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Alessandro Saffiotti3, Emre Ünal2, Deniz Yuret2, Pedro Zuidberg dos Martires1

1Dept. of Computer Science, KU Leuven, Belgium
2Koc University, Turkey

3Center for Applied Autonomous Sensor Systems, Örebro University, 70182 Örebro, Sweden
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Abstract
Symbol grounding is the problem of associating symbols from
language with a corresponding referent in the environment. Tra-
ditionally, research has focused on identifying single objects
and their properties. The ReGround project hypothesizes that
the grounding process must consider the full context of the en-
vironment, including multiple objects, their properties, and re-
lationships among these objects. ReGround targets the devel-
opment of a novel framework for “affordance grounding”, by
which an agent placed in a new environment can adapt to its
new setting and interpret possibly multi-modal input in order to
correctly carry out the requested tasks.
Index Terms: relational affordances, symbol grounding

1. Introduction
Imagine being able to simply buy a robot and customize it
through either task demonstration or linguistic instructions to
perform household tasks, e.g., to pick up toys and put them in
the right place, or to empty the dishwasher. An essential ca-
pability for such a robot is the ability to adapt to both the lan-
guage and the environment in order to perform the right tasks
in the right way. During training, it will encounter new phrases
referring to new objects, actions and relations, and it will have
to truly ground these to perform its novel tasks. Thus it needs
to identify which objects, actions and relationships in the real
world the phrases refer to in order to obtain a true understand-
ing of the world and the complex interactions that govern it.

Making this vision a reality is one of the key challenges
in building intelligent robots that assist us with our daily tasks.
Realizing it requires a fundamental shift in how the research
community approaches the problem of symbol grounding. Cur-
rently, the focus lies on merely grounding and anchoring the
individual symbols, which refer to single objects and their prop-
erties, in the environment. In contrast, the ReGround project1

hypothesizes that the grounding process should consider the full
context of the environment, which consists of multiple objects as
well as their relationships and properties, and how these change
through actions and over time. It aims to develop a novel re-
lational grounding approach that accounts for the relationships
between multiple symbols in the language and between multi-
ple referents in the environment. Our vision is closely related
to J.J. Gibsons (1979) original notion of affordances, which re-
ferred to the action opportunities (or possibilities) offered to an
organism by its environment, and postulated that the organism
and its environment complement each other.

1RegGround (http://reground.cs.kuleuven.be) is a CHIST-ERA
project funded by the EU H2020 framework program.

The ReGround project also hypotheses that affordances
play a central, bi-directional role in mapping language to the
world. In one direction, linguistic clues may help identify affor-
dances in the environment: verbs frequently used with an object
provide clues about its affordances. In the other direction, what
can and cannot be done with a physical object in an environment
provides information relevant to learning word meanings and
resolving ambiguous utterances. While affordances have been
studied extensively in the robotics literature (e.g., [1, 2, 3]), and
are sometimes mentioned in linguistics [4, 5, 6] the focus is on
object affordances. In contrast, the goal of ReGround is to de-
velop a framework for relational affordances, which also model
relationships in the environment. Unlike most current work on
affordances in robotics, the ReGround approach is to model the
environment itself and to reason about it. We do so using logical
and relational representations and learning techniques, which
have proven useful in both language and robotics.

2. Relational Affordances
The central objective of our project is to develop a symbol
grounding approach that goes beyond the current paradigm of
symbol identification by learning affordances involving each
symbol. The ReGround approach embraces four tenets: (1)
integrating information from multiple modalities is necessary
to perform symbol grounding; (2) identifying symbols is only
the first step in grounding; (3) learning affordances that capture
the relationships among properties of symbols, the configura-
tion of the environment, and which actions are possible is the
second, underexplored, step of grounding; and (4) performing
grounding in a new environment can be aided by using previ-
ously learned affordances to make inferences about newly en-
countered symbols.

This approach is being empirically investigated using a con-
crete set-up, that will serve as our evaluation platform. This set-
up consists of a kitchen table equipped with a Kinova robotic
arm, a Kinect RGB-D sensor and a console for simple natural
language interaction. The robot arm can be manually steered
with a joy-stick, or it can perform autonomous operations. The
system is equipped with some basic knowledge about kitchens
in general, but has to learn about specific, possibly new objects
in your kitchen in order to serve you well. For instance, it
could learn that grannys glasses should be used with extreme
care, should always be hand washed and not put in the dish-
washer, and should be placed on a particular shelf in “grannys
cupboard”. It can learn all this from instructions in natural lan-
guage and from demonstration: e.g., if it does not know how to
wash a glass by hand, you might show it how to do this by op-



Figure 1: Example scene from our prepare snack scenario dis-
playing several objects perceived together with some grounded
symbolic information about them.

erating the robot arm with a joystick. It could also ask (limited)
clarifying questions, in the same way a real human would. This
leads to an interactive scenario that uses multi-modal informa-
tion. The evaluation should be multi-modal as well – the robot
should be able to understand NLP instructions and to explain in
NLP what it is doing, or planning to do.

Our current development is guided by a prepare snack sce-
nario – see Figure 1. The system is given instructions in natural
language, using the appropriate symbols to refer to objects, their
properties, and relations that hold among them. For instance:

Pear and knife are on the table next to each other.
Grasp the sharp knife and hold the soft pear. Cut
the pear with the knife and put pieces on plate.

In addition to the linguistic description, the system visually per-
ceives the scene: the objects, their (additional) properties (e.g.,
the knife is elongated besides being sharp), their relationships
and the way the states changed over time. Observing also ac-
tions in conjunction with language narration (multi-modal in-
put) enables the robot to learn and infer the meaning of words
(e.g., knife, fruit, nextto, grasp, cut).

To best capture the information in the presented scenario,
we employ relational representations. Because both language
and video input interpretation is prone to error, properties and
relations are also labeled with probabilities reflecting their de-
gree of belief. Hence, we represent our scene using a proba-
bilistic logic theory containing a set of probabilistic facts:

0.95 :: object(pear).
0.99 :: object(knife).
0.95 :: is(pear, soft).
0.9 :: is(knife, sharp).
0.8 :: is(knife, elongated). · · ·

The logical atom (or fact) 0.95 :: object(pear) states that
there is an object pear with probability 0.95. Using such a
description, our goal is now to learn relational affordances of
objects. For instance, in our scenario the agent might learn that
the knife affords cutting because it is elongated (image data)
and sharp (language), or that the pear allows cutting upon be-
cause it is a piece of fruit (image) and it is soft (language). Ex-
pressed in a relational format the agent would learn facts such as
affords(knife, cut, pear), where the affords/3 predicate
becomes the learning target.

As the system receives more input, it continuously updates
its world model, represented through a probabilistic logic pro-

Figure 2: The structure of the system.

gram. The model, the language and the visual input interact
in complex ways: language allows learning about affordances,
perceived affordances from image data influence the language,
and information from the language can improve visual percep-
tion. Once the system has built a model through a series of input
in one environment, it will be placed in a different environment
with the goal to exploit the learned knowledge in new situations
(e.g., replacing the pear by an apple). Based on unimodal in-
formation (e.g., video), the system ought to identify and reason
about the various symbols in the environment using the learned
probabilistic logic model, and carry out the “cut the apple” task.

3. Techniques
To realize the overall ReGround vision, we integrate techniques
from (statistical) relational learning and reasoning, language
processing and symbol grounding, perception, child language
learning, and simulation. We present these in turn. The overall
system structure is illustrated in Figure 2.

3.1. Object Anchoring

In order to refer to objects in the environment, and subsequently
learn the spatial relation between objects and the actions that
apply to objects, the system must first create and maintain a
consistent world model of perceived objects. For this pur-
pose, we rely on the computational theory of perceptual an-
choring [7]. Hence, the relation between the perceptual sensory
data and symbolic knowledge that refer to the same physical
objects is maintained in internal representations called anchors.
Figure 1 depicts some examples of anchored objects with the
corresponding symbolic information. Note that our technique
for object anchoring technique is bottom-up, following an ap-
proach for anchoring with multiple sensor modalities [8], both
visual and non-vision-based. In contrast to traditional symbol-
ically driven top-down anchoring, the bottom-up approach per-
mits sensor driven acquisition of anchors.

The first step in our object anchoring procedure is object
segmentation to detect objects of interest in the environment.
This is based on organized 3D data [9] from the Kinect sensor.
Secondly, each segmented object, here denoted as a percept,
is processed in order to extract both visual and geometrical at-
tributes, as well as grounding each extracted attribute to corre-
sponding predicate symbols. To exemplify, a color attribute is



extracted as a color histogram (in HSV color space), from the
2D visual part of the percept. This color histogram is then asso-
ciated, through a predicate grounding relation, to a correspond-
ing predicate symbol, e.g. the symbol ‘yellow’. In a similar
manner, the shape and position attributes are extracted from the
3D geometrical part of the percept. In order to categorize ob-
jects, we use a Convolutional Neural Network (CNN) architec-
ture, which is based on the 1K GoogLeNet model [10], suitably
modified and fine-tuned for 100 objects categories that are rele-
vant for a household domain, e.g., ‘mug’, ‘spoon’, ‘apple’.

The extracted perceptual and symbolic information for each
perceived object is then encapsulated in an internal data struc-
ture αx

t , called anchor, indexed by time t and identified by a
unique identifier x. The goal of the anchoring system is to man-
age these anchors. Based on the result of a matching proce-
dure, that compares the attribute of an unknown candidate ob-
ject against the attributes of all previously maintained anchors,
anchors are either created or maintained through two general
functionalities:

• Acquire – initiates a new anchor whenever a candidate
object is received that does not match any existing an-
chor αx.

• Re-acquire – extends the definition of a matching anchor
αx from time t− k to time t. This functionality assures
that the percepts pointed to by the anchor are the most
recent perceptual representation of the object.

As noted in recent work on probabilistic anchoring [11],
proper data association is essential for object anchoring. In Re-
Ground, we have integrated the concept of perceptual anchoring
with a joint probability data association technique. The anchor-
ing system uses the beliefs about objects positions, and how
objects relate to each other, to compensate for falsely acquired
anchors, e.g., as a result of erroneous sensor readings. In or-
der to fully exploit this integration, we have extended a third
anchoring functionality, previously defined in [12], as follows:

• Track – extends the definition of an anchor αx from time
t− 1 to time t. This functionality is directly responding
to the state of the data association system, which assures
that the percepts pointed to by the anchor are an adequate
perceptual representation of the object.

3.2. Natural language processing and grounding

One of the aims of ReGround is to develop a novel relational
grounding approach that accounts for relationships between
multiple symbols in the language and multiple referents in the
environment. We developed a neural model to ground the mean-
ing of multiple words compositionally onto physical objects,
their properties and mutual relations. The model transforms an
instruction given in natural language into a neural network ar-
chitecture, which then uses the world representation as input
to predict a task-related target. We first applied this model in
an artificial task, in order to gain understanding. The task is
finding the location of an object that is described by a set of ad-
jectives and/or prepositional phrases using landmark objects in
a 3D grid world.

We adapted the neural modules proposed in [13] to this grid
world domain. The model consist of two parts, the network lay-
out generator and the neural language grounder. We start with
the language grounder part to introduce the neural components,
later we describe the algorithm to generate the network layout.

The neural language grounder is a collection of neural mod-
ules with connections among them as specified by the layout

Figure 3: The layout generated for the instruction: “Pick the
blue mug on the right of the bottle”.

generator in response to an instruction — see figure 3. There
are four different types of modules, named Detect, And, Shift
and Locate, and each module has a specific grounding role. The
Detect module is a simple convolutional neural network with a
single filter that captures a noun or adjective on the grid world.
Although we can use Detect modules to represent the word
compounds, the model cannot generalize unseen word com-
pounds even if we have a module for each component of the
compound. To overcome this problem, we use an And module
to combine two or more modules. This module element-wise
multiplies the output of the incoming modules, and it allows
us to capture the composition of nouns and adjectives (e.g., the
blue mug) without using additional filters. The Detect modules
produce an attention map over the grid world to capture loca-
tions that match a noun or an adjective. The prepositions are
represented by Shift modules which move this attention loca-
tion in a specific direction, e.g., right of the blue mug. A Shift
module shifts the incoming attention mapping in the direction
of the preposition that the module represents. The last module,
Locate, takes the output of a subtree and predicts the location of
the targeted object by producing a probability distribution over
the grid cells.

The layout generator takes the instruction and produces a
network layout based on the parse tree of the description. Our
algorithm iterates over words and then selects nouns in the in-
put. Then it assigns modifiers to each noun found in the previ-
ous step. These nouns usually have a direct correspondence to
the objects in our 3D scene. Each noun and its modifier(s) cre-
ate a filter component and a structure that combines their output.
After that we extract prepositions, together with the words that
these prepositions relate, from the parser output. Each preposi-
tion corresponds to a shift module in our layout. Finally, verbs
like Put or Pick tell us how to finalize the layout generation by
adding a locate component at the end.

We tested this model in a real world scenario using the Re-
Ground physical table-top setup described above. Our system
is triggered by the user with an instruction given in natural lan-
guage. The model gets the perceptual information from the an-
choring system, including the classes, locations and attributes
of all the objects, and it maps this information to the grid world
internal to the model. The layout generator parses the instruc-
tion and generates the neural network layout. The language
grounder assembles the corresponding network and predicts the



location of the anchor targeted with the instruction. This predic-
tion is sent to the robotic arm and the related action is performed
to complete the instruction.

3.3. Learning relational affordances

Learning relational affordances in real-world set-ups relies on
two major abilities: i) capturing relations among objects, their
properties, actions and other aspects of the environment; and
ii) endowing them with probabilities as the real world is inher-
ently continuous and uncertain. The first ability boils down to
learning the structure of relational models, while the second one
means that we have to describe these models in terms of con-
tinuous random variables and enable parameter estimation of
probabilistic relation models.

We assume previously processed language or visual primi-
tives is given in the knowledge base (i.e., objects, actions, prop-
erties, spatial relations, etc). Our goal is to learn (and then rec-
ognize and reason about) relational affordances, that is com-
binations of primitives, such as object-action, property-action
or actionable upon, action-effects (e.g., knife affords cutting).
The learning problem can be formalized as: given a set of re-
lational affordance examples consisting of probabilistic facts or
relations describing the target predicate and a probabilistic logic
theory containing information about the examples, find a rule
that defines the probabilistic target relation. Certain affordances
or relations can be given as generalized rules expressing pieces
of background knowledge (e.g., any reasonably sized knife can
be grasped) and also used during learning.

As an illustration, consider the snack scenario in Section 2
where, in addition, there may be also a spoon and a full cup.
In this setup, we can learn that the knife allows cutting the
paer, given that the knife is elongated, hard and sharp, and the
pear is a soft fruit. This goal translates into learning the re-
lational target predicate affords/3 from an example such as
affords(knife, cut, pear). Similarly, we could learn via the
example affords(spoon, stir, coffee) that a spoon allows
stirring the coffee because the spoon is an elongated hard object
and coffee is a liquid. Several possible target atoms or learning
examples in our scenario are illustrated below. Target predicates
could be also labeled with target probabilities:

1.0 :: affords(knife, cut, pear).
1.0 :: affords(spoon, stir, coffee).
0.5 :: affords(knife, stir, tea).
0.0 :: affords(knife, cutUpon, cup). (negative)
0.02 :: affords(spoon, cut, pear). (negative)
There are several relational affordances that can be learned

from such examples. Two of them, shown here:
0.75 :: affords(X, cut, Y)← object(X), is(X, sharp),

is(X, elongated), allows(X, grasp),is(Y, fruit),
is(Y, soft), allows(Y, hold).

0.75 :: affords(X, stir, Y)← object(X), is(X, hard),
is(X, elongated), allows(X, grasp),is(Y, liquid), in(Y, cup).
are general affordance rules that correspond to the knife-cutting
and spoon-stir examples and represent (parts of) the structure
of the relational model. The learned rules can be used to predict
the target affordance predicate in new situations. For example,
the second rule can be exploited by replacing the variable X ,
which in our scenario is a spoon, with a knife or any stick, if a
spoon is not available. The probability of the rule is the degree
of belief with which the rule holds, and represents a parameter
of the relational model.

To learn such probabilistic relational affordances, we use
probabilistic rule learning, given that the example descriptions,

their classification and the rules to be learned have a probabilis-
tic (or uncertain) aspect. This setting arises naturally when ex-
ample descriptions are obtained from perception. By leverag-
ing probability theory and logic, it promises to be the perfect
approach to what we need. Our examples (or queries) are facts
that are entailed by the given probabilistic logic theory. Fur-
thermore, the probability of a new query represents, in fact, the
probability that it is entailed by the theory together with the (po-
tential) background knowledge. As a result we proceed with a
setting that learns from entailment and propose two approaches.

In a first approach, we employ ProbFOIL+ [14] which
builds on ProbLog [15], a simple probabilistic Prolog, and
FOIL [16], a first-order rule learner, and employs principles and
heuristics of rule learning. It upgrades the traditional induc-
tive logic programming system FOIL towards a full probabilis-
tic setting and generalizes other probabilistic extensions such
as nFOIL and ProbFoil. ProbFOIL+ learns probabilistic rules
of the form p :: target← body. All input (probabilistic) facts
for such rules are independent of one another. The probabil-
ity p will be determined by the rule learning algorithm which
follows the typical sequential covering approach (used by the
vanilla rule-learner [17]). In an outer loop, the algorithm starts
from an empty set of clauses and repeatedly adds clauses to the
hypothesis until no more improvement is observed with respect
to a global scoring function. The clause to be added is obtained
by a greedy search for a clause that maximizes a local scor-
ing function, using a refinement operator. Besides providing a
general probabilistic setting for first-order rule learning, Prob-
FOIL+: i) integrates rule and parameter learning in a one-step
process, rather than learning them separately, and ii) efficiently
computes the probability of candidate clauses by combining the
sequential covering approach with local optimization.

In a second and extended approach, we use an adaptation of
this technique to accomodate also continuous distributions. It
employs the DDCTL framework, which extends ProbLog and
can be used to build relational affordances via dynamic distri-
butional clauses (DDCs) [18]. Local distributions are modeled
using relational regression trees, such that each leaf has a linear
or logistic regression model.

4. Conclusions
We have outlined our current work within the ReGround
project. ReGround lifts symbol grounding to the relational
level, where an agent reasons about the relationships between
multiple symbols in the language and multiple referents in the
environment, and learns affordances that capture the relation-
ship between objects and their properties, actions, and the envi-
ronment. Our system integrates techniques from diverse areas
such as natural language processing and grounding, object an-
choring, and relational affordance learning.

Future work in ReGround will focus on evaluating the abil-
ity to use the learned concepts to deal with new situations. The
robot will be trained from demonstrations involving inputs from
multiple modalities, e.g., language and perception; and it will
then be placed in an unseen environment where it will be re-
quested to carry out tasks, possibly using unimodal input, i.e.,
only language or only perception.
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