiability Modulo Theories

	The Weight of a Model
	The Count of a Model
	Weighted and Algebraic Model Counting
	Weighted Model Integration

	Knowledge Compilation and Counting

	WMI Using KC
	Introduction
	The Probability Density Semiring
	WMI via AMC
	Computing the Probability of SMT Formulas
	Symbo
	Sampo
	Discussion on Complexity

	Experimental Evaluation
	Related Work
	Conclusions

	Exploiting Factorizability
	Introduction
	-SMT
	Anatomy of a Solver
	-SMT: Search vs Compilation
	Numeric vs Symbolic Integration

	Categorizing Existing Solvers
	Exploiting Factorizability of WMI Problems
	Factorized Solving
	Experimental Evaluation
	Beyond Piecewise-Polynomial WMI

	Conclusions

	WMI Using Monte Carlo Anti-Differentiation
	Introduction
	Problem formulation
	Monte Carlo anti-differentiation
	One Level of Nesting
	Repeated Nesting of MCAD
	Histograms as density estimators
	MCAD and Weighted Model Integration
	Implementation

	Experimental Evaluation
	Highly Structured Problems
	Highly Structured Problems with More Challenging Integration

	Conclusions

	Conclusions
	Probabilistic Logic Programming
	Introduction
	DC-ProbLog
	Syntax and Type System
	Type System
	Syntax
	Multiple Dispatch
	Arithmetic Evaluation
	Relationship of Multiple Dispatch to Typing in Prolog

	DC-PLP
	From DC-ProbLog to DC-PLP
	Valid DC-PLP Programs

	Inference
	Conditional Probabilities
	Zero Probability Events and Measurements
	Algebraic Likelihood Weighting

	Two Showcase Examples
	The Indian GPA problem
	Bayesian Learning

	Related Languages

	Conclusions
	Probabilistic Perceptual Anchoring
	Introduction
	Background
	Perceptual Anchoring
	Dynamic Distributional Clauses
	Occlusions

	Semantic World Modeling
	Introduction
	Anchoring + Inference
	Implementation Details: Pre-processing Pipeline
	Theoretical Aspects: Precepts, Attributes and Symbols
	Anchoring Management
	Integration of the Inference System

	Evaluation and Results
	Learning the Anchoring Matching Function
	Tracking of Occluded Objects

	Related Work

	A Two-Fold Extension
	Introduction
	Anchoring of Objects in Multi-Modal States
	Requirements
	Probabilistic Anchoring System

	Learning Dynamic Distributional Clauses
	Evaluation
	Multi-Modal Occlusions
	Uni-Modal Occlusions with Learned Rules
	Transitive Occlusions with Learned Rules

	Future Work

	Conclusions
	Conclusions
	Bibliography
	List of Publications








