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Semantic Relational Object Tracking
Andreas Persson , Pedro Zuidberg Dos Martires, Luc De Raedt, and Amy Loutfi

Abstract—This paper addresses the topic of semantic world
modeling by conjoining probabilistic reasoning and object
anchoring. The proposed approach uses a so-called bottom-up
object anchoring method that relies on rich continuous attribute
values measured from perceptual sensor data. A novel anchor-
ing matching function learns to maintain object entities in space
and time and is validated using a large set of trained humanly
annotated ground truth data of real-world objects. For more
complex scenarios, a high-level probabilistic object tracker has
been integrated with the anchoring framework and handles the
tracking of occluded objects via reasoning about the state of
unobserved objects. We demonstrate the performance of our
integrated approach through scenarios such as the shell game
scenario, where we illustrate how anchored objects are retained
by preserving relations through probabilistic reasoning.

Index Terms—Object tracking, perceptual anchoring, prob-
abilistic logic programming, probabilistic reasoning, relational
particle filtering, semantic world modeling.

I. INTRODUCTION

CONSIDER the classical shell game where a ball is hid-
den under one of three identical cups. The performer of

the game rapidly moves the cups and the task of the observer
is to follow the movement of the cups and to identify under
which cup the ball is located. For an observer to successfully
identify the right cup, he/she must successfully handle a num-
ber of subtasks. First, despite that each of the cups are visually
similar, the observer must create an individual notion of each
cup as a unique object so that it can be identified (e.g., “the
cup in the middle”). Likewise, the observer must recognize
the ball as a unique object. Second, even though the ball is
hidden under one of the cups, the observer makes the assump-
tion that although the ball is not perceived it should still be
present under the cup. Third, as the performer rapidly moves
the cups, the observer should track the cup under which the
ball is hidden. And finally, the observer also needs to realize
that cups can contain balls, and therefore as the cup moves, so
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does the ball. Depending on the level of skill of the performer
(and perhaps some additional tricks) the shell game can be a
difficult one to solve.

Imagine, how could an autonomous agent handle this task
as the observer? For this to be achieved, autonomous agents in
real-world scenarios need to maintain a consonance between
the perceived world (through sensory capabilities) and their
internal representation of the world. One way to contend with
this challenge is to create a semantic world model (i.e., a
semantic object centered model of the world). As discussed
by [1], a semantic world model is a way to represent objects
not only by their numeric properties such as a position vector
but also by semantic properties which share a meaning with
humans. Moreover, such an internal model of objects could
also be used to obtain additional facts about objects and their
affordances (e.g., cups can contain balls).

In this paper, we present an approach to create a semantic
world model where object entities are maintained and tracked
over time. We further integrate a probabilistic reasoning com-
ponent which is able to support the tracking of objects in
case of occlusions due to limitation in perception or due to
interactions with other objects. Our approach is based on per-
ceptual anchoring which, traditionally, has been considered
as a special case of symbol grounding [2], used within the
mobile robotics community. Perceptual anchoring, by defini-
tion, handles the problem to create and maintain, in time and
space, the correspondence between symbols and sensor data
that refer to the same physical object in the external world [3].
This problem has, subsequently, been defined as the anchor-
ing problem [4]. We use bottom-up anchoring [5], whereby
anchors (object representations) can be created by perceptual
observations derived from interactions with the environment.
For a practicable bottom-up anchoring system it is, however,
essential to have a robust anchoring matching function that
accurately matches perceptual observations against the percep-
tual data of previously maintained anchors. For this purpose,
we introduce a novel method that replaces a traditionally
hand-coded anchoring matching function by a learned model
(see [6]).

Furthermore, we integrate our bottom-up anchoring frame-
work with a probabilistic reasoning system, which utilizes
dynamic distributional clauses (DDC) [7], to facilitate rea-
soning about object entities at a symbolic level. DDC is an
extension of the probabilistic logic programming language
ProbLog [8], which can handle continuous random variables in
addition to discrete ones. This predestines DDC to be utilized
for reasoning within robotics, where the world is inherently
continuous and uncertain. Integrating an reasoning system into
the anchoring framework allows us to dynamically feed back
information to the anchoring system and update the retained

2379-8920 c© 2019 EU

https://orcid.org/0000-0001-7649-9109


PERSSON et al.: SEMANTIC RELATIONAL OBJECT TRACKING 85

semantic world model with information stemming from our
probabilistic model of the world. The novelty of our approach
is that we encode the affordance of objects at a high level of
abstraction. This allows us not only to track objects but also
represent the interaction between objects. A standard object
tracker could handle occlusions, but in cases where an object
is first occluded but then moved as it has been encapsulated
by another object, a standard tracker would fail. Particularly, if
this type of an object interaction would occur over an extended
period of time. Therefore, we believe that by eventually learn-
ing affordances, we could further automate this reasoning
process of objects. For now, we do not learn the affordance
but, instead, encode relations in the probabilistic reasoner.

The remainder of this paper is structured as follows. In
Section II, we introduce previously presented works relevant
to object anchoring in relation to probabilistic tracking, data
association, and reasoning. In Section III, we state the gen-
eral background of used approaches and give an overview of
both object anchoring and DDC. Our novel framework for
improving object anchoring and tracking through the inte-
gration of probabilistic reasoning into object anchoring is,
subsequently, presented in Section IV. In Section V, we
present our result of learning the anchoring matching func-
tion, utilizing human annotated data, and machine learning
techniques. Moreover, we introduce the proof-of-concept of
how the use of probabilistic reasoning and object tracking
is employed in order to preserve a consistent world model.
Finally, we conclude this paper with a summary and a discus-
sion regarding possible directions of future work, presented
in Section VI.

The work presented in this paper has been carried out as
part of a larger project titled ReGROUND1 [9], which strives
toward the greater ambition of using relational symbol ground-
ing for the purpose of affordance learning in robotics. More
specifically, the ReGROUND project hypothesizes that the
grounding process should consider the full context of the envi-
ronment, which consists of multiple objects as well as their
relationships and properties, and how the state of these objects
changes through actions and over time. The framework that we
introduce in this paper (presented in Section IV), constitutes
one of the corner pillars of this project—namely, the ground-
work that provides the basic data about the objects and their
properties and relations.

II. RELATED WORK

The importance of data association and object tracking
in relation to perceptual anchoring was widely discussed
by LeBlanc in his Ph.D. thesis on the topic of cooperative
anchoring [10]. Around the same time, and as an alternative to
traditional anchoring, early work on perceptual and probabilis-
tic anchoring was presented by Blodow et al. [11]. The history
of objects was maintained as computationally complex scene
instances and the approach was, therefore, mainly intended
for solving the problem of anchoring and maintaining coher-
ent instances of objects in object kidnapping scenarios, i.e.,

1http://reground.cs.kuleuven.be/

when an object disappears from the scene and later reappears
in a different location.

The idea of probabilistic anchoring was subsequently fur-
ther explored by Elfring et al., which introduced proba-
bilistic multiple hypothesis anchoring [1]. This approach
utilizes multiple hypothesis tracking (MHT)-based data asso-
ciation [12], in order to maintain changes in anchored objects,
and thus, maintain an adaptable world model. In similarity
with their work, we acknowledge that a proper data association
is important for object anchoring, and we support the require-
ments identified by the authors for a changing and adaptable
world modeling algorithm, which are formulated to include:
1) appropriate anchoring; 2) data association; 3) model-based
object tracking; and 4) real-time execution. However, con-
trary to the work of Elfring et al., we address the tasks
of appropriate anchoring and data association in a holistic
fashion by introducing a learned anchoring matching func-
tion that administers both tasks. Moreover, in contrast to the
work presented in [1], we do not encourage a highly inte-
grated approach that supports a tight coupling between object
anchoring/probabilistic data association and object tracking.
Instead, our approach maintains a loose coupling, which is
motivated by the fact that an MHT procedure will inevitably
suffer from the curse of dimensionality [13]. A purely proba-
bilistic anchoring approach, as presented in [1], will, therefore,
further propagate the curse of dimensionality into the concept
of anchoring.

The limitation in the use of MHT for world modeling has
also been acknowledged in a recent publication on the topic
of data association for semantic world modeling [14]. While
this paper inherits the same problem formulation, it substan-
tially differs in approach. The authors discuss and exemplify
issues related to the use of a tracking-based approach for world
modeling, such as intractable branching of the tree-structured
tracks of possible hypothesis, and instead, suggests a clus-
tering approach based on Markov chain Monte Carlo data
association (MCMCDA) [15]. In the same work on data asso-
ciation for semantic world modeling, Wong et al. also pointed
out some characteristics that differentiate world modeling from
target tracking. For example, an appropriate world modeling
algorithm should take into consideration that the state of
most objects do not change between frames, while a track-
ing algorithm must consider unchanged objects as possible
valid targets. For the approach presented in this paper, we are
assuming similar characteristics through high-level tracking of
objects (and those objects only) that are not directly perceived
by the sensory input data.

From the relational point of view, which enables us to carry
out reasoning, some research has been conducted on utiliz-
ing relations to improve the tracking of real-world entities
and state estimation [16]–[19]. The most expressive of theses
approaches is by Nitti et al. [19]. They utilize a relational parti-
cle filter, expressed in DDC, to carry out the tracking of objects
and handle occlusions. In a box packaging scenario, where
boxes are placed inside each other, they showed that binary
predicates like inside/2 are helpful when tracking objects
that are not directly observable. However, Nitti et al. assumed
the data association problem to be solved by identifying the
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objects (boxes) by augmented reality (AR) tags—hence, very
strictly limiting the usage of their framework in real-world
scenarios.

III. BACKGROUND

In this section, we outline the general background of our
used methods. We will both present the traditional defini-
tion found within the concept of perceptual anchoring, as
well as an overview of DDC. We will further outline the
problem domain of existing definitions and methods that
address the problem of object anchoring. The same outline
provides the motivation for our suggested approach, presented
in Section IV.

A. Background on Perceptual Anchoring

Perceptual anchoring, originally presented by Coradeschi
and Saffiotti [3], has been defined in an attempt to address
a subset of the symbol grounding applied to robotics and
intelligent systems. The notion of perceptual anchoring has
undergone several extensions and refinements since its first
definition. Some notable refinements include the addition
of bottom-up anchoring [5], the extension for multiagent
systems [20], the expansion for nontraditional sensing modal-
ities and knowledge based anchoring given full scale knowl-
edge representation and reasoning systems [21]–[23], and
the integration of large-scale knowledge bases together with
of common-sense reasoning in distributed anchoring [24].
In all these works, variations of anchoring have been
presented with a number of common prerequisite compo-
nents from [3], including: a symbolic system (including: a
set X = {x1, x2, . . . , } of individual symbols (variables and
constants); a set P = {p1, p2, . . . , } of predicate symbols),
a perceptual system (including: a set � = {π1, π2, . . . , } of
percepts; a set � = {φ1, φ2, . . . , } of attributes), and predi-
cate grounding relation g ⊆ P × � × D(�), which encodes
the correspondence between (unary) predicates and values of
measurable attributes. The relation g maps a certain predicate
to compatible attribute values. An overview of the anchoring
components and their relations is exemplified in Example 1.

Example 1: Consider the captured camera image with seg-
mented image regions, seen in Fig. 1. Each segmented region
corresponds to an individual percept captured by the percep-
tual system; see Fig. 1 (No. 1). We denote the percepts π1,
π2, and π3, which corresponds to observed physical objects
banana, apple, and mug, respectively. For each percept is, sub-
sequently, a number of attributes measured, e.g., color, size,
etc. One such attribute is a color attribute measured as a nor-
malized color histogram over the masked area of percept π2,
illustrated in Fig. 1 (No. 2). For clarity, we denote the mea-
sured color attribute as attribute φcolor

2 , which have values in
a domain that is equal to the n number of histogram bins.
Finally, the predicate grounding relation g, illustrated in Fig. 1
(No. 3), for the aforementioned color attribute can be seen
as the encoded correspondence between specific peeks in the
color histogram and certain predicate symbols, e.g.,

g

(
red, color, arg max

i=1...n

(
φcolor

2,i

))
iff i = 6.

Fig. 1. Graphical illustration of the anchoring components and their
interconnections. Illustrated components are further exemplified in Example 1.

An anchor is, consequently, an internal data structure αx
t ,

indexed by time t and identified by a unique individual sym-
bol x (e.g., mug-4, apple-2, etc.), which encapsulates and
maintains the correspondences between percepts and symbols
that refer to the same physical object. Following the definition
presented by [5], the principle functionalities to create and
maintain anchors in a bottom-up fashion, i.e., functionalities
triggered by a perceptual event, are as follows.

1) Acquire initiates a new anchor whenever a candidate
object is received that does not match any existing
anchor αx. This functionality defines a structure αx

t ,
index by time t, and identified by a unique identi-
fier x, which encapsulates and stores all perceptual and
symbolic data of the candidate object.

2) Reacquire extends the definition of a matching anchor αx

from time t− k to time t. This functionality assures that
the percepts pointed to by the anchor are the most recent
and adequate perceptual representation of the object.

Given the defined functionalities above, it is evident that
an initial matching function is essential to determine if a
candidate object is matching an existing anchor or not. In
previously reported work on perceptual anchoring, the problem
of matching anchors has mostly been addressed through a
simplified approach based on the use of symbolic values
(or left out entirely), where the predicate grounding relation
mapping between symbolic predicate values and measured
attribute values commonly is facilitated by the use of con-
ceptual spaces [25]. Conceptual spaces can be thought of as
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a discretization of the continuous perceptual attribute space,
which consequently also result in a loss of information. The
procedure of creating and maintaining anchors, based on the
discretized symbolic values, must accordingly either be han-
dled by a probabilistic system, as in the case of [1], or through
the use of additional knowledge and the use of a reasoning
system, as in the case of [24]. In this paper, we move the
matching function down to the perceptual level by presenting
a novel matching approach that facilitates the rich information
found within the measured attribute values, further presented
in Section IV-C.

Moving the anchoring matching function to the perceptual
level will, inevitably, also introduce another level of com-
plexity since measured attributes must be compared based on
continuous attribute values. The system must, subsequently,
both recognize previously observed objects and detect (or
anchor) new previously unknown objects based on the result of
the initial matching function. In the case of open world scenar-
ios without a fixed number of possible objects that the system
might encounter, this is undoubtedly a challenging issue. In
this paper, we address this issue and present an evaluation
that addresses the problem of learning how to determine if an
object has previously been perceived (or not), in the context
of bottom-up perceptual anchoring, presented in Section V-A.

Traditionally [3], [4], there has also been a third anchoring
functionality; a track functionality.2 This track functional-
ity has recently been revised and explored in the interest of
integrating object tracking into the concept of anchoring, intro-
duced in [6], which suggested a tracking functionality highly
integrated with a point cloud -based particle filter tracking
approach on the lowest perceptual sensory level [26]. However,
the performance of the previously suggested framework was,
consequently, affected by the computational load of the used
object tracking approach, which requires tracking of compu-
tational demanding 3-D point cloud data. In this paper, we
further explore the integration between object tracking and
perceptual anchoring, presented in Section IV-D. This inte-
gration is based upon the belief that the integration should
be loosely coupled in order to sustain the benefits of both
the ability to maintaining individual instances on objects in a
larger scale, as in the case of perceptual anchoring, as well
as efficiently and logically track object instances over time,
as in the case of probabilistic reasoning. In particular, we
utilize dynamic distributed clauses in order to track objects
on a higher conceptual level and, hence, also enable reason-
ing about the objects perceived on the anchoring level, as
presented in Section V-B.

B. Overview of Dynamic Distributional Clauses

DDC is an extension of the logic programming language
Prolog [27] that is capable of handling discrete and continuous
random variables at the same time. Programs written in DDC

2The track functionality was formally integrated with the reacquire func-
tionality for the extension to sensor-driven bottom-up anchoring [5], such that
no distinction was made between extending the definition for an anchor from
time t − 1 or t − k.

allow for high-level (discrete variables) reasoning with low-
level sensor input (continuous variables).

In logic programming, reasoning happens through the usage
of symbols. These are either terms or predicates. The latter are
often referred to as relations. Terms can be constants, logical
variables, or n-ary functors applied to an n-tuple of terms.
Constants can only have one assigned value to them, which
means that only one interpretation is possible. This is in con-
trast to logical variables, which have multiple interpretations.
More concretely, a logical variable X is a variable ranging over
the set of all possible ground terms. Lastly, we also have terms
of the form p(t1, . . . ,tn) with p/n being an n-ary predicate
and all ti’s being terms themselves. This last kind of terms
are dubbed atoms.

In the static case, i.e., when there is no explicit dependency
on time in the terms, DDC programs reduce to distributional
clauses (DC) [28], [29] programs. A distributional clause is
of the form h ∼ D ← b1, . . . ,bn, where ∼ is a predicate in
infix notation and bi’s are literals, i.e., atoms or their negation.
h is the name of a random variable and D tells us how the
random variable is distributed—both are formally terms. The
meaning of such a clause is that each grounded instance of a
clause (h ∼ D← b1, . . . ,bn)θ defines a random variable hθ

that is distributed according to Dθ . A grounding substitution
θ = {V1/t1, . . . ,Vn/tn} is a transformation that simultane-
ously substitutes all logic variables Vi in a distributional clause
with nonvariable terms ti. Here, we see that random variables
and distributions are themselves not necessarily grounded by
definition. The mean of a normal distribution can, for instance,
depend on random variables. For the atom hθ to be defined it
is necessary that all atoms biθ in the distributional clause eval-
uate to true. Labeling a distributional clause with time indexes
allows for declaring dynamic models via defining a transition
model from time step t to time step t+ 1.

Inference in DC is conducted through importance sampling
combined with backward reasoning, likelihood weighting, and
Rao–Blackwellization [7], while filtering in the dynamic case
is carried out through particle filtering [29].

To sum up, DDC is a template language that defines
conditional probabilities for discrete and continuous random
variables: p(hθ |b1θ, . . . ,bnθ) = Dθ .

IV. NOVEL METHOD: COMBINED OBJECT ANCHORING

AND TRACKING FRAMEWORK

Our suggested combined framework architecture, seen in
Fig. 2, is a modularized architecture that utilizes libraries
and communication protocols available in the robot oper-
ating system (ROS).3 Each module/subsystem (described in
details below) has a dedicated task, while the overall goal of
the combined framework is to create and maintain coherent
and accurate representations (anchors) of perceived real-world
objects. The same anchor representations also provides the his-
torical background information, i.e., information about objects
last perceived at time t − kx, which is used by the anchoring
system to process and anchor objects perceived at the present

3http://www.ros.org/
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Fig. 2. Overview of our combined framework architecture. The overall frame-
work is modularized architecture that consist of three core subsystems (each
described in further details in this section): first row an initial perceptual
preprocessing pipeline with the purpose of detecting, segmenting, and pro-
cessing perceived objects, second row an anchoring system with the purpose
of creating and maintaining updated and consistent representations (anchors)
of perceived objects, and third row an inference system with the purpose aiding
the anchor system and track objects in complex dynamic scenarios.

time t, illustrated in Fig. 2 (No. 2). Furthermore, the frame-
work utilizes an inference system, illustrated in Fig. 2 (No. 3),
which aids the anchor system in complex dynamic scenes.
Finally, the architecture is a sensor-driven architecture that is
triggered by perceptual data, i.e., sensor readings, which ini-
tially are preprocessed by a perceptual pipeline, illustrated in
Fig. 2 (No. 1).

A. Implementation Details: Preprocessing Pipeline

The overall background preprocessing pipeline, with the
goal of detecting and segmenting objects, extract features from
detected objects, classifying and symbolically grounding each
object instances, is illustrated in Fig. 2 (No. 1). For this pur-
pose, our system setup relies upon publicly available core
libraries and systems, including: the Point Cloud Library4

(PCL), the Open Computer Vision Library5 (OpenCV), and
the ROS. It should also be noted, all methods and techniques
covered in this section are considered to be replaceable

4http://pointclouds.org/
5http://opencv.org/

black-box approaches that are used for the means of provid-
ing background for the subsequent theoretical Section IV-B.
For example, the used object segmentation method could
be replaced with a convolutional network-based semantic
segmentation approach [30]. This requires, however, an ade-
quate data set of pixel-wise mask annotations for training
the network to detect the objects of interest, which is some-
thing that is not always publicly available and must, therefore,
further be addressed, e.g., through weakly supervised learn-
ing [31]. Nevertheless, the details on used techniques, for the
presented architecture, are here covered for completeness and
reproducibility.

More specifically, the initial step of our preprocessing
pipeline is an object segmentation method, which is performed
with the purpose of detecting arbitrary objects of interest in
the scene. The deployed object segmentation method is based
on organized point cloud data (i.e., the organization of point
cloud data is identical to the rows and columns of the imagery
data from which the point cloud originates), which are given
as input data by a Kinect2 RGB-D sensor. To establish the ini-
tial connection between the ROS environment and the Kinect2
sensor has further the ROS-Kinect2 bridge [32] been integrated
and used together with the presented framework architecture.
Hence, the segmentation procedure can briefly be described
using the following steps.

1) Estimate 3-D surface normals based on integral
images [33]. This function uses the algorithm for cal-
culating average 3-D gradients over six integral images,
where the horizontal and vertical 3-D gradients are used
to compute the normal as the cross-product between two
gradients.

2) Planar segmentation based on the calculated surface
normals.

3) Object segmentation through clustering of the remaining
points (points that are not part of the detected planar sur-
faces). This segmentation uses a connected component
segmentation, presented in [34], where a Euclidean com-
parison function is used to connect the components that
constitute the cloud cluster of an individual object.

Moreover, provided that object instances have been seg-
mented based on the full spectrum of available RGB-D data (as
described above), we are further able to exploit the advance-
ments in deep learning for image classification in the final
object classification procedure of our preprocessing pipeline.
The convolutional neural networks (CNNs) architecture used
in this case is based on the 1 K GoogLeNet model, developed
by [35], and which originally was trained on the ILSVRC
2012 visual challenge data set [36]. For this paper, we have,
however, extracted a subset of the ImageNet database [37]
and fine-tuned the model for 101 objects categories that are
relevant for a household domain, e.g., mug, spoon, banana,
tomato, etc., where the model was trained for a top-1 accuracy
of 73.4% (and a top-5 accuracy of 92.0%).

B. Theoretical Aspects: Precepts, Attributes, and Symbols

The resulting output of the object segmentation is m
point cloud clusters (where m varies between frames). For
consistency with the definition of anchoring, we denote
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segmented clusters as percepts: {π spatial
1 , π

spatial
2 , . . . , π

spatial
m },

which each corresponds to the spatial 3-D point cloud data
of an individual object. Posterior to the segmentation of the
point cloud clusters, the same RGB-D data is also used for
segmenting corresponding visual 2-D imagery data of each
detected object. This image segmentation is entirely based
on the prior point cloud clusters and a projection between
the 3-D point cloud frame and the 2-D visual RGB frame of
the RGB-D sensor. Also, we denote visual data as percepts:
{πvisual

1 , πvisual
2 , . . . , πvisual

m }, which each corresponds to the
visual 2-D imagery data of a segmented object.

Next, both segmented perceptual 3-D point cloud data and
2-D visual data are further forwarded to a feature extraction
procedure. The first step of this feature extraction procedure
is to extract both a position attribute as the point at the
geometrical center of each segmented percept π

spatial
y , and a

size attribute as the 3-D bounding box around each percept
π

spatial
y , where π

spatial
y|y=1,2...,m ∈ {π spatial

1 , π
spatial
2 , . . . , π

spatial
m }.

The extracted position attribute is here denoted φ
pos
y ∈ R

3,
while the corresponding size attribute is denoted φsize

y ∈ R
3.

Furthermore, a color attribute φcolor
y is extracted for each

visual percept πvisual
y , which is measured as a color histogram

(in the HSV color space).
Finally, extracted attributes together with the perceptual data

are further forwarded to a combined predicate grounding and
object classification procedure. This procedure has the pur-
pose of both grounding and associating a symbolic value with
each extracted attribute, as well as classifying each object
and further associating each object with an object category
label. The predicate grounder is here responsible for ground-
ing each measured attribute φy (of the set �y, that originates
from the same physical object) to a predicate grounding sym-
bol py. For example, a certain peek in a color histogram,
measured as a φcolor

y attribute, is grounded to the symbol
red, such that pcolor

y = red (see Example 1). In the context
of anchoring, we further assume that all trained object cat-
egories (e.g., mug, spoon, tomato, etc.) of used GoogLeNet
model are part of the set of possible predicate symbols P . The
input for the object classification procedure are, subsequently,
the segmented visual percepts πvisual

y , while resulting object
categories together with predicted category probabilities are
denoted by pclass

y ∈ P and φclass
y , respectively.

C. Anchoring Management

The entry point for the anchoring system, seen in Fig. 2
(No. 2), is a matching function. This function assumes a
bottom-up approach to perceptual anchoring, described in [5],
where the system constantly receives candidate objects and
invokes a number of different matching algorithms (one match-
ing algorithm for each measured attribute in the set �y =
{φclass

y , φcolor
y , φsize,

y φ
pos
y }) in order to determine if an anchor,

αx, has previous been perceived or not.
1) Matching Function: More specifically, an unknown set

of attributes �y is compared against the set of attributes �x

of an existing anchor αx. The combined result of all indi-
vidual invoked matching algorithm determines, subsequently,
if an anchored object has previously been perceived or not.

In details, a classification attribute φclass
y and symbol pclass

y of
a candidate object is first compared against the classification
attribute and symbol of a previously stored anchor according to

dclass
x,y (φclass

x , φclass
y )

=
⎧⎨
⎩

exp

(
−|φclass

x −φclass
y |

φclass
x +φclass

y

)
, if pclass

x ≡ pclass
y

0, else.
(1)

We interpret the dclass
x,y as the exponentially decaying rela-

tive L1-distance between the two attribute values φclass
x and

φclass
y . This means that we exponentially penalize the distance

between two objects in the class attribute space.
Second, the color histogram of a color attribute φcolor

y of
a candidate object is compared (assuming normalized color
histograms) according to the color correlation

dcolor
x,y

(
φcolor

x , φcolor
y

)

= 1

2

⎛
⎜⎜⎝1+

∑n
i=1

(
φcolor

x,i − μx
)(

φcolor
y,i − μy

)
√∑n

i=1

(
φcolor

x,i − μx
)2 ∑n

i=1

(
φcolor

y,i − μy

)2

⎞
⎟⎟⎠
(2)

where n is the number of histogram bins, the index i gives the
ith histogram bin value of φcolor

x and φcolor
y (respectively), and

μx and μy are the color mean value of each histogram, given
according to

μx = 1

n
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n∑
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φcolor
y,i .

Next, the distance between a position attribute φ
pos
y and the

position φ
pos
x of a previously stored anchor αx, is calculated

according to the L2-distance (in 3-D spatial space). Inspired
by the work presented by [11], this distance is then mapped
to a normalized similarity distance according to

dpos
x,y

(
φpos

y , φpos
x

)
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(
φ
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y ,φ
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x

)
. (3)

Furthermore, the size attribute φsize
y of a candidate object is

compared according to the generalized Jaccard similarity (for
the bounding boxes in 3-D space)

dsize
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y

)
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x,i , φsize
y,i

)
∑3
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(
φsize

x,i , φsize
y,i

) . (4)

Motivated by the importance of the time within the concept
of anchoring, the difference in time since last recorded obser-
vation of a previously stored anchor αx, defined at t − kx, is
finally mapped to a similar normalized distance according to

dtime
x,y (t, t − kx) = 2

1+ et−(t−kx)
= 2

1+ ekx
. (5)

Consequently, all given matching distance values, shown
in (1)–(5), are given in the interval [0.0, 1.0], and all distance
values are, therefore, also commensurable.
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2) Creating and Maintaining Anchors: Combining all
matching distance values, given by (1)–(5), and determining
whether a candidate anchor has previously been perceived
(or not), is not a trivial task. Especially not in the context
of bottom-up anchoring in real-world scenarios with unlim-
ited possibilities of objects together with continuous distance
values given by the initial matching function. The matching
distance values can be combined in many different ways, e.g.,:
through a min or max function, by the weighted average with
different weights, etc. Nonetheless, a threshold value is ulti-
mately required in order to determine if the combined result is
to be considered as a match (or not). In this paper, we will shed
some light upon this issue and present this paper on the topic
of learning the anchoring matching function, which determines
if an object is a novel object or a previously observed object.

At this point we would like to stress that the architecture of
the anchoring system is completely agnostic toward how the
matching function was learned. This means that the anchoring
system considers the matching function to be an exchangeable
black-box approximation of the true anchor-percept matching.
In Section V-A, we compare different classifiers to each other
that could be potentially used to approximate the matching.

Regardless of the used classification algorithm, the pro-
cess of the anchoring is to ultimately create or maintain
anchors through either one of the two principal functionali-
ties: acquire or reacquire, respectively (further described in
Section III-A). The anchor space, in which the anchors are
maintained and stored, is in this case expressed as a perma-
nent world model (PWM). We further enhance the traditional
acquire functionality by utilizing the deep learning classifier
such that a unique identifier x is further generated based on
the classification symbol pclass, e.g., for an object classified as
a cup, a corresponding unique identifier could be generated
as x = cup-4.

D. Integration of the Inference System

In order to prevent the curse of dimensionality from propa-
gating from a probabilistic inference system into the perceptual
anchoring system, we opt for only loosely integrating the infer-
ence system with the anchoring system. This linkage has as a
consequence that we need to maintain two distinct databases
for representing our belief of the world.

The above-described anchoring system database plays the
role of maintaining a PWM, remembering all objects that
have appeared over time (t − kx). By contrast, the database
of the inference system, implemented in DDC, operates on
a temporary world model (TWM). The latter does, how-
ever, not only retain which objects are present in the scene
but also how the single objects relate to each other. A cup
might, for example, be remembered as standing at a certain
point in 3-D space but also by the fact that it stands left
to some other cup. This representation of the real world is
obviously a lot more expensive but adds valuable information
to the scene description when carrying out high-level object
tracking. The relational nature of the TWM enables us to rea-
son about the world and additionally to track objects on a
high level.

By working with two distinct databases we take advantage
of the databases for specialized tasks, e.g., reasoning with
a relational database. However, it also means that we need
to maintain two distinct databases, and more importantly, the
databases have to reflect the same world. Therefore, in order
to retain the integrated framework in a coherent state, we need
to place the loosely coupled inference system and anchoring
system in a tight feedback loop. This feedback loop is repre-
sented by the incoming and outgoing arrows in panel (No. 3),
Fig. 2. It hence consists of two distinct steps.

1) Sending anchor information from the anchoring system
to the inference system and initiating or updating the
belief of the world in the inference system.

2) Sending back the updated belief of the world in the infer-
ence system and update the belief of the world in the
anchoring system, accordingly.

The initial belief in the TWM is initiated by the belief of
the PWM of the scene. The anchor information, originating
from the PWM, is treated as observations in the TWM. For
each initial observation, DDC clauses are added to the TWM
database, which constitutes the temporary internal representa-
tion of the world. For a cup in the scene, for example, a rule
is added that describes the initial belief of its position and
velocity

pos(cup)0 ∼ gaussian
(
�R, �0, ��

)
←

obs(percept_pos(cup))0 ∼= �R (6)

where �X is the observed 3-D position of the geometric cen-
ter of the spatial percept of an object (the cup in this case).
�� is the covariance matrix that specifies the Gaussian and
the �0 corresponds to the initial velocity which is set to 0 in
each dimension. For all the following time steps, we define an
observation model that takes into account uncertainty in the
measurement process itself. We adopt the approach of [19] of
expressing the measurement model as the product of Gaussian
densities around the position of each object. Assuming inde-
pendently and identically distributed measurements of the
objects allows for this factorization. This idealization assumes
that observing an object does not depend on the observation
of any other object

obs(percept_pos(cup))t+1 ∼ gaussian
(�R, �obs

)←
pos(cup)t ∼=

(�R, _
)
. (7)

In the case that all objects in the scene are observed, i.e., none
of the objects is occluded by another one, the TWM and PWM
are now in a state of cognitive consonance, as we used the
anchor information as observations for the inference system.
If however, objects get occluded due to manipulations of the
world, the occluded objects do not produce any perceptual
data anymore. Hence, the perceptual anchoring system can no
longer update its belief of the world, and no updated belief
is sent to the inference system. In this case, the inference
system needs to reason about what might have happened to the
object that is not perceived anymore by the anchoring system.
Considering the world at time step t− 1, and the observations
of the world at time step t, we can speculate about the world
in time step t. We infer the state of an occluded object through
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its relations with perceived objects in the world. This inferred
updated belief of the world is then sent back to the anchoring
system where the state of occluded objects is also updated.

This approach allows us to propose a modified high-level
anchoring track functionality (see [6]), such that:

1) track extends the definition of an anchor αx from time
t − 1 to time t. This functionality is directly respond-
ing to the state of the probabilistic object tracker, which
assures that the percepts pointed to by the anchor are the
adequate perceptual representation of the object, even
though the object is currently not perceived.

With the (re)introduction of the anchoring track function-
ality, we also need to ensure cognitive consonance at the
anchoring side by updating the PWM based on the updated
belief of the world, established by the inference system. More
specifically, the 3-D position attribute φ

pos
x of an anchor αx

t
is updated according to the inferred position of the corre-
sponding object maintained in the TWM of the inference
system. This exchange of information between both systems,
as described in this section, is further facilitated by sharing
the unique identifier x of an anchored object. Hence, we are
able to differentiate between specific instances of objects and
we can express the rules, given by (6) and (7), for an object
instance that is identified by the unique symbol, e.g., cup-1,
apple-4, etc.

The details on how the probabilistic inference is carried out
are given in [7] and [29]. Our contribution lies in coupling
a probabilistic inference system with an anchoring system,
which enables the conjoined system to probabilistically rea-
son on low-level sensor data. This is for example not the case
in [19], where they used AR-tags to observe objects in the
world.

V. EVALUATION AND RESULTS

Evaluating a real-world operating anchoring frame-
work, with several interacting components as described in
Section IV, is undoubtedly a challenging task. Noisy sensor
readings and erroneous attribute measurements are inevitably
present and will propagate through the components of the
processing pipeline. The evaluation presented in this section
is, therefore, limited to: 1) the performance of the suggested
anchoring matching approach (presented in Section V-A) and
2) the integrated combined anchoring and reasoning system
(presented in Section V-B).

A. Learning the Anchoring Matching Function

The evaluation presented in this section has a two-folded
purpose: 1) collect annotated ground truth data about objects
in dynamic scenarios and 2) learning to determine which
of the two anchoring functionalities acquire or reacquire
[see Section IV-C and Fig. 2 (No. 2)], to initiate based on
the matching distances values given of the initial anchor-
ing matching function (given by (1)–(5), as described in
Section IV-C1).

1) Data Collection: A benefit of using perceptual anchor-
ing is that the percepts pointed to by the anchor are the most
recent and adequate perceptual representation of an object. For

the evaluation presented in this paper, we have exploited these
updated and maintained representations, found in anchors,
in order to collect human-annotated ground truth data. This
data collection was conducted through a human-annotation
interface that was queued with segmented perceptual sensor
data given by the perceptual preprocessing pipeline, presented
in Section IV-A. By utilizing this interface, all data about
unknown candidate objects, together with the perceptual data
of possible matching anchored objects, could be presented and
visualized for the human user. Hence, the human was able to
provide feedback about the action that the human counterpart
would consider as the appropriate anchoring action for each
presented candidate object (i.e., acquire a new anchor for a
queued object, or reacquire an existing anchor). The proce-
dure for collecting our ground truth data is further described
and exemplified in Fig. 3.

Behind the scene of proposed human-annotation interface,
exemplified in Fig. 3, the data that in reality was collected
and stored was matching distance values, provided by (1)–(5).
Together with each set of distance values (as result of compar-
ing the attributes of an unknown candidate object against the
attributes of an existing anchored object), was further an anno-
tated label of 1 stored if the user considered an existing object
as a matching object, or 0 otherwise. Worth noting is that the
collected data purely represent that the human user was consid-
ering as the most appropriate action for each presented scene.
Hence, we were also able to gather samples of objects in, for
example, ambiguous situations where an identical (but phys-
ically different) instance of an object was introduced while
the similar counterpart was still observed. Furthermore, given
such ambiguous situations with a number of possible match-
ing anchored objects that could match a selected candidate
object, as depicted in Fig. 3 (Nos. 5 and 6), we assumed that
there could only exist one true match (labeled 1), while the
reaming candidates were nonmatching candidates (labeled 0).
As a result, we were able to collect several samples for each
human action.

2) Experimental Evaluation: With the use of the human-
annotation interface, as described in the previous section, we
were able to collect a data set of a total of 5400 samples.6

A data set that we, subsequently, have used for this par-
ticular evaluation in order to train the anchoring system to
initiate proper anchoring functionality for different situations.
During the data collection, several typical problematic anchor-
ing scenarios, e.g., scenarios there new ambiguous objects are
introduced in the scene, scenarios with partly occluded objects,
scenarios where existing objects were disappearing and reap-
pearing in the scene, etc., were executed in order to cover
a broad range of different situations. Moreover, the data col-
lection was conducted on several occasions for the purpose
of capturing changes in the environmental conditions, e.g.,
changes in light conditions.

Given the collected data, which was comprised of sets of
matching distance values together with corresponding labels

6The collected data set is available under: http://reground.cs.kuleuven.be,
and the human-annotation interface is available under:
https://bitbucket.org/reground/anchoring.
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Fig. 3. Depiction of our human-annotation interface that was used in order to collect ground truth data of anchored objects. In conjunction with changes in
the scene, as illustrated by Nos. 1–3, the human user has the possibility to freeze the execution of the framework and providing feedback about what he/she
would consider as the appropriate anchoring action for a candidate objects. Once the execution is frozen, the human user can select segmented candidate
objects, e.g., the moved apple as illustrated in No. 4, after which the framework is responding by displaying an updated representation of a number of already
anchored objects, shown in No. 5, which best (attribute-wise) corresponds to the selected object. The human user can then provide positive feedback about a
matching anchored object (by selecting the representation of the matching anchored object), or negative feedback (simply by clicking anywhere else on the
screen). Also, to covering the time aspect, and to suggest possible matching anchored objects that have not been perceived recently, we have further added a
time slider, illustrated in the top part of No. 6. Through this time slider can the user adjust the time factor k for the purpose of selecting a matching anchored
object that was last observed at a time t − k.

(with a label of 1 for a matching set of distance values, or
a label of 0 for a nonmatching set), our approach for learn-
ing how to correctly anchoring objects, and thereby learn to
invoke correct anchoring functionality (acquire or reacquire),
was through the evaluation of different classification algo-
rithms. More specifically, for this evaluation we have tested
and trained the following classification algorithms (parame-
ters used for each classifier were, initially, determined through
trial-and-error).

1) Support vector machine (SVM) [38], with ν- support
vectors (trained with ν = 0.1), and with a histogram
intersection kernel function.

2) Multilayer perceptron (MLP), with back-propagation
training, two hidden layers and a layer configuration,
according to: x− 10− 15− 2.

3) k-nearest neighbor (k-NN), trained and tested with
k = 3.

4) Normal Bayes classifier (Bayes) [39].
Collected data set was randomly divided 70/30 into train-

ing/test samples, giving us a total of 3780 training samples and
1620 testing samples. Resulting average classification accuracy
and F1 score for each trained classifier is listed in Fig. 4.

Given the result, presented in Fig. 4, it is seen that the best
average classification accuracy of 96.4% was achieved by the
use of the SVM classifier. The highest average F1 score (for
a true match) of 94.4% was, likewise, achieved with the same
SVM classifier. By the results seen in Fig. 4, it should, how-
ever, also be noted that the differences in accuracy between the
MLP classifier and the SVM classifier are close to insignifi-
cant (only 0.2%). Nevertheless, the best trained resulting SVM

Fig. 4. Resulting average classification accuracy together with F1 score for
each used model for our approach to learn the anchoring functionalities.

model was formally integrated as a part of the initial matching
function of the anchoring system such that the predicted result
of the SVM model was used to determine if an unknown candi-
date object was matching an existing anchor (i.e., if the object
should be reacquired as an existing matching anchor), or if no
current anchors were matching the candidate object (i.e., if a
new anchor should be acquired for the object). Integrated clas-
sification approach was, subsequently, used for the remaining
experiments presented in Section V-B.

By comparing the results between omitting (column A) or
considering (column B) the time difference as an additional
attribute [mapped to a time distance according to (5)], it is
also evident that the time t, in fact, is a relevant factor for
the concept of anchoring. The intuition behind including this
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Fig. 5. Depiction of how suggested system benefits of combined object anchoring and probabilistic object tracking. Rows in order from the top: First row
representing screen-shots of a scenario where a human hand is occluding an apple while the apple is moved, second row corresponding resulting anchored
objects while only using the anchoring system (note that the original apple-1 object is lost while it is occluded and moved by the skin-1 object, and a new
apple-3 object is, therefore, acquired in the end of the scenario), third row plotted particles given by the inference system during execution of suggested
integrated approach, and fourth row corresponding resulting anchored objects of the anchoring system supported by the feed back of the inference system
(note that in this case is the position of apple-1 object tracked while it is occluded and moved by the skin-1 object, and the apple-1 object is, accordingly,
reacquired in the end of the scenario).

additional time attribute in the evaluations presented in this
section was to capture time-dependent changes in the environ-
ment while learning how to anchor objects, e.g., the position
of an object can only change with a limited velocity between
sequential frames. Through examining the results for the best
resulting SVM models, it is seen that our intuition was correct
and that we achieved 0.4% better classification accuracy and
0.6% better F1 score, as a result of including the time differ-
ence as a feature. Worth noted, it can further be seen by the
results in Fig. 4, that the k-NN classifier was the only classifier
that did not benefit from increasing the dimensionality of the
input data by including the time difference as an additional
attribute.

Finally, it should also be noted that the integrated classifica-
tion approach can, in some cases, returning several matching
candidate anchors (i.e., a candidate object can be reacquired
as more than one existing matching anchor). It is, therefore,
important to globally consider all possible candidates for all
observed objects in each frame in order to determine the best
matching candidate anchor for each observed object. For the
work presented in this paper, we used an SVM classifier with
continuous output values such that the globally best match-
ing candidate anchor was determined in a winner takes all
manner.

B. Tracking of Occluded Objects

Despite the accuracy of the anchoring system, presented
in Section V-A, there are scenarios where the pure anchor-
ing system fails to correctly acquire or reacquire an object,
e.g., when an object is occluded and moved by another object.
For a changing and adaptable system to handle the world
modeling of such scenarios, the system must further incorpo-
rate model-based object tracking in order to maintain objects
that are not perceived by the input sensors. In this section, we
will exemplify how our approach of integrating DDC into the
anchoring framework [see Section IV-D and Fig. 2 (Nos. 2
and 3)] can handle such scenarios with occluded objects,
and as a subsequent result further improve the anchoring
accuracy.

1) Proof of Concept: To demonstrate how the anchoring
system benefits from the feedback of the inference system
(and consequently how the inference system benefits from
the same integration), we plot the particles in form of point
positions (representing the belief of the world in the infer-
ence system, as described in Section IV-D), concurrently with
the output of the anchoring system, as exemplified in Fig. 5.
The mean position in 3-D space of the particles for each
object that was not directly perceived at time t, e.g., objects
occluded by another object, was subsequently fed back to the
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reinstated track functionality of the anchoring system such that
the position of an anchor (even though the anchored object
was not observed), was updated to the most probable position
according to the inference system.

Comparing the resulting anchored objects, seen in Fig. 5,
it is evident that there is a significant difference in resulting
anchors. In the case where only the anchoring system was used
(Fig. 5; second row from top), it can be seen that the initial
apple-1 object [seen in Fig. 5 (No. 1)] is lost while the object
is occluded and moved by the skin-1 object. Consequently,
when the apple object reappears in the scene, the anchor-
ing system cannot determine if the object is a new apple
or the previously anchored apple-1, and as a result acquire
an new anchor apple-3 [seen in Fig. 5 (No. 2)]. However, in
the case where both the anchoring system and the inference
system are used (Fig. 5; bottom row), and where the posi-
tion of the tracked apple-1 object [seen in Fig. 5 (No. 3)]
is fed back to anchoring system while the object is moved,
it can seen that the apple object, instead, is correctly reac-
quired as apple-1 once the object reappears in the scene
[seen in Fig. 5 (No. 4)]. Note that rather than using a dedi-
cated classifier for recognizing different human body parts, we
have, instead, fine-tuned our object classification GoogLeNet
model to recognize human skin objects as one of the object
categories.

2) Exemplifying Scenarios: Given the exemplified proof-of-
concept (presented in Section V-B1), we will in this section
further demonstrate a number of scenarios where our sug-
gested integrated system excels (compared to an anchoring
approach that exclusively is based on perceptual observations
of objects).

1) Simple Occlusion: We start with two objects (among
other objects) that are both visible. We then hide the
smaller one of the objects behind the bigger one. The
occluded object does not produce any sensor data. We
can, however, reason about it. Then the smaller object
reappears in the scene, we should be able to associate
the reappearing object with the one from before (same
anchor with high probability).

2) Moving an Occluded Object: We now want to track
an object for which no sensor data is available.
We start again with two objects that are both visi-
ble. We then hide the smaller object underneath the
bigger object, move the bigger object and, subse-
quently, reveal the smaller object. We should be able
to associate the reappearing object with the one from
before.

3) Moving Occluded Objects with Unexpected Revealing:
Similar scenario as before only this time we start out
with also having an unknown object hidden which the
observer initially does not know about. We now hide
again the (visible) smaller object underneath the big-
ger object, move the bigger object, but this time reveal
the initially unknown hidden object. The system should
recognize this as a new object. Then the other (ini-
tially visible) smaller object is revealed, the system
should recognize this object as the previously anchored
object.

4) Shell Game: We start with three identical containers
and a smaller object. We then hide the smaller object
underneath one of the three containers and start shuf-
fling the containers around. We should now be able to
ask the system under which of the three containers the
hidden objects is located.

In Fig. 6, we exemplify our results of stated scenarios with a
number of screen-shots during the execution of each scenario.7

The scenarios were performed in near real-time on a laptop
Intel i7 CPU 2.60 GHz with 16-GB memory and an NVIDIA
Quadro M1000M. This constitutes a promising feature of
our approach as we do not need access to high-performance
machines to deploy our system.

In the first example with simple occlusion (Fig. 6; first row
from top), it can be seen that as soon as the cup occludes
the smaller ball object, the object is immediately tracked
and maintained by the probabilistic reasoner [seen in Fig. 6
(No. 1)]. Opposite, once the ball objects reappear in the
scene, it is no longer any need to probabilistically track the
object, and the object is, once again, maintained through
anchoring [seen in Fig. 6 (No. 2)].

Through the second example (Fig. 6; second row from top),
it is illustrated how the combined system handles movements
during occlusions. In this example, a glove object (a human
hand) is occluding while moving an apple object. As soon
as the apple object is occluded by the glove, the apple
object is tracked and maintained though probabilistic reason-
ing [seen in Fig. 6 (No. 3)]. The tracked position of the
occluded object is continuously fed back to the anchoring
system (through the newly instated anchoring track function-
ality), and the apple object is, consequently, reacquired as the
same apple-1 once the object reappears in the scene [seen
in Fig. 6 (No. 4)].

In the third example (Fig. 6; third row from top), we demon-
strate how our combined systems truly works in symbiosis. In
this case, a similar scenario of moving an occluded object is
exemplified where a ball (ball-1) is occluded while moved
by a glove. However, another unknown ball is initially
also hidden underneath the glove (in the human hand). This
hidden ball is later introduced in the scene during the exe-
cution of the scenario [seen in Fig. 6 (No. 5)]. Nevertheless,
since the second ball is different in appearance (compared
to ball-1), this newly introduced object is correctly acquired
as an new ball-2 object, while the first ball-1 object cor-
rectly remains tracked, and is subsequently reacquired as the
same ball-1 object once reappearing in the scene [seen
in Fig. 6 (No. 6)].

Finally, in the fourth example (Fig. 6; fourth–sixth row from
top), we reconnect with our initial motivation statement (out-
lined in Section I), through presented screen-shots captured
during execution of a shell game scenario. In this example, a
smaller block object (block-3) is hidden underneath one of
three identical larger block objects (block-1), seen in Fig. 6
(No. 7). All the larger block objects are, subsequently, moved
around and shuffled. Nevertheless, during all movements is the
hidden block-3 object tracked though the relation with the

7Full videos are available under: http://reground.cs.kuleuven.be/.
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Fig. 6. Examples of screen-shots captured during the execution of stated scenarios. Visual perceived anchored objects are symbolized with the unique anchor
id (e.g., ball-2), while occluded hidden objects are depicted by plotted particles that represent possible positions of the occluded object in the inference
system. Rows in order from the top: First row example of simple occlusion where a ball is hidden behind a cup, second row depicts the movement of an
occluded object where a glove (or human hand) is occluding while moving an apple, third row similar example of moving an occluded object where a
glove is occluding while moving a ball (ball-1), but in this case is also another ball object (ball-2) introduced during the execution of the scenario,
fourth row–sixth row illustrate a shell game scenario where a smaller object (block-3) is hidden under one of three identical containers (block-2), and
where the containers, subsequently, are shuffled around.

occluding counterpart (block-1), i.e., the inference system
is repeatedly speculating about the position of the hidden
block-3, and the tracked position of is continuously fed back
to the anchoring system. Consequently, once the hidden object
is revealed and reappear in the scene [seen in Fig. 6 (No. 8)],
the object is correctly reacquired as the same block-3 object.

VI. CONCLUSION

In this paper, we have presented how we are able to improve
the overall anchoring process by introducing a post-anchoring
high-level probabilistic reasoning procedure with the purpose
of predicting the state of objects that are not directly per-
ceived through the perceptual sensor data, e.g., in case of
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object occlusions. To retain the integrated framework in a
coherent cognitive state, we have suggested a loosely coupled
integration between proposed inference system and anchor-
ing system, while a tight feedback loop is preserved in order
to maintain consented tracked positions of objects. We have
presented the proof-of-concept of how this integrated frame-
work is used to model and manage a consistent semantic world
model of perceived objects in dynamic scenarios. We have fur-
ther introduced a novel anchoring matching approach based on
classification of humanly annotated ground truth data of real-
world objects for determining whether a perceived object has
previously been observed (or not), and, subsequently, invoke
correct anchoring functionality (acquire or reacquire) in order
to correctly anchor perceived objects. Through the presented
results, we have shown that our learned anchoring matching
approach is able to accurately anchoring objects and main-
taining consistent representations of objects with an accuracy
of 96.4%.

In the scope of the ReGROUND project (see Section I),
a possible future direction of this paper is to exploit
how anchored objects and their spatial relationship, tracked
over time, facilitate the learning of both the function of
objects, as well as object affordances—similar to previously
presented works on learning objects affordances from visual
data [40]–[42]. However, previously presented works have
commonly assumed an approach based on the tracking of
human hand actions, e.g., exploiting the spatial-temporal rela-
tionships between objects and human hand actions to learn
the function of objects [40]. For the approach presented in
this paper, we only consider the tracking of object instances
(where a human hand object might constitute one such object
instance), and where a relational particle filter approach is
utilized for high-level tracking. Hence, it is also possible to fur-
ther infer both the function of objects and object affordances
by employing probabilistic logic programming.

The integration of high-level object tracking into the anchor-
ing framework is also a subject for further investigation. As of
now, only uni-modal probability distribution can be handled
by the anchoring system. This means that the rich and intri-
cate probability distributions that can be expressed in DDC,
e.g., multimodal distributions of the positions of unobserved
objects, can not be passed on to the anchoring system and be
handled in a probabilistic fashion. Allowing this would render
our approach truly probabilistic and equally allow us to keep
track of multiple hypotheses.
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