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Abstract
Reactive programming allows a user to model the flow of a
program for event-driven streams of data without explicitly
stating its control flow. However, many domains are inher-
ently uncertain and observations (the data) might ooze with
noise. Probabilistic programming has emerged as the go-to
technique to handle such uncertain domains. Therefore, we
introduce the concept of reactive probabilistic programming,
which allows to unify the methods of reactive programming
and probabilistic programming. Herewith, we broaden the
scope of probabilistic programming to event-driven data.
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1 Introduction & Motivation
The declarative programming paradigm allows the user to
separate the problem definition from the inference algorithm.
This is in contrast to the imperative paradigm, which asks the
user to specify the exact steps towards the solution. Due to
the ease of modeling problems using declarative languages,
the declarative programming paradigm has been used to
construct probabilistic programming languages (PPL). Rep-
resentatives are, for instance, the functional PPL Anglican
[9] and the logic PPL Problog [2].

A challenging task for declarative programming languages
is interaction with data, both reading in and writing out, es-
pecially in the context of event-driven data streams in which
a program has to be able to interact with data at any point
in time. To alleviate this problem, we introduce a framework
of reactive probabilistic (logic) programming (RPP). Further-
more, we show how the proposed framework can be realized
in the existing probabilistic logic programming language
of Dynamic Distribution Clauses (DDC) [7] and its Python
wrapper PyDC 1.

The proposed framework has the potential to broaden the
scope of PPL to event-driven applications, in which new data
arrives asynchronously. This is in contrast to standard (time)
dynamic models, which perform inference continuously at
every time step. An example application would be website
ad placement, in which a visitor acts as a new event and a
decision is to be made on whether to place an ad. Another
example includes train scheduling problems in which a new

1https://github.com/ML-KULeuven/PyDC
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event might be the delay, and the actor has to reason about
the possibility of conflicting train routes.

2 Reactive Probabilistic Programming
Reactive programming [1], which falls itself under the declar-
ative programming paradigm, has recently gained traction as
a paradigm for event-driven applications. A common trait of
event driven-applications is that external events at discrete
points in time, such as a mouse click from a user on a web
page, drive the execution of a program. The increased inter-
est has resulted in various implementations, for instance, in
Haskell [3] and Scala [5]. Recently also the ReactiveX 2 library
emerged, with bindings to various different languages. The
two distinguishing features of reactive programming are:

• Behaviors change continuously over time and are com-
posable first-class citizens in the reactive programming
paradigm. [4]

• Events refer to streams of value updates to time-dependent
variables (behaviors). Events occur at discrete points
in time and are composable first-class citizens. [1]

Mapping the concepts of behaviors and events to probabilis-
tic programming yields the first two components of reactive
probabilistic programming:

1. behaviors are random variables whose value assign-
ments change with a transition model

2. events are observationswhich interact with the random
variables through (probabilistic) observations

Reactive programming is typically used to continuously up-
date the properties of a data structure, e.g. a website, given
certain events (observations). Porting this to the probabilistic
setting, we identify a third component of reactive proba-
bilistic programming:

3. a planer that decides which action to take given a
probabilistic world state

Given the probabilistic nature of the behaviors, events and
the planner on the one hand, and the deterministic effects
of actions on the other, we propose to structure reactive
probabilistic programming frameworks into two modules:

• A declarative module, where random variables (be-
haviors), observations (events) and a planer are de-
clared.

• An imperative module, where the effect of actions
are defined.

2http://reactivex.io/
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1 %facts
2 city(brussels) <- true. %true implies the city of Brussels exists in our databse
3 %initial state
4 weather(C):0 ~ finite([0.6:rainy,0.4:sunny]) <- city(C). %we initialize the weather at time step 0
5 %state model
6 temperature(C):t ~ gaussian(10,6) <- weather(C):t ~= rainy. %given rainy weather the mean of the
7 %temperature is 10 degrees Celsius
8 temperature(C):t ~ gaussian(24,8) <- weather(C):t ~= sunny. %and 24 for sunny weather
9 %transition model: here we describe how variables at time (t+1) depend on variables at time (t)
10 weather(C):t+1 ~ finite([0.7:rainy,0.3:sunny]) <- weather(C):t ~= rainy.
11 weather(C):t+1 ~ finite([0.4:rainy,0.6:sunny]) <- weather(C):t ~= sunny.
12 activity(tintin):t+1 ~ finite([0.1:walk,0.4:shop,0.5:clean]) <- weather(brussels):t+1 ~= rainy.
13 activity(tintin):t+1 ~ finite([0.6:walk,0.3:shop,0.1:clean]) <- weather(brussels):t+1 ~= sunny.

DDC Block 1. A simple hidden Markov model describing the weather in Brussels.

3 Dynamic Distributional Clauses
Using an established probabilistic logic programming lan-
guage has the advantage of inheriting an existing well de-
fined semantics. To this end, we embody the proposed frame-
work into the language of Dynamic Distributional Clauses 3,
an extension of the logic programming language Prolog [8].
DDC is a template language that defines conditional proba-
bilities for discrete and continuous random variables, which
carry a time label.

Consider the example program in DDC Block 1, modeling
the activity undertaken by Tintin based on the temperature
in Brussels using a simple hidden Markov model. Having
observed Tintin doing shopping (the event), we can query
the weather being sunny (the behavior).

DDC carries out inference by deploying importance sam-
pling combined with backward reasoning, likelihood weight-
ing and Rao-Blackwellization [7]. The filtering is carried out
through particle filtering [6].

4 RPP with DDC and PyDC
We showcase now the structure of an RPP framework, con-
sisting of a declarative and an imperative module. We ini-
tialize a probabilistic belief of the world (in line 3 in Python
Block 1) by loading our world model described in DDC Block
1. We then pass on the information that we observe Tintin
cleaning the house and query the probabilistic module of
our framework for the probability of it being hot. Based on
this we take a decision on whether to wear pants or shorts.

5 Conclusions
We introduced the concept of reactive probabilistic program-
ming and showcased an implementation utilizing DDC and
the PyDC tool. In future work we would like to investigate

3https://bitbucket.org/problog/dc_problog/

1 from pydc import DDC
2 #load DDC program and intialize 500 particles
3 ddc = DDC("weather_brussels_hmm.pl", 500)
4 #proceed one time step and query the state
5 ddc.step(observations=
6 "observation(activity(tintin))~=clean")
7 p_hot = ddc.query(
8 "current(temperature(brussels))>20")
9 #take decision
10 if p_hot>0.5: print("wear shorts!")
11 else: print("wear pants!")

Python Block 1. Example code present in the imperative
module of a reactive probabilistic programming framework.

real-world applications of this new paradigm and include ad-
ditional features such as a fully fledged probabilistic planner.
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