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Abstract. Stochastic gradient descent (SGD), especially in combination with
auto-differentiation, has been the prime working horse of deep learning and has
helped the field to rise to the most prominent spot of machine learning. Gradient
based methods have also seen deployment in the field of probabilistic inference.
However, optimization by differentiation in the field of probabilistic inference has
until now only been targeted towards problems with either discrete or continuous
random variables. In this note we show how to perform gradient based optimiza-
tion on discrete-continuous probabilistic models, expressed as weighted model
integration problems, by means of auto-differentiation. This provides a new pow-
erful tool for inference, learning and optimization on (deep) discrete-continuous
models.
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1 Introduction

Weighted model integration (WMI) [1] is the task of performing probabilistic inference
over a model defined as a logical structure. This means that, as such, WMI problems
are not differentiable in the common sense. However, in [19] it was shown that WMI
problems can be compiled into arithmetic circuits (AC) [5], which do constitute a
differentiable structure. Deep ACs have recently been used to perform tasks nowadays
more commonly situated in the neural domain [14]. Closely related to ACs are sum-
product networks [16], which have also been shown to be able to perform tasks associated
with neural networks [3].

The main concern of probabilistic inference is to efficiently perform integrals and
summations over satisfying assignment to the random variables of a probabilistic model,
however differentiation has also been a valuable tool for probabilistic inference, espe-
cially when dealing with continuous random variables. Differentiation is for example
used when performing variational inference [10,17,18] or when performing Hamilton
Monte Carlo inference [6,9]. Although not as important for the discrete domain as
for continuous domain, differentiation has also sparsely been deployed to probabilistic
inference with discrete random variables [4,8].

Even though differentiation has received its fair share of attention in the field of
probabilistic inference for discrete and continuous random variables separately, this is
not true for the hybrid domain. In this note we start to repair this omission and show
how to perform differentiation over arithmetic circuits compiled from WMI problems by
using off-the-shelf auto-differentiation software [15].
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2 Weighted Model Integration in a Nutshell

In this section we are going to formally introduce weighted model integration. First we
define the logical language that allows us to write down a WMI problem.

Definition 1. (SMT(RA) (satisfiability modulo theories over the real arithmetics)) Let R
denote the set of reals, B = {⊥,>} the set of Boolean values, let B be a set of M Boolean
and X a set of N real variables. An atomic formula is an expression of the form g(X) ./ c,
where c ∈ R, ./∈ {=,,,≥,≤, >, <}, and g : RN → R. We then define SMT(RA) theories
as Boolean combinations (by means of the standard Boolean operators {¬,∧,∨,→,↔})
of Boolean variables b ∈ B and of atomic formulas over X.

We can now define the weighted model integral performed over a SMT(RA) formula.

Definition 2. (WMI) Given a set b of M Boolean variables, x of N real variables, a
weight function w : BM × RN→R≥0, and a support φ, in the form of an SMT formula,
over b∪x, the weighted model integral is: WMI(φ,w|x,b)=

∑
bI∈Ib(φ)

∫
Ix(φbI ) w(x,bI)dx.

Ib(φ) and Ix(φbI )) denote the set of satisfying interpretations (or models) of φ and φbI

in function of the sets of variables b and x respectively (see [19, Defintion 2]). In [19]
the authors also show that the weighted model integral can be rewritten as an integral of
a sum-product multiplied by a probability density function:

WMI(φ,w|x,b) =
∫ ∑

bI∈Ib,ba (φa)
∏

bi∈bI αbi (x)wx(x)dx (1)

In Equation 1 φa denotes a logical formula where all the atomic formulas (e.g. (20<x))
in φ have been replaced by fresh Boolean variables - φa is propositional. The set of these
fresh Boolean variables is denoted by ba. αbi is the so-called labeling function and maps
a Boolean variable bi to a real number between in [0, 1] in function of x. A Boolean in the
set b is mapped for example to 0.2, meaning that this Boolean is True with probability
0.2. A Boolean in the set bx is mapped to to the Iverson bracket corresponding to its
originating atomic SMT formula. For instance: α(20<x)(x) = [20<x], which is 1 whenever
the condition in the Iverson bracket is satisfied and 0 otherwise.

We will denote the sum-product in the weighted model integral from here on by Ψ .
Inspecting Equation 1, we observe that the weighted model integral is in fact the expected
value of Ψ with regards to the probability density function wx as already pointed out in
[19, Theorem 3]: WMI(φ,w|X, B) = Ewx(x)[Ψ (x)].

Example 1. Consider the SMT theory broken ↔ (no cool ∧ (t > 20)) ∨ (t > 30),
where broken and no cool are a Boolean variables and t is a real-valued variable.
SMT then answers the question whether or not broken is satisfiable, i.e. whether or
not there is a satisfying assignment to the formula for the variables no cool and t. In
the case that a probability distribution is given over the variables, we can now ask the
question of the probability of the formula being satisfied. Let’s take p(no cool) = 0.01
and t ∼ Nt(20, 5). WMI then answers the question of how probable it is for the SMT
formula to be satisfied.

p(broken) =
∫

(0.01[t>20][t≤30] + [t>30])Nt(20, 5)dt

= 0.01
∫

20<t≤30Nt(20, 5)dt+
∫
t>30Nt(20, 5)dt
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Note that we had to take the conjugate of t > 30 in the first term of the first line to avoid
double counting. For a more in depth presentation of WMI, you can consult [19].

3 Taking the Gradient

Differentiation in probabilistic inference frequently occurs in the form of taking the
gradient with regards to some parameters of an expectation of a random variable. A
prominent example would be variational inference through minimization of the Kullback-
Leibler (KL) divergence by the means of SGD. Due to space constraints we will focus,
however, on the smaller sister of the KL-divergence, namely the cross-entropy. The cross-
entropy of the distributions p and q takes the following mathematical form: Ep[− log q]. p
can for example be the true distribution of a random variable, which we do not know but
that we can observe (and for which we have data points) and q is a model that we would
like to match as closely as possible to the true distribution p. Assuming that q depends
on the set of parameters θ then minimizing the cross-entropy by taking the gradient with
regards to θ and incrementally performing the update step θ ← θ + η∇θEp[− log q(θ)]
minimizes the cross entropy.

Proposition 1. (Gradient of the cross-entropy)

∇θEp[− log q(θ)] = Ep[− 1
q(θ)∇θ

∑
bI∈Ib,ba (φa)

∏
bi∈bI αbi (θ)] (2)

= Ep[− 1
q(θ)
∑

bI∈Ib,ba (φa)
∑

bi∈bI ∇θ(αbi (θ))
∏

b j∈bI\{bi}
αb j (θ)] (3)

Where in Equation 2 we switched around the order of the expectation and the gradient,
and replaced q(θ) by the sum-product from the weighted model integral. In Equation 3
we further pushed inside the gradient by applying the product rule. The labeling function
α is now a labeling function over the parameters to optimize.

In [13] and [12] the authors come to the conclusion (through different means) that
when taking the derivative over an indicator function one ends up with an expectation
over a boundary term, which is equivalent to performing an integral over a sub-manifold1

— a non-trivial task in the general case. We propose, instead of performing the hard
surface integral in a sub-manifold, to use a convex relaxation of the indicator function.
This is for example also done when one deals with 0/1-loss functions, which are known
to be NP-hard to optimize [2,7]. Once, the indicator function (i.e. the label of an atomic
SMT formula) is relaxed, for example through an exponential, the gradient is computed
in a straightforward fashion through auto-differentiation using an off-the-shelf software
package [15] in combination with the reparametrization trick [11] and gradient descent.

4 Conclusion

In this note we have outlined how discrete-continuous probabilistic inference in the
form of WMI fits into a larger a larger body of literature of deep probabilistic models
and we have shown how SGD, the working horse of deep learning, could be applied to
probabilistic inference for WMI problems.

1 In the one dimensional case the derivative of the indicator function is the Dirac delta function,
with its root determining the sub-manifold.
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